
Approximate Storage in Solid-State Memories

Adrian Sampson
University of Washington

asampson@cs.washington.edu

Jacob Nelson
University of Washington

nelson@cs.washington.edu
Karin Strauss

Microsoft Research
kstrauss@microsoft.com

Luis Ceze
University of Washington

luisceze@cs.washington.edu

ABSTRACT
Memories today expose an all-or-nothing correctness model that
incurs significant costs in performance, energy, area, and design
complexity. But not all applications need high-precision storage
for all of their data structures all of the time. This paper proposes
mechanisms that enable applications to store data approximately
and shows that doing so can improve the performance, lifetime, or
density of solid-state memories. We propose two mechanisms. The
first allows errors in multi-level cells by reducing the number of
programming pulses used to write them. The second mechanism mit-
igates wear-out failures and extends memory endurance by mapping
approximate data onto blocks that have exhausted their hardware
error correction resources. Simulations show that reduced-precision
writes in multi-level phase-change memory cells can be 1.7× faster
on average and using failed blocks can improve array lifetime by
23% on average with quality loss under 10%.

Categories and Subject Descriptors
B.3.4 [Memory Structures]: Reliability, Testing, and Fault Tol-
erance; D.4.2 [Operating Systems]: Storage Management—main
memory, secondary storage

General Terms
Reliability, Performance

Keywords
Approximate computing, storage, error tolerance, phase-change
memory

1. INTRODUCTION
Many common applications have intrinsic tolerance to inaccura-

cies in computation. Techniques under the umbrella of approximate
computing [2, 8, 12, 14, 22, 24, 26, 38, 41] exploit this tolerance to
trade off accuracy for performance or energy efficiency. Applica-
tions in domains like computer vision, media processing, machine
learning, and sensor data analysis can see large efficiency gains in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
MICRO’46, December 7–11, 2013, Davis, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2638-4/13/12. . . $15.00.

exchange for small compromises on computational accuracy. This
trade-off extends to storage: tolerance to errors in both transient and
persistent data is present in a wide range of software, from servers
to mobile devices.

Meanwhile, the semiconductor industry is beginning to encounter
limits to further scaling of common memory technologies like
DRAM and Flash. As a result, new memory technologies and
techniques are emerging. Multi-level cells, which pack more than
one bit of information in a single cell, are already commonplace
and phase-change memory (PCM) is imminent. But both PCM and
Flash wear out over time as cells degrade and become unusable.
Furthermore, multi-level cells are slower to write due to the need
for tightly controlled iterative programming.

Memories traditionally address wear-out issues and implement
multi-level cell operation in ways that ensure perfect data integrity
100% of the time. This has significant costs in performance, energy,
area, and complexity. These costs are exacerbated as memories
move to smaller device feature sizes along with more process varia-
tion. By relaxing the requirement for perfectly precise storage—and
exploiting the inherent error tolerance of approximate applications—
failure-prone and multi-level memories can gain back performance,
energy, and capacity.

In this paper, we propose techniques that exploit data accuracy
trade-offs to provide approximate storage. In essence, we advocate
exposing storage errors up to the application with the goal of making
data storage more efficient. We make this safe by: (1) exploiting
application-level inherent tolerance to inaccuracies; and (2) provid-
ing an interface that lets the application control which pieces of data
can be subject to inaccuracies while offering error-free operation
for the rest of the data. We propose two basic techniques. The
first technique uses multi-level cells in a way that enables higher
density or better performance at the cost of occasional inaccurate
data retrieval. The second technique uses blocks with failed bits to
store approximate data; to mitigate the effect of failed bits on overall
value precision, we prioritize the correction of higher-order bits.

Approximate storage applies to both persistent storage (files or
databases) as well as transient data stored in main memory. We
explore the techniques in the context of PCM, which may be used
for persistent storage (replacing hard disks) or as main memory
(replacing DRAM) [21,36,47], but the techniques generalize to other
technologies such as Flash. We simulate main-memory benchmarks
and persistent-storage datasets and find that our techniques improve
write latencies by 1.7× or extend device lifetime by 23% on average
while trading off less than 10% of each application’s output quality.

We begin by describing the programming models and hardware–
software interfaces we assume for main-memory and persistent
approximate storage. Next, Sections 3 and 4 describe our two
approximate-storage techniques in detail. Section 5 describes our

25

evaluation of the techniques using a variety of error-tolerant bench-
marks and Section 6 gives the results for these experiments. Finally,
we enumerate related work on storage and approximate computing
and conclude.

2. INTERFACES FOR
APPROXIMATE STORAGE

Approximate computing lets programs eschew traditional guar-
antees of perfect precision when they are unnecessary. If a large
portion of a program’s work is error-tolerant, the hardware can
operate more efficiently [8, 12, 14, 24, 26]. While previous work
has considered reducing the energy spent on DRAM and SRAM
storage [14, 24, 38], modern non-volatile memory technologies also
exhibit properties that make them candidates for storing data ap-
proximately. By exploiting the synergy between these properties
and application-level error tolerance, we can alleviate some of these
technologies’ limitations: limited device lifetime, low density, and
slow writes.

Approximate storage augments memory modules with software-
visible precision modes. When an application needs strict data
fidelity, it uses traditional precise storage; the memory then guaran-
tees a low error rate when recovering the data. When the application
can tolerate occasional errors in some data, it uses the memory’s
approximate mode, in which data recovery errors may occur with
non-negligible probability.

This work examines the potential for approximate storage in
PCM and other solid-state, non-volatile memories. These technolo-
gies have the potential to provide persistent mass storage and to
serve as main memory. For either use case, the application must
determine which data can tolerate errors and which data needs
“perfect” fidelity. As with previous work that exposes approxima-
tion to software, we assume that programmers need to make this
decision—approximating data indiscriminately can lead to broken
systems [2, 12, 14, 15, 38].

The next sections describe the approximation-aware programming
models for main memory and persistent mass storage along with the
hardware–software interface features common to both settings. In
general, each block (of some appropriate granularity) is logically in
either precise or approximate state at any given time. Every read
and write operation specifies whether the access is approximate or
precise. These per-request precision flags allow the storage array
to avoid the overhead of storing per-block metadata. The compiler
and runtime are responsible for keeping track of which locations
hold approximate data. Additionally, the interface may also allow
software to convey the relative importance of bits within a block,
enabling more significant bits to be stored with higher accuracy.

Prior work on approximate computing has suggested that differ-
ent applications can tolerate different error rates [14, 38] and our
experimental results (Section 6) corroborate this. However, rather
than providing interfaces to control precision levels at a fine grain,
we apply a uniform policy to all approximate data in the program.
Empirically, we find that this level of control is sufficient to achieve
good quality trade-offs for a variety of applications.

2.1 Approximate Main Memory
PCM and other fast, resistive storage technologies may be used

as main memories [21, 36, 47]. Previous work on approximate
computing has examined applications with error-tolerant memory in
the context of approximate DRAM and on-chip SRAM [14, 24, 38].
This work has found that a wide variety of applications, from image
processing to scientific computing, have large amounts of error-
tolerant stack and heap data. We extend the programming model

and hardware–software interfaces developed by this previous work
for our approximate storage techniques.

Programs specify data elements’ precision at the programming
language level using EnerJ’s type annotation system [38]. Using
these types, the compiler can statically determine whether each
memory access is approximate or precise. Accordingly, it emits load
and store instructions with a precision flag as in the Truffle ISA [14].

2.2 Approximate Persistent Storage
While DRAM and SRAM are typically limited to transient stor-

age, both Flash and emerging technologies like PCM can be used
for persistent, disk-like storage. Interfaces to persistent storage
include filesystems, database management systems (DBMSs), or,
more recently, flat address spaces [10, 45].

Use cases for approximate mass storage range from server to
mobile and embedded settings. A datacenter-scale image or video
search database, for example, requires vast amounts of fast persistent
storage. If occasional pixel errors are acceptable, approximate
storage can reduce costs by increasing the capacity and lifetime
of each storage module while improving performance and energy
efficiency. On a mobile device, a context-aware application may
need to log many days of sensor readings to model user behavior.
Here, approximate storage can help relieve capacity constraints or,
by reducing the cost of accesses, conserve battery life.

