FET Amplifiers $\frac{20}{1}v$ <u>20</u>v $6.6k\Omega$ $6.6k\Omega$ $V_{GS} = 5v$ $V_{GS} = 5v$ V_{DS} 10 20 0 3 $V_{T0} = 1.0V$ $K_p = 2e-5 [A/V^2]$ W=100 microns $V_{GS}=5.0V$ L=10 microns 2 $I_{DS}\left(mA\right)$ $V_{GS}=4.0V$ $V_{GS}=3.0V$ $V_{GS}=2.0V$ $V_{GS}=1.0V$ 0

FET Amplifiers

- A 200mv peak ac input voltage will cause more than a 1v peak ac output voltage
- What would we change to make the voltage gain even larger?

dc Solution of FET Amplifier

- Set the ac source to zero and analyze the dc bias point
- Solution should agree with that from load line approximation

dc Solution of FET Amplifier

• Response for a 5kHz, 0.2v peak ac input signal

dc Solution of FET Amplifier

• The output signal is somewhat distorted for a 0.4v peak ac input

Small Signal Assumption

 \bullet The distortion is due to the nonlinear effects when the ac v_{gs} is too large:

bias point equations:
$$I_D = K(V_{GS} - V_t)^2$$
 $V_D = V_{DD} - R_D I_D$

ac & dc equations:
$$v_{GS} = V_{GS} + v_{gS}$$
 $i_D = K(v_{GS} - V_t)^2$

Transconductance -- Gain

• The transconductance, g_m, for a MOSFET is much smaller than that for a BJT which uses the same silicon area (BJT approx. 100 times better)

$$g_m = \frac{\partial i_D}{\partial v_{GS}} \bigg|_{v_{GS} = V_{GS}}$$

Transconductance -- Gain

- BJT g_m's are independent of area dimensions
- FET g_m's are dependent on channel W and L dimensions

$$g_m = \frac{\partial i_D}{\partial v_{GS}}\bigg|_{v_{GS} = V_{GS}} = 2K(V_{GS} - V_t) = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)$$

Small Signal Voltage Gain

$$v_D = V_{DD} - R_D i_D = V_{DD} - R_D (I_D + i_d)$$

• Under the small signal assumption:

$$v_d = -R_D i_d = -g_m R_D v_{gs}$$

$$\frac{v_d}{v_{gs}} = -g_m R_D$$

Small Signal Model

• The small signal model is very similar to that for the BJT amplifier:

• r_o is the drain-source voltage change with change in i_{ds} due to channel length modulation.

Channel Length Modulation

- Given lambda and the bias point, we can calculate r_o
- For our example, we can estimate r_o from an enlarged view of I_{DS} vs. V_{DS} at the bias point (with V_{GS} =5v)

Small Signal Model

• Short the dc supplies and analyze the small signal equivalent ckt:

Biasing

• Since I_D determines g_m we'd like to bias the transistor so that the small signal gain remains as stable as possible with variations in temperature and process

Negative Feedback Resistor

ullet R_S provides negative feedback for unwanted changes in I_{DS} due to process variations or temperature fluctuations

Negative Feedback Resistor

- We can get a similar negative feedback effect with a drain to gate bias resistor
- This resistor guarantees that the transistor is biased in the saturation region -- why?

Find the R_D which establishes a 1mA I_D

$$K=0.25 \text{mA/V}^2$$
 $VDD=20V$ $V_t=2V$

No negative Feedback Resistor

• What is the change in I_D for the circuit below if the threshold voltage changes from 2V to 3V?

Negative Feedback Resistor

• But this change is much less with negative feedback control