We assume a storage interface resembling a key–value store or
a flat address space with smart pointers (e.g., NV-heaps [10] or
Mnemosyne [45]), although the design also applies to more complex
interfaces like filesystems and relational databases. Each object in
the store is either approximate or precise. The precision level is set
when the object is created (and space is allocated).

2.3 Hardware Interface and Allocation
In both deployment scenarios, the interface to approximate mem-

ory consists of read and write operations augmented with a precision
flag. In the main-memory case, these operations are load and store
instructions (resembling Truffle’s stl.a and ldl.a [14]). In the
persistent storage case, these are blockwise read and write requests.

The memory interface specifies a granularity at which approxi-
mation is controlled. In PCM, for example, this granularity may be
a 512-bit block. The compiler and allocator ensure that precise data
is always stored in precise blocks. (It is safe to conservatively store
approximate data in precise blocks.)

To maintain this property, the allocator uses two mechanisms
depending on whether the memory supports software control over
approximation. With software control, as in Section 3, the program
sets the precision state of each block implicitly via the flags on
write instructions. (Reads do not affect the precision state.) In a
hardware-controlled setting, as in Section 4, the operating system
maintains a list of approximate blocks reported by the hardware.
The allocator consults this list when reserving space for new objects.
Section 4.2 describes this OS interface in more detail.

In the main memory case and when using object-based persistent
stores like NV-heaps [10], objects may consist of interleaved precise
and approximate data. To support mixed-precision objects, the
memory allocator must lay out fields across precise and approximate
blocks. To accomplish this, the allocator can use one of two possible
policies: ordered layout or forwarding pointers. In ordered layout,
heterogeneous objects lay out their precise fields (and object header)
first; approximate fields appear at the end of the object. When
an object’s range of bytes crosses one or more block boundaries,
the blocks that only contain approximate fields may be marked as
approximate. The prefix of blocks that contain at least one precise
byte must conservatively remain precise. With forwarding pointers,

26

cell value

pr
ob

ab
ilit

y

00 01 10 11

T guard band

(a) Precise MLC

cell value
00 01 10 11

pr
ob

ab
ilit

y

T

(b) Approximate MLC

Figure 1: The range of analog values in a precise (a) and approxi-
mate (b) four-level cell. The shaded areas are the target regions for
writes to each level (the parameter T is half the width of a target
region). Unshaded areas are guard bands. The curves show the
probability of reading a given analog value after writing one of the
levels. Approximate MLCs decrease guard bands so the probability
distributions overlap.

in contrast, objects are always stored in precise memory but contain
a pointer to approximate memory where the approximate fields are
stored. This approach incurs an extra memory indirection and the
space overhead of a single pointer per heterogeneous object but can
reduce fragmentation for small objects.

To specify the relative priority of bits within a block, accesses
can also include a data element size. The block is then assumed to
contain a homogenous array of values of this size; in each element,
the highest-order bits are most important. For example, if a program
stores an array of double-precision floating point numbers in a block,
it can specify a data element size of 8 bytes. The memory will
prioritize the precision of each number’s sign bit and exponent over
its mantissa in decreasing bit order. Bit priority helps the memory
decide where to expend its error protection resources to minimize
the magnitude of errors when they occur.

3. APPROXIMATE MULTI-LEVEL CELLS
PCM and other solid-state memories work by storing an analog

value—resistance, in PCM’s case—and quantizing it to expose dig-
ital storage. In multi-level cell (MLC) configurations, each cell
stores multiple bits. For precise storage in MLC memory, there
is a trade-off between access cost and density: a larger number
of levels per cell requires more time and energy to access. Fur-
thermore, protections against analog sources of error like drift can
consume significant error correction overhead [30]. But, where per-
fect storage fidelity is not required, performance and density can be
improved beyond what is possible under strict precision constraints.

An approximate MLC configuration relaxes the strict precision
constraints on iterative MLC writes to improve their performance
and energy efficiency. Correspondingly, approximate MLC writes
allow for denser cells under fixed energy or performance budgets.
Since PCM’s write speed is expected to be substantially slower
than DRAM’s, accelerating writes is critical to realizing PCM as
a main-memory technology [21]. Reducing the energy spent on
writes conserves battery power in mobile devices, where solid-state
storage is commonplace.

Our approach to approximate MLC memory exploits the underly-
ing analog medium used to implement digital storage. Analog reads
and writes are inherently imprecise, so MLCs must incorporate
guard bands that account for this imprecision and prevent storage

v1 v2

target range

actual step
ideal step

pr
ob

ab
ilit

y

cell value
Figure 2: A single step in an iterative program-and-verify write. The
value starts at v1 and takes a step. The curve shows the probability
distribution from which the ending value, v2, is drawn. Here, since
v2 lies outside the target range, another step must be taken.

errors. These guard bands lead to tighter tolerances on target values,
which in turn limit the achievable write performance. Approximate
MLCs reduce or eliminate guard bands to speed up iterative writes
at the cost of occasional errors. Figure 1 illustrates this idea.

3.1 Multi-Level Cell Model
The basis for MLC storage is an underlying analog value (e.g.,

resistance for PCM or charge for Flash). We consider this value
to be continuous: while the memory quantizes the value to expose
digital storage externally, the internal value is conceptually a real
number between 0 and 1.1 To implement digital storage, the cell
has n discrete levels, which are internal analog-domain values corre-
sponding to external digital-domain values. As a simplification, we
assume that the levels are evenly distributed so that each level is the
center of an equally-sized, non-overlapping band of values: the first
level is 1

2n , the second is 3
2n , and so on. In practice, values can be

distributed exponentially, rather than linearly, in a cell’s resistance
range [3,29]; in this case, the abstract value space corresponds to the
logarithm of the resistance. A cell with n = 2 levels is traditionally
called a single-level cell (SLC) and any design with n > 2 levels is
a multi-level cell (MLC).

Writes and reads to the analog substrate are imperfect. A write
pulse, rather than adjusting the resistance by a precise amount,
changes it according to a probability distribution. During reads,
material nondeterminism causes the recovered value to differ slightly
from the value originally stored and, over time, the stored value
can change due to drift [46]. Traditional (fully precise) cells are
designed to minimize the likelihood that write imprecision, read
noise, or drift cause storage errors in the digital domain. That is,
given any digital value, a write followed by a read recovers the same
digital value with very high probability. In approximate storage, the
goal is to increase density or performance at the cost of occasional
digital-domain storage errors.

Put more formally, let v be a cell’s internal analog value. A write
operation for a digital value d first determines ld, the value level
corresponding to d. Ideally, the write operation would set v = ld

precisely. Realistically, it sets v to w(ld) where w is an error function
introducing perturbations from the ideal analog value. Similarly, a
read operation recovers a perturbed analog value r(v) and quantizes
it to obtain a digital output.

The number of levels, n, and the access error functions, w and
r, determine the performance, density, and reliability of the cell.
Current designs trade off performance for density—a dense cell
with many levels requires tighter error functions and is thus typically
slower than sparser cells. Approximate storage cells trade off the
third dimension, reliability, to gain in performance, density, or both.

1At small feature sizes, quantum effects may cause values to appear
discrete rather than continuous. This paper does not consider these
effects.

27

def w(vt):
v = 0
while |vt − r(v)| > T :

size = vt − v
v += N(size, P · size)

return v
Figure 3: Pseudocode for the write error function, w, in PCM cells.
Here, N(µ, σ2) is a normally distributed random variable with aver-
age µ and variance σ2. The parameter T controls the termination
criterion and P reflects the precision of each write pulse.

Write error function.
A single programming pulse typically has poor precision due to

process variation and nondeterministic material behavior. As a result,
MLC designs for both Flash and PCM adopt iterative program-and-
verify (P&V) mechanisms [35, 43]. In PCM, each P&V iteration
adjusts the cell’s resistance and then reads it back to check whether
the correct value was achieved. The process continues until an
acceptable resistance value has been set. To model the latency and
error characteristics of iterative writes, we consider the effect of each
step to be drawn from a normal distribution. The write mechanism
determines the ideal pulse size but applies that pulse with some error
added. Figure 2 illustrates one iteration in this process.

Two parameters control the operation of the P&V write algorithm.
First, iteration terminates when the stored value is within a threshold
distance T from the target value. Setting T < 1

2n as in Figure 1
provides guard bands between the levels to account for read error.
The value of T dictates the probability that a read error will occur.
Second, the variance of the normal distribution governing the ef-
fect of each pulse is modeled as a constant proportion, P, of the
intended step size. These parameters determine the average number
of iterations required to write the cell.

Figure 3 shows the pseudocode for writes, which resembles the
PCM programming feedback control loop of Pantazi et al. [28]. Sec-
tion 5.2 describes our methodology for calibrating the algorithm’s
parameters to reflect realistic PCM systems.

Each constituent write pulse in an PCM write can either increase
or decrease resistance [28,29,31]. Flash write pulses, in contrast, are
unidirectional, so writes must be more conservative to avoid costly
RESET operations in the case of overprogramming [42]. While this
paper focuses on PCM, we also modeled approximate Flash MLCs
and found that the technique also improves Flash writes, but the
benefit is smaller (1.26× write speedup versus PCM’s 1.7×).

Read error function.
Reading from a storage cell is also imprecise. PCM cells are

subject to both noise, random variation in the stored value, and
drift, a gradual unidirectional shift [32]. We reuse the model and
parameters of Yeo et al. [46]. Namely, the sensed analog value r(v)
is related to the written value v as r(v) = v + log10 t ·N(µr, σ

2
r) where

t is the time, in seconds, elapsed since the cell was written. The
parameters µr and σr are the mean and standard deviation of the
error effect respectively.

The same error function, with t equal to the duration of a write
step, is used to model errors during the verification step of the write
process. We use t = 250 ns [19, 33] for this case.

Section 5.2 details the parameters used in our experiments.

Read quantization.
A read operation must determine the digital value corresponding

to the analog value r(v). We assume reads based on a successive
approximation analog-to-digital converter (ADC), which has previ-

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
⚡

MSB LSB
(a) Concatenation code

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
⚡ ⚡ ⚡ ⚡

MSB LSB
(b) Striping code

Figure 4: Two codes for storing 16-bit numbers in four 4-bit cells.
Each color indicates a different cell. A single-level error leads to a
bit flip in the indicated position. In (a), this is the lowest-order bit
in the white cell. In (b), the white cell holds the binary value 0111,
which is one level away from 1000.

ously been proposed for use with PCM systems that can vary their
level count [35]. The latency for a successive approximation ADC
is linear in the number of bits (i.e., log n).

Model simplifications.
While this model is more detailed than some recent work, which

has used simple closed-form probability distributions to describe
program-and-verify writes [19, 33], it necessarily makes some sim-
plifications over the full complexity of the physics underlying PCM.

For simplicity, our model does not incorporate differential writes,
a technique that would allow a write to begin without an initial
RESET pulse [19]. The write algorithm also does not incorporate
the detection of hard failures, which is typically accomplished by
timing out after a certain number of iterations [43]. Hard failure
detection is orthogonal to the approximate MLC technique.

We measure write performance improvement in terms of the num-
ber of iterations per write. While some MLC write techniques use
different durations for differently sized pulses [3, 27, 28], we expect
the pulses to have approximately the same average time in aggre-
gate. Previous work, for example, has assumed that each step takes
250 nanoseconds [19,33]. Furthermore, since our evaluation focuses
on performance and energy, we do not model any potential lifetime
benefits afforded by the technique’s reduction in write pulses.

Finally, our model assumes for simplicity that the value range has
uniform guard band sizes—in terms of our model, the threshold T is
constant among levels. Asymmetric guard bands could exploit the
fact that drift is unidirectional. This optimization is orthogonal to
the approximate MLC technique, which simply decreases the size of
guard bands relative to their nominal size in a precise configuration.

3.2 Encoding Values to Minimize Error
MLC systems typically divide the bits from a single cell among

different memory pages [43]. Using this technique, some pages
consist of high-order bits from many cells while other pages consist
entirely of low-order bits. In approximate MLCs, low-order bits are
the least reliable. So this traditional strategy would lead to pages
with uniformly poor accuracy. Here, we use a different approach in
order to represent all approximate values with acceptable accuracy.

If each cell has n levels, then individual cells can each represent
log n bits. If a program needs to store log n-bit numbers, then the
error characteristics of a single cell are advantageous: a single-level
error—when the cell stores l − 1 or l + 1 after attempting to write
l—corresponds to a integer error of 1 in the stored value.

But we also need to combine multiple cells to store larger numbers.
We consider two approaches. Concatenation (Figure 4a) appends
the bits from the constituent cells to form each word. Striping
(Figure 4b) interleaves the cells so that the highest-order bits of each
cell all map to the highest-order bits of the word.

An ideal code would make errors in high bits rare while allowing
more errors in the low bits of a word. With the straightforward

28

concatenation code, however, a single-level error can cause a high-
order bit flip: the word’s log n-th most significant bit is the least
significant bit in its cell. The striping code mitigates high-bit errors
but does not prevent them. In the example shown in Figure 4b, the
white cell stores the value 0111, so a single-level error can change
its value to 1000. This error causes a bit flip in the word’s most
significant bit. Gray coding, which some current MLC systems
use [19], does not address this problem: single-level errors are as
likely to cause flips in high-order bits as in low-order bits.

We evaluate both approaches in Section 6 and find, as expected,
that the striping code mitigates errors most effectively.

3.3 Memory Interface
MLC blocks can be made precise or approximate by adjusting

the target threshold of write operations. For this reason, the mem-
ory array must know which threshold value to use for each write
operation. Rather than storing the precision level as metadata for
each block of memory, we encode that information in the operation
itself by extending the memory interface to include precision flags
as described in Section 2. This approach, aside from eliminating
metadata space overhead, eliminates the need for a metadata read
on the critical path for writes.

Read operations are identical for approximate and precise mem-
ory, so the precision flag in read operations goes unused. A different
approximate MLC design could adjust the cell density of approxi-
mate memory; in this case, the precision flag would control the bit
width of the ADC circuitry [35].

Overheads.
Since no metadata is used to control cells’ precision, this scheme

carries no space overhead. However, at least one additional bit is
necessary in each read and write request on the memory interface to
indicate the operation’s precision. If multiple threshold values are
provided to support varying precision levels, multiple bits will be
needed. Additional circuitry may also be necessary to permit a tun-
able threshold value during cell writes. Our performance evaluation,
in Section 5, does not quantify these circuit area overheads.

4. USING FAILED MEMORY CELLS
PCM, along with Flash and other upcoming memory technologies,

suffers from cell failures during a device’s deployment—it “wears
out.” Thus, techniques for hiding failures from software are critical
to providing a useful lifespan for a memory [21]. These techniques
typically abandon portions of memory containing uncorrectable
failures and use only failure-free blocks [34, 39, 40]. By employing
otherwise-unusable failed blocks to store approximate data, it is
possible to extend the lifetime of an array as long as sufficient intact
capacity remains to store the application’s precise data.

The key idea is to use blocks with exhausted error-correction
resources to store approximate data. Previous work on approximate
storage in DRAM [24] and SRAM [14] has examined soft errors,
which occur randomly in time and space. If approximate data is
stored in PCM blocks with failed cells, on the other hand, errors will
be persistent. That is, a value stored in a particular failed block will
consistently exhibit bit errors in the same positions. We can exploit
the fact that failure positions are known to provide more effective
error correction via bit priorities.

4.1 Prioritized Bit Correction
In an error model incorporating stuck-at failures, we can use error

correction to concentrate failures where they are likely to do the
least harm. For example, when storing a floating-point number, a bit
error is least significant when it occurs in the low bits of the mantissa

and most detrimental when it occurs in the high bits of the exponent
or the sign bit. In a uniform-probability error model, errors in
each location are equally likely, while a deterministic-failure model
affords the opportunity to protect a value’s most important bits.

A correction scheme like error-correcting pointers (ECP) [39]
marks failed bits in a block. Each block has limited correction
resources; for example, when the technique is provisioned to correct
two bits per block (ECP2), a block becomes unusable for precise
storage when three bits fail. For approximate storage, we can use
ECP to correct the bits that appear in high-order positions within
words and leave the lowest-order failed bits uncorrected. As more
failures appear in this block, only the least-harmful stuck bits will
remain uncorrected.

4.2 Memory Interface
A memory module supporting failed-block recycling determines

which blocks are approximate and which may be used for precise
storage. Unlike with the approximate MLC technique (Section 3),
software has no control over blocks’ precision state. To permit safe
allocation of approximate and precise data, the memory must inform
software of the locations of approximate (i.e., failed) blocks.

When the memory module is new, all blocks are precise. When
the first uncorrectable failure occurs in a block, the memory issues
an interrupt and indicates the failed block. This is similar to other
systems that use page remapping to retire failed segments of mem-
ory [18,47]. The OS adds the block to a pool of approximate blocks.
Memory allocators consult this set of approximate blocks when lay-
ing out data in the memory. While approximate data can be stored
in any block, precise data must be allocated in memory without
failures. Eventually, when too many blocks are approximate, the
allocator will not be able to find space for all precise data—at this
point, the memory module must be replaced.

To provide traditional error correction for precise data, the mem-
ory system must be able to detect hard failures after each write [39].
We reuse this existing error detection support; the precision level
of the write operation (see Section 2) determines the action taken
when a failure is detected. When a failure occurs during a precise
write, the module either constructs ECP entries for all failed bits
if sufficient entries are available or issues an interrupt otherwise.
When a failure occurs during an approximate write, no interrupt is
issued. The memory silently corrects as many errors as possible and
leaves the remainder uncorrected.

To make bit prioritization work, the memory module needs infor-
mation from the software indicating which bits are most important.
Software specifies this using a value size associated with each ap-
proximate write as described in Section 2. The value size indicates
the homogenous byte-width of approximate values stored in the
block. If a block represents part of an array of double-precision
floating point numbers, for example, the appropriate value size is 8
bytes. This indicates to the memory that the bits at index i where
i ≡ 0 mod 64 are most important, followed by 1 mod 64, etc. When
a block experiences a new failure and the memory module must
choose which errors to correct, it masks the bit indices of each
failure to obtain the index modulo 64. It corrects the bits with the
lowest indices and leaves the remaining failures uncorrected.

This interface for controlling bit prioritization requires blocks
to contain homogeneously sized values. In our experience, this
is a common case: many of the applications we examined use
approximate double[] or float[] arrays that span many blocks.

Overheads.
Like the approximate MLC scheme, failed-block recycling re-

quires additional bits for each read and write operation in the mem-

29

ory interface. Messages must contain a precision flag and, to enable
bit priority, a value size field. The memory module must incorporate
logic to select the highest-priority bits to correct in an approximate
block; however, this selection happens rarely because it need only
occur when new failures arise. Finally, to correctly allocate new
memory, the OS must maintain a pool of failed blocks and avoid
using them for precise storage. This block tracking is analogous to
the way that Flash translation layers (FTLs) remap bad blocks.

5. EVALUATION
Approximate storage trades off precision for performance, dura-

bility, and density. To understand this trade-off in the context of
real-world approximate data, we simulate both of our techniques and
examine their effects on the quality of data sets and application out-
puts. As with previous work on approximate computing [15, 38, 41],
we use application-specific metrics to quantify quality degradation.

We first describe the main-memory and persistent-data bench-
marks used in our evaluation. We then detail the MLC model pa-
rameters that dictate performance and error rates of the approximate
MLC technique. Finally, we describe the model for wear-out used
in our evaluation of the failed-block recycling technique.

5.1 Applications
We use two types of benchmarks in our evaluation: main-memory

applications and persistent data sets. The main-memory applications
are Java programs annotated using the EnerJ [38] approximation-
aware type system, which marks some data as approximate and
leaves other data precise. The persistent-storage benchmarks are
static data sets that can be stored 100% approximately.

For the main-memory applications, we adapt the annotated bench-
marks from the evaluation of EnerJ. An in-house simulator intercepts
loads and stores to collect access statistics and inject errors. The
applications are chosen from a broad range of domains for their
tolerance to imprecision. We examine a 3D triangle intersection
kernel from a game engine (jmeint), a ray tracing image renderer
(raytracer), a visual bar code recognizer for mobile phones (zxing),
and five scientific kernels from the SciMark2 benchmark suite (fft,
lu, mc, smm, and sor). For the benchmarks with vector or matrix
output, the error metric is the mean pointwise entry difference. For
the benchmarks with all-or-nothing output correctness, jmeint and
zxing, the metric is the proportion of correct decisions. For ray-
tracer, the metric is the mean pixel value difference. More details
on the annotation and quality assessment of these benchmarks can
be found in the evaluation of EnerJ [38].

For persistent storage, we examine four sets of approximate data.
The first, sensorlog, consists of a log of mobile-phone sensor read-
ings from an accelerometer, thermometer, photodetector, and hy-
drometer. The data is used in a decision tree to infer the device’s
context, so our quality metric is the accuracy of this prediction rela-
tive to a fully-precise data set. The second, image, stores a bitmap
photograph as an array of integer RGB values. The quality metric is
the mean error of the pixel values. The final two data sets, svm and
ann, are trained classifiers for handwritten digit recognition based
on a support vector machine and a feed-forward neural network. In
both cases, the classifiers were trained using standard algorithms
on the “pendigits” data set from the UCI Machine Learning Reposi-
tory [1]. The data set consists of 3498 training samples and 7494
testing samples, each of which comprises 16 features. Then, the clas-
sifier parameters (support vectors and neuron weights, respectively)
are stored in approximate memory. The SVM uses 3024 support
vectors; the NN is configured with a sigmoid activation function,
two hidden layers of 128 neurons each, and a one-hot output layer of
10 neurons. We measure the recognition accuracy of each classifier

on an unseen test data set relative to the accuracy of the precise
classifier (95% for svm and 80% for ann). Unlike the main-memory
applications, which consist of a mixture of approximate and precise
data, the persistent data sets are entirely approximate.

5.2 MLC Model Parameters
To assess our approximate MLC technique, we use the model

described in Section 3.1. The abstract model has a number of
parameters that we need to select for the purposes of simulation.
To set the parameters, we use values from the literature on MLC
PCM configurations. Since our architecture-level model of iterative
program-and-verify writes is original, we infer its parameters by
calibrating them to match typical write latencies and error rates.

For a baseline (precise) MLC PCM cell, we need a configuration
where errors are very improbable but not impossible. We choose
a conservative baseline raw bit error rate (RBER) of 10−8, which
comports with RBERs observed in Flash memory today [4, 25].

We first select parameters for the read model in Section 3.1, which
incorporates the probabilistic effects of read noise and drift. For the
parameters µr and σr, we use typical values from Yeo et al. [46]
normalized to our presumed 0.0–1.0 value range. Specifically, for
PCM, we choose µr = 0.0067 and σr = 0.0027. Since the read
model incorporates drift, it is sensitive to the retention time between
writes and reads. Retention time can be very short in a main-memory
deployment and much longer when PCM is used for persistent
storage. As an intermediate value, we consider retention for t = 105

seconds, or slightly more than one day. Note that this retention
time is pessimistic for the main-memory case: in our experiments,
every read experiences error as if it occurred 105 seconds after the
preceding write. In real software, the interval between writes and
subsequent reads is typically much lower.

We model a 4-level (2-bit) PCM cell. To calibrate the write
model, we start from an average write time of 3 cycles as suggested
by Nirschl et al. [27] and a target RBER of 10−8. We need values for
the parameters T and P that match these characteristics. We choose
our baseline threshold to be 20% of the largest threshold that leads
to non-overlapping values (i.e., T = 0.025); this leads to about 3
iterations per write. Setting P = 0.035 leads to an error probability
on the order of 10−8 for a retention time of 105 seconds.

5.3 Wear-Out Model
To evaluate the effect of using blocks with failed cells for ap-

proximate storage, we simulate single-level PCM. In single-level
PCM, bits become stuck independently as their underlying cells fail.
With multi-level designs, in contrast, a single cell failure can cause
multiple bits to become stuck, so bit failures are not independent.
Assuming that the memory assigns bits from a given cell to distinct
pages [43] and that wear leveling randomly remaps pages, failures
nonetheless appear independent in multi-level PCM. So a multi-
level failure model would closely resemble our single-level model
with an accelerated failure rate.

We evaluate PCM with 2-bit error-correcting pointers (ECP) [39].
While precise configurations of the ECP technique typically use
6-bit correction, approximate storage can extend device lifetime
without incurring as much overhead as a fully precise configuration.
Approximate blocks also use the bit priority assignment mechanism
from Section 4.1: where possible, ECP corrections are allocated to
higher-order bits within each value in the block.

To understand the occurrence of stuck bits in failed blocks, we
need a realistic model for the rate at which cells wear out over
time. To this end, we simulate a PCM array for trillions of writes
and measure the distribution of cell failures among blocks. The
statistical simulator is adapted from Azevedo et al. [11] and assumes

30

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9

fre
qu

en
cy

uncorrectable failures per block

Figure 5: Distribution of uncorrectable cell failures using ECP2

among 512-bit blocks after the entire memory has been overwritten
3.2 × 107 times under the main-memory wear model. (At this stage,
half of the blocks have at least one uncorrectable failure.)

an average PCM cell lifetime of 108 writes (although the first failure
occurs much earlier). We use separate workloads to simulate wear
in a main-memory setting and in a persistent-storage setting.

Main-memory wear.
To model wear in main-memory PCM deployments, we simulate

the above suite of main-memory applications and gather statistics
about their memory access patterns, including the relative size of
each program’s approximate vs. precise data and the frequency of
writes to each type of memory. We then take the harmonic mean
of these statistics to create an aggregate workload consisting of
the entire suite. We run a statistical PCM simulation based on
these application characteristics, during which all blocks start out
precise. When a block experiences its first uncorrectable cell failure,
it is moved to the approximate pool. Failed blocks continue to be
written and experience additional bit failures because they store
approximate data. Periodically, we record the amount of memory
that remains precise along with the distribution of failures among
the approximate blocks. We simulate each application under these
measured failure conditions.

As an example, Figure 5 depicts the error rate distribution for the
wear stage at which 50% of the memory’s blocks have at least one
failure that is uncorrectable using ECP2—i.e., half the blocks are
approximate. In this stage, most the of the blocks have only a few
uncorrectable failures: 39% of the approximate blocks have exactly
one such failure and only 1.7% have six or more.

Persistent-storage wear.
For our persistent-storage data sets, all data is approximate. So

we simulate writes uniformly across all of memory, both failed and
fully-precise. This corresponds to a usage scenario in which the
PCM array is entirely dedicated to persistent storage—no hybrid
transient/persistent storage is assumed. As with the main-memory
wear model, we periodically snapshot the distribution of errors
among all blocks and use these to inject bit errors into stored data.

6. RESULTS
We evaluate two sets of benchmarks under each of our two ap-

proximate storage techniques.

6.1 Approximate MLC Memory
In our approximate MLC experiments, we map all approximate

data to simulated arrays of two-bit PCM cells. We run each bench-
mark multiple times with differing threshold (T) parameters. We
use T values between 20% and 90% of the maximum threshold
(i.e., the threshold that eliminates guard bands altogether). For each
threshold, we measure the average number of iterations required
to write a random value. This yields an application-independent
metric that is directly proportional to write latency (i.e., inversely
proportional to performance). Configurations with fewer iterations
per write are faster but cause more errors. So, for each application,
the optimal configuration is the one that decreases write iterations
the most while sacrificing as little output quality as possible. Faster
writes help close PCM’s performance gap with DRAM in the main-
memory case and improve write bandwidth in the persistent-data
case [21, 23].

Approximate main memory.
Figure 6a relates write performance to application output quality

loss. For configurations with fewer write iterations—to the right-
hand side of the plot—performance improves and quality declines.
The leftmost point in the plot is the nominal configuration, in which
writes take 3.03 iterations on average and errors are rare. Reducing
the number of iterations has a direct impact on performance: a 50%
reduction in iterations leads to 2× improvement in write speed.

The error for each application stays low for several configura-
tions and then increases sharply when hardware errors become too
frequent. The raytracer benchmark exhibits quality loss below 2%
up to the configuration with 1.71 iterations per write on average, a
1.77× speedup over the baseline. Even the least tolerant application,
fft, sees only 4% quality loss when using an average of 2.44 itera-
tions per write (or 1.24× faster than the baseline). This variance in
tolerance suggests that different applications have different optimal
MLC configurations. Approximate memories can accommodate
these differences by exposing the threshold parameter T for tuning
by the developer or runtime system.

To put these speedups in the context of the whole application, we
show the fraction of dynamic writes that are to approximate data in
Figure 7. Most applications use approximate writes for more than
half of their stores; jmeint in particular has 98% approximate writes.
One application, zxing, has a large amount of “cold” approximate
data and benefits less from accelerating approximate writes.

Persistent storage.
Figure 6b shows the quality degradation for each persistent data

set when running on approximate MLC memory. The persistent data
sets we examine are more tolerant than the main-memory bench-
marks. The sensor logging application, for instance, exhibits only
5% quality degradation in the configuration with 1.59 iterations
per write (1.91× faster than the baseline) while the bitmap image
has only 1% quality degradation even in the most aggressive con-
figuration we examined, in which writes take 1.41 cycles (2.14×
faster than the baseline). The neural network classifier, ann, expe-
riences less than 10% recognition accuracy loss when using 1.77×
faster writes; svm, in contrast, saw negligible accuracy loss in every
configuration we measured.

Overall, in the configurations with less than 10% quality loss, the
benchmarks see 1.7× faster writes to approximate cells over precise
cells on average.

This write latency reduction benefits application performance and
memory system power efficiency. Since write latency improvements

31

0%

20%

40%

60%

80%

100%

1.61.822.22.42.62.83

ou
tp

ut
qu

al
ity

lo
ss

average write steps

mc
fft

zxing

smm
lu

jmeint

sor
raytracer

(a) Main-memory applications with approximate MLC.

0%

20%

40%

60%

80%

100%

1.61.822.22.42.62.83

ou
tp

ut
qu

al
ity

lo
ss

average write steps

svm
image

sensorlog
ann

(b) Persistent data sets with approximate MLC.

Figure 6: Output degradation for each benchmark using the ap-
proximate MLC technique. The horizontal axis shows the average
number of iterations per write. The vertical axis is the output quality
loss as defined by each application’s quality metric. Quality loss
is averaged over 100 executions in (a) and 10 in (b); the error bars
show the standard error of the mean.

0%

20%

40%

60%

80%

100%

fft jmeint lu mc raytr. smm sor zxing

fra
ct

io
n

of
to

ta
l

approximate writes
approximate footprint

Figure 7: Proportions of approximate writes and approximate data
in each main-memory benchmark.

reduce contention and therefore also impact read latency, prior
evaluations have found that they can lead to large IPC increases [16,
19]. Since fewer programming pulses are used per write and write
pulses make up a large portion of PCM energy, the overall energy
efficiency of the memory array is improved.

Impact of encoding.
Section 3.2 examines two different strategies for encoding nu-

meric values for storage on approximate MLCs. In the first, the bits
from multiple cells are concatenated to form whole words; in the
second, each value is “striped” across constituent cells so that the
highest bits of the value map to the highest bits of the cells. The
results given above use the latter encoding, but we also evaluated
the simpler code for comparison.

The striped code leads to better output quality on average. For
three intermediate write speeds, using that code reduces the mean
output error across all applications from 1.1% to 0.4%, from 3.6%
to 3.0%, and from 11.0% to 9.0% with respect to the naive code.

We also performed two-sample t-tests to assess the difference
in output quality between the two coding strategies for each of 13
write speed configurations. For nearly every application, the striped
code had a statistically significant positive effect on quality more
often than a negative one. The only exception is mc, a Monte Carlo
simulation, in which the effect of the striped code was inconsistent
(positive at some write speeds and negative for others).

While the striped code is imperfect, as discussed in Section 3.2,
it fares better than the naive code in practice since it lowers the
probability of errors in the high-order bits of words.

Density increase.
We experimented with adding more levels to an approximate

MLC. In a precise MLC, increasing cell density requires more pre-
cise writes, but approximate MLCs can keep average write time
constant. Our experiments show acceptable error rates when six
levels are used (and no other parameters are changed). A non-power-
of-two MLC requires additional hardware, similar to binary-coded
decimal (BCD) circuitry, to implement even the naive code from
Section 3.2 but can still yield density benefits. For example, a 512-
bit block can be stored in d 512

log 6 e = 199 six-level cells (compared to
256 four-level cells). With the same average number of write itera-
tions (3.03), many of our benchmarks see very little error: jmeint,
mc, raytracer, smm, and the four persistent-storage benchmarks see
error rates between 0.1% and 4.2%. The other benchmarks, fft, lu,
sor, and zxing, see high error rates, suggesting that density increase
should only be used with certain tolerant applications.

Impact of drift.
Previous work has suggested that straightforward MLC storage in

PCM can be untenable over long periods of time [46]. Approximate
storage provides an opportunity to reduce the frequency of scrub-
bing necessary by tolerating occasional retention errors. To study
the resilience of approximate MLC storage to drift, we varied the
modeled retention time (the interval between write and read) and
examined the resulting application-level quality loss. Recall that
the results above assume a retention time of 105 seconds, or about
one day, for every read operation; we examined retention times
between 101 and 109 seconds (about 80 years) for an intermediate
approximate MLC configuration using an average of 2.1 cycles per
write. For the main-memory applications, in which typical retention
times are likely to be far less than one day, we see very little quality
loss (1% or less) for retention times of 104 seconds or shorter. For
the persistent-storage benchmarks, quality loss remains under 10%
for at least 106 seconds and, in the case of image, up to 109 seconds.

32

A longer retention time means scrubbing can be done less fre-
quently. The above results report the quality impact of one retention
cycle: the persistent-storage benchmarks, for example, lose less than
10% of their quality when 106 seconds, or about 11 days, elapse
after they are first written to memory assuming no scrubbing occurs
in that time. Eleven more days of drift will compound additional
error. While the above results suggest that the more error-tolerant
applications can tolerate longer scrubbing cycles, we do not mea-
sure how error compounds over longer-term storage periods with
infrequent scrubbing.

Bit error rate.
To add context to the output quality results above, we also mea-

sured the effective bit error rate (BER) of approximate MLC storage.
The BER is the probability that a bit read from approximate memory
is different from the corresponding last bit written. Across the write
speeds we examined, error rates range from 3.7 × 10−7 to 8.4% in
the most aggressive configuration. To put these rates in perspec-
tive, if the bit error rate is p, then a 64-bit block will have at least
2 errors with probability

∑64
i=2 B(i, 64, p) where B is the binomial

distribution. At a moderately aggressive write speed configuration
with an average of 1.9 steps, approximate MLC storage has an error
rate of 7.2 × 10−4, so 0.1% of 64-bit words have 2 or more errors.
This high error rate demonstrates the need for application-level error
tolerance: even strong ECC with two-bit correction will not suffice
to provide precise storage under such frequent errors.

6.2 Using Failed Blocks
We evaluate the failed-block recycling technique by simulating

benchmarks on PCM arrays in varying stages of wear-out. As
the memory device ages and cells fail, some blocks exhaust their
error-correction budget. Approximate data is then mapped onto
these blocks. Over the array’s lifetime, bit errors in approximate
memory become more common. Eventually, these errors impact the
application to such a degree that the computation quality is no longer
acceptable, at which point the memory array must be replaced. We
quantify the lifetime extension afforded by this technique, beginning
with the main-memory applications.

To quantify lifetime extension, we assume a memory module with
a 10% “space margin”: 10% of the memory is reserved to allow
for some block failures before the array must be replaced. In the
baseline precise configuration, the array fails when the fraction of
blocks that remain precise (having only correctable failures) drops
below 90%. In the approximate configuration, programs continue to
run until there is not enough space for their precise data or quality
drops below a threshold.

Approximate main memory.
Figure 8 depicts the lifetime extension afforded by using failed

blocks as approximate storage. For each application, we determine
the point in the memory’s lifetime (under the wear model described
in Section 5.3) at which the program can no longer run. We consider
two termination conditions: when the amount of precise memory
becomes insufficient (i.e., the proportion of approximate memory
exceeds the application’s proportion of approximate data) and when
the application’s output quality degrades more than 10%. Each bar
in the figure shows the normalized number of writes to the memory
when application failure occurs.

With quality degradation limited to 10%, the benchmarks see
lifetime extensions ranging from 2% (zxing) to 39% (raytracer) with
a harmonic mean of 18%. With quality unconstrained, the mean
lifetime extension is 34%, reflecting the fact that this technique leads
to gradually decreasing quality as the memory array ages.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fft jmeint lu mc raytr. smm sor zxing

no
rm

al
iz

ed
lif

et
im

e
(w

rit
es

)

insufficient precise blocks
quality loss exceeds 10%

Figure 8: Lifetime extension for each application. Each bar repre-
sents the number of writes to the entire array at which the appli-
cation can no longer run, normalized to the point of array failure
in fully-precise mode. The black bar indicates when there is not
enough precise memory available. The gray bar shows when the
application’s output quality degrades more than 10%.

To help explain these results, Figure 9a shows the quality degrada-
tion for each application at various points during the memory array’s
wear-out. The most error-tolerant application, raytracer, sees very
little quality degradation under all measured wear stages. Some
applications are limited by the amount of approximate data they use.
Figure 7 shows the proportion of bytes in each application’s memory
that is approximate (averaged over the execution). Some applica-
tions, such as mc, are tolerant to error but only have around 50%
approximate data. In other cases, such as zxing and fft, bit errors
have a large effect on the computation quality. In fft in particular, we
find that a single floating-point intermediate value that becomes NaN
can contaminate the Fourier transform’s entire output. This suggests
that the application’s precision annotations, which determine which
data is stored approximately, may be too aggressive.

Persistent storage.
Figure 9b shows the quality degradation for each data set at dif-

ferent points during the lifetime of the memory. The memory’s
intermediate wear-out conditions come from the persistent-storage
wear model described in Section 5.3. In a fully-precise config-
uration, the memory fails (exceeds 10% failed blocks) at about
3.4 × 107 overwrites, or at the left-hand side of the plot. Recall
that, in these persistent-storage benchmarks, the data is stored 100%
approximately; no precise storage is used.

As with the main-memory storage setting, quality decreases over
time as errors become more frequent. But these benchmarks are
more tolerant to stuck bits than the main-memory applications. For
image, quality loss is below 10% in all wear stages; for sensorlog,
it remains below 10% until the array experiences 5.0 × 107 writes,
or 42% later than precise array failure. The two machine learning
classifiers, ann and svm, each see lifetime extensions of 17%. This
tolerance to stuck bits makes the failed-block recycling technique
particularly attractive for persistent storage scenarios with large
amounts of numeric data.

Overall, across both categories of benchmarks, we see a harmonic
mean lifetime extension of 23% (18% for the main-memory bench-
marks and 36% for the persistent-storage data sets) when quality
loss is limited to 10%. Recent work has demonstrated PCM arrays
that sustain a random write bandwidth of 1.5 GB/s [7]; for a 10 GB

33

0%

20%

40%

60%

80%

100%

2.2 2.4 2.6 2.8 3 3.2 3.4

ou
tp

ut
qu

al
ity

lo
ss

writes ×107

raytracer
zxing

fft

jmeint
mc

smm

lu
sor

(a) Main-memory applications using failed blocks.

0%

20%

40%

60%

80%

100%

4 4.5 5 5.5 6 6.5

ou
tp

ut
qu

al
ity

lo
ss

writes ×107

ann
image

sensorlog
svm

(b) Persistent data sets using failed blocks.
Figure 9: Output quality degradation for each benchmark when
using the failed-block recycling technique. The horizontal axis is the
number of complete overwrites the array has experienced, indicating
the stage of wear-out. The vertical axis is an application-specific
error metric.

memory constantly written at this rate, these savings translate to
extending the array’s lifetime from 5.2 years to 6.5 years.

Impact of bit priority.
The above results use our type-aware prioritized correction mech-

anism (Section 4.1). To evaluate the impact of bit prioritization,
we ran a separate set of experiments with this mechanism disabled
to model a system that just corrects the errors that occur earliest.
We examine the difference in output quality at each wear stage and
perform a two-sample t-test to determine whether the difference is
statistically significant (P < 0.01).

Bit prioritization had a statistically significant positive impact
on output quality for all benchmarks except mc. In sensorlog, for
example, bit prioritization decreases quality loss from 2.3% to 1.7%
in an early stage of wear (the leftmost point in Figure 9b). In fft, the
impact is larger: bit prioritization reduces 7.3% quality loss to 3.3%
quality loss. As with encoding for approximate MLCs, the exception
is mc, whose quality was (statistically significantly) improved in

only 4 of the 45 wear stages we measured while it was negatively
impacted in 6 wear stages. This benchmark is a simple Monte Carlo
method and hence may sometimes benefit from the entropy added
by failed bits. Overall, however, we conclude that bit prioritization
has a generally positive effect on storage quality.

Impact of ECP budget.
The above experiments use a PCM configuration with error-

correcting pointers (ECP) [39] configured to correct two stuck bits
per 512-bit block at an overhead of 21 extra bits per block. More
aggressive error correction improves the endurance of both fully-
precise and approximate memory and amplifies the opportunity for
priority-aware correction in intermediate wear stages. To quantify
the effect of increasing error correction budgets, we also evaluated
an ECP6 configuration (61 extra bits per block).

Moving from ECP2 to ECP6 extends the lifetime of a precise
memory array by 45% under main-memory wear or 17% under
persistent-storage wear. Our results for approximate main-memory
storage with ECP2 provide a portion of these benefits (18% lifetime
extension) while incurring no additional error-correction overhead.
In the persistent-storage case, the lifetime extension for approximate
storage (36%) is greater than for increasing the ECP budget.

7. RELATED WORK
Approximate storage builds on three broad categories of related

work: approximate computing, optimizing accesses to storage cells,
and tolerating failures in solid-state memories.

Approximate computing is an area of research that seeks to op-
timize the execution of error-tolerant programs using both hard-
ware [8, 12, 14, 15, 24, 26] and software [2, 17, 41] techniques. Pro-
grammers control the impact of approximate execution using lan-
guage features, analyses, or program logics [5,6,12,38]. While much
of the work on approximate computing has focused on computation
itself—optimizing algorithms or processor logic—some recent work
has proposed to lower the refresh rate of DRAM [24] or the supply
voltage of SRAM [9, 14, 20]. This paper, in contrast, explores tech-
niques that take advantage of the unique properties of non-volatile
solid-state storage technologies like PCM and Flash: wear-out and
multi-level configurations. Unlike prior work on SRAM and DRAM,
we evaluate approximate storage for both transient (main memory)
and persistent (filesystem or database) data.

Prior work has also explored techniques for optimizing accesses
to PCM and Flash [19, 33] or architecting systems to efficiently use
PCM as main memory [18,21,36,39,47]. In particular, half-wits [37]
and power fade [44] use low-voltage, error-prone Flash operations
to reduce power and energy. Similarly, retention relaxation uses
less-precise program-and-verify parameters to speed up writes to
MLC Flash cells when data has a short lifetime [23]. Approximate
MLCs complement these techniques by allowing even faster writes
when bit errors are tolerable. A system can, for example, combine
retention relaxation and approximate storage by “underestimating”
the necessary retention time of approximate data. Previous work has
also proposed adapting the density of SLC and MLC cells in main
memory [35] and persistent storage [13] deployments. While these
systems trade off density for performance, energy, and endurance,
data is always stored precisely. This paper proposes MLC config-
urations that permit storage errors but improve density or access
efficiency beyond what is possible in precise configurations.

Prior work has also considered low-overhead techniques for hid-
ing failures in memories that experience wear-out [11, 34, 39, 40].
Our failed-block recycling technique extends this prior work by
selectively relaxing error correction on memory that contains ap-
proximate data.

34

Approximate storage resembles techniques for lossy compression:
both improve resource usage at the cost of some lost information.
But by exploiting the characteristics of the underlying storage tech-
nology, approximate storage differs from traditional compression
in two important ways. First, whereas lossy compression deter-
ministically discards data, approximate storage techniques exhibit
probabilistic data retention. This difference makes approximate stor-
age more suited to applications where random errors are tolerable,
such as in neural networks. Second, failed block recycling unlocks
more usable bytes of memory that are not available to traditional
compression. For example, a system that compresses data in precise
blocks but stores uncompressed data in blocks with failures can
conserve more space than either technique allows independently.
Composing approximation with compression on the same data, how-
ever, can lead to poor results because each bit represents a larger
amount of data. (Encryption has a similar effect.) Although an
evaluation of lossy compression techniques is out of this paper’s
scope, a quantitative comparison with approximate storage would
be illuminating future work.

8. CONCLUSION
Solid-state, non-volatile storage technologies such as PCM and

Flash are becoming increasingly important components of the mod-
ern computing landscape. As DRAM scaling begins to falter, PCM
and other resistive memories will become crucial to satisfying in-
creasing memory needs in mobile and server settings alike. But
these technologies present new challenges due to wear-out and slow
writes, especially in multi-level cell configurations. For many ap-
plications, however, perfect data retention is not always necessary—
the time and space spent on ensuring correct operation is wasted
for some data. Approximate storage, via approximate MLCs and
failed-block recycling, represents an opportunity to exploit this error
tolerance to improve performance, energy, and capacity. Our results
for write acceleration and lifetime extension suggest that approxi-
mate storage can help mitigate the drawbacks of these solid-state,
non-volatile memories while compromising only a small amount of
storage quality.

Acknowledgments
We would like to thank our anonymous reviewers for their invaluable
comments. Our thanks also to Doug Burger for early discussions
on the project, to Ben Ransford for comments on the text, and to
Mattan Erez for suggestions on improving the paper. This work was
supported in part by NSF award #1216611, gifts from Microsoft
Research, and the Facebook Graduate Fellowship.

9. REFERENCES
[1] K. Bache and M. Lichman, “UCI machine learning repository,”

2013. [Online]. Available: http://archive.ics.uci.edu/ml
[2] W. Baek and T. M. Chilimbi, “Green: A framework for

supporting energy-conscious programming using controlled
approximation,” in PLDI, 2010.

[3] S. Braga, A. Sanasi, A. Cabrini, and G. Torelli,
“Voltage-driven partial-RESET multilevel programming in
phase-change memories,” IEEE Transactions on Electron
Devices, vol. 57, no. 10, pp. 2556–2563, 2010.

[4] Y. Cai, E. Haratsch, O. Mutlu, and K. Mai, “Error patterns in
MLC NAND flash memory: Measurement, characterization,
and analysis,” in DATE, 2012.

[5] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard,
“Reasoning about relaxed programs,” in PLDI, 2012.

[6] M. Carbin, S. Misailovic, , and M. C. Rinard, “Verifying
quantitative reliability for programs that execute on unreliable
hardware,” in OOPSLA, 2013.

[7] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta,
and S. Swanson, “Moneta: A high-performance storage array
architecture for next-generation, non-volatile memories,” in
MICRO, 2010.

[8] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu,
P. Korkmaz, K. V. Palem, and B. Seshasayee, “Ultra-efficient
(embedded) SOC architectures based on probabilistic CMOS
(PCMOS) technology,” in DATE, 2006.

[9] I. J. Chang, D. Mohapatra, and K. Roy, “A priority-based
6T/8T hybrid SRAM architecture for aggressive voltage
scaling in video applications,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 21, no. 2, pp. 101–112,
2011.

[10] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson, “NV-heaps: Making
persistent objects fast and safe with next-generation,
non-volatile memories,” in ASPLOS, 2011.

[11] R. J. de Azevedo, J. D. Davis, K. Strauss, P. Gopalan,
M. Manasse, and S. Yekhanin, “Zombie: Extending memory
lifetime by reviving dead blocks,” in ISCA, 2013.

[12] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An
architectural framework for software recovery of hardware
faults,” in ISCA, 2010.

[13] X. Dong and Y. Xie, “AdaMS: Adaptive MLC/SLC
phase-change memory design for file storage,” in Asia and
South Pacific Design Automation Conference, 2011.

[14] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger,
“Architecture support for disciplined approximate
programming,” in ASPLOS, 2012.

[15] ——, “Neural acceleration for general-purpose approximate
programs,” in MICRO, 2012.

[16] A. Hay, K. Strauss, T. Sherwood, G. H. Loh, and D. Burger,
“Preventing PCM banks from seizing too much power,” in
MICRO, 2011.

[17] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard, “Dynamic knobs for responsive
power-aware computing,” in ASPLOS, 2011.

[18] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and
T. Moscibroda, “Dynamically replicated memory: Building
reliable systems from nanoscale resistive memories,” in
ASPLOS, 2010.

[19] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers,
“Improving write operations in MLC phase change memory,”
in HPCA, 2012.

[20] A. Kumar, J. Rabaey, and K. Ramchandran, “SRAM supply
voltage scaling: A reliability perspective,” in International
Symposium on Quality of Electronic Design, 2009.

[21] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting
phase change memory as a scalable DRAM alternative,” in
ISCA, 2009.

[22] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra,
“ERSA: Error resilient system architecture for probabilistic
applications,” in DATE, 2010.

[23] R.-S. Liu, C.-L. Yang, and W. Wu, “Optimizing NAND
flash-based SSDs via retention relaxation,” in FAST, 2012.

[24] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn,
“Flikker: Saving DRAM refresh-power through critical data
partitioning,” in ASPLOS, 2011.

35

http://archive.ics.uci.edu/ml

[25] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal,
E. Schares, F. Trivedi, E. Goodness, and L. Nevill, “Bit error
rate in NAND flash memories,” in International Reliability
Physics Symposium, 2008.

[26] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable
stochastic processors,” in DATE, 2010.

[27] T. Nirschl, J. Phipp, T. Happ, G. Burr, B. Rajendran, M.-H.
Lee, A. Schrott, M. Yang, M. Breitwisch, C.-F. Chen,
E. Joseph, M. Lamorey, R. Cheek, S.-H. Chen, S. Zaidi,
S. Raoux, Y. Chen, Y. Zhu, R. Bergmann, H.-L. Lung, and
C. Lam, “Write strategies for 2 and 4-bit multi-level
phase-change memory,” in IEDM, 2007.

[28] A. Pantazi, A. Sebastian, N. Papandreou, M. Breitwisch,
C. Lam, H. Pozidis, and E. Eleftheriou, “Multilevel phase
change memory modeling and experimental characterization,”
EPCOS, 2009.

[29] N. Papandreou, A. Pantazi, A. Sebastian, M. Breitwisch,
C. Lam, H. Pozidis, and E. Eleftheriou, “Multilevel
phase-change memory,” in IEEE International Conference on
Electronics, Circuits, and Systems, 2010.

[30] N. Papandreou, H. Pozidis, T. Mittelholzer, G. Close,
M. Breitwisch, C. Lam, and E. Eleftheriou, “Drift-tolerant
multilevel phase-change memory,” in IEEE International
Memory Workshop, 2011.

[31] N. Papandreou, H. Pozidis, A. Pantazi, A. Sebastian,
M. Breitwisch, C. Lam, and E. Eleftheriou, “Programming
algorithms for multilevel phase-change memory,” in ISCAS,
2011, pp. 329–332.

[32] H. Pozidis, N. Papandreou, A. Sebastian, T. Mittelholzer,
M. BrightSky, C. Lam, and E. Eleftheriou, “A framework for
reliability assessment in multilevel phase-change memory,” in
IEEE International Memory Workshop, 2012.

[33] M. K. Qureshi, M. M. Franceschini, and L. A.
Lastras-Montano, “Improving read performance of phase
change memories via write cancellation and write pausing,” in
HPCA, 2010.

[34] M. K. Qureshi, “Pay-as-you-go: low-overhead hard-error
correction for phase change memories,” in MICRO, 2011.

[35] M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Montaño,
and J. P. Karidis, “Morphable memory system: A robust
architecture for exploiting multi-level phase change

memories,” in ISCA, 2010.
[36] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high

performance main memory system using phase-change
memory technology,” in ISCA, 2009.

[37] M. Salajegheh, Y. Wang, K. Fu, A. Jiang, and
E. Learned-Miller, “Exploiting half-wits: Smarter storage for
low-power devices,” in FAST, 2011.

[38] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman, “EnerJ: Approximate data types
for safe and general low-power computation,” in PLDI, 2011.

[39] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP,
not ECC, for hard failures in resistive memories,” in ISCA,
2010.

[40] N. H. Seong, D. H. Woo, V. Srinivasan, J. Rivers, and H.-H.
Lee, “SAFER: Stuck-at-fault error recovery for memories,” in
MICRO, 2010.

[41] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and
M. Rinard, “Managing performance vs. accuracy trade-offs
with loop perforation,” in FSE, 2011.

[42] K.-D. Suh, B.-H. Suh, Y.-H. Lim, J.-K. Kim, Y.-J. Choi, Y.-N.
Koh, S.-S. Lee, S.-C. Kwon, B.-S. Choi, J.-S. Yum, J.-H.
Choi, J.-R. Kim, and H.-K. Lim, “A 3.3 V 32 Mb NAND flash
memory with incremental step pulse programming scheme,”
IEEE Journal of Solid-State Circuits, vol. 30, no. 11, pp.
1149–1156, 1995.

[43] K. Takeuchi, T. Tanaka, and T. Tanzawa, “A multipage cell
architecture for high-speed programming multilevel NAND
flash memories,” IEEE Journal of Solid-State Circuits, vol. 33,
no. 8, pp. 1228 –1238, 1998.

[44] H.-W. Tseng, L. M. Grupp, and S. Swanson, “Underpowering
NAND flash: Profits and perils,” in DAC, 2013.

[45] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne:
Lightweight persistent memory,” in ASPLOS, 2011.

[46] S. Yeo, N. H. Seong, and H.-H. S. Lee, “Can multi-level cell
PCM be reliable and usable? Analyzing the impact of
resistance drift,” in Workshop on Duplicating, Deconstructing
and Debunking, 2012.

[47] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and
energy efficient main memory using phase change memory
technology,” in ISCA, 2009.

36

	Introduction
	Interfaces for Approximate Storage
	Approximate Main Memory
	Approximate Persistent Storage
	Hardware Interface and Allocation

	Approximate Multi-Level Cells
	Multi-Level Cell Model
	Encoding Values to Minimize Error
	Memory Interface

	Using Failed Memory Cells
	Prioritized Bit Correction
	Memory Interface

	Evaluation
	Applications
	MLC Model Parameters
	Wear-Out Model

	Results
	Approximate MLC Memory
	Using Failed Blocks

	Related Work
	Conclusion
	References

