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Abstract
Emerging applications increasingly use estimates such as sen-
sor data (GPS), probabilistic models, machine learning, big
data, and human data. Unfortunately, representing this uncer-
tain data with discrete types (floats, integers, and booleans)
encourages developers to pretend it is not probabilistic, which
causes three types of uncertainty bugs. (1) Using estimates
as facts ignores random error in estimates. (2) Computation
compounds that error. (3) Boolean questions on probabilistic
data induce false positives and negatives.

This paper introduces Uncertain〈T〉, a new programming
language abstraction for uncertain data. We implement a
Bayesian network semantics for computation and condition-
als that improves program correctness. The runtime uses sam-
pling and hypothesis tests to evaluate computation and con-
ditionals lazily and efficiently. We illustrate with sensor and
machine learning applications that Uncertain〈T〉 improves
expressiveness and accuracy.

Whereas previous probabilistic programming languages
focus on experts, Uncertain〈T〉 serves a wide range of de-
velopers. Experts still identify error distributions. However,
both experts and application writers compute with distribu-
tions, improve estimates with domain knowledge, and ask
questions with conditionals. The Uncertain〈T〉 type system
and operators encourage developers to expose and reason
about uncertainty explicitly, controlling false positives and
false negatives. These benefits make Uncertain〈T〉 a com-
pelling programming model for modern applications facing
the challenge of uncertainty.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and structures
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Figure 1. The probability distribution A quantifies potential
errors. Sampling A produces a single point a, introducing
uncertainty, but a does not necessarily represent the true
value. Many programs treat a as the true value.

1. Introduction
Applications that sense and reason about the complexity
of the world use estimates. Mobile phone applications esti-
mate location with GPS sensors, search estimates information
needs from search terms, machine learning estimates hidden
parameters from data, and approximate hardware estimates
precise hardware to improve energy efficiency. The difference
between an estimate and its true value is uncertainty. Every
estimate has uncertainty due to random or systematic error.
Random variables model uncertainty with probability distri-
butions, which assign a probability to each possible value. For
example, each flip of a biased coin may have a 90% chance
of heads and 10% chance of tails. The outcome of one flip
is only a sample and not a good estimate of the true value.
Figure 1 shows a sample from a Gaussian distribution which
is a poor approximation for the entire distribution.

Most programming languages force developers to reason
about uncertain data with discrete types (floats, integers, and
booleans). Motivated application developers reason about
uncertainty in ad hoc ways, but because this task is complex,
many more simply ignore uncertainty. For instance, we
surveyed 100 popular smartphone applications that use GPS
and find only one (Pizza Hut) reasons about the error in GPS
measurements. Ignoring uncertainty creates three types of
uncertainty bugs which developers need help to avoid:
Using estimates as facts ignores random noise in data and

introduces errors.
Computation compounds errors since computations on un-

certain data often degrade accuracy significantly.
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Conditionals ask boolean questions of probabilistic data,
leading to false positives and false negatives.

While probabilistic programming [6, 13, 15, 24, 25] and
domain-specific solutions [1, 2, 11, 18, 28–30] address parts
of this problem, they demand expertise far beyond what client
applications require. For example in current probabilistic
programming languages, domain experts create and query
distributions through generative models. Current APIs for
estimated data from these programs, sensors, big data, ma-
chine learning, and other sources then project the resulting
distributions into discrete types. We observe that the prob-
abilistic nature of estimated data does not stop at the API
boundary. Applications using estimated data are probabilistic
programs too! Existing languages do not consider the needs
of applications that consume estimated data, leaving their
developers to face this difficult problem unaided.

This paper introduces the uncertain type, Uncertain〈T〉, a
programming language abstraction for arbitrary probability
distributions. The syntax and semantics emphasize simplicity
for non-experts. We describe how expert developers derive
and expose probability distributions for estimated data. Simi-
lar to probabilistic programming, the uncertain type defines
an algebra over random variables to propagate uncertainty
through calculations. We introduce a Bayesian network se-
mantics for computations and conditional expressions. In-
stead of eagerly evaluating probabilistic computations as in
prior languages, we lazily evaluate evidence for the condi-
tions. Finally, we show how the uncertain type eases the use
of prior knowledge to improve estimates.

Our novel implementation strategy performs lazy eval-
uation by exploiting the semantics of conditionals. The
Uncertain〈T〉 runtime creates a Bayesian network that rep-
resents computations on distributions and then samples it
at conditional expressions. A sample executes the computa-
tions in the network. The runtime exploits hypothesis tests
to take only as many samples as necessary for the particular
conditional, rather than eagerly and exhaustively producing
unnecessary precision (as in general inference over genera-
tive models). These hypothesis tests both guarantee accuracy
bounds and provide high performance.

We demonstrate these claims with three case studies.
(1) We show how Uncertain〈T〉 improves accuracy and ex-
pressiveness of speed computations from GPS, a widely used
hardware sensor. (2) We show how Uncertain〈T〉 exploits
prior knowledge to minimize random noise in digital sensors.
(3) We show how Uncertain〈T〉 encourages developers to
explicitly reason about and improve accuracy in machine
learning, using a neural network that approximates hard-
ware [12, 26]. In concert, the syntax, semantics, and case
studies illustrate that Uncertain〈T〉 eases probabilistic rea-
soning, improves estimates, and helps domain experts and
developers work with uncertain data.

Our contributions are (1) characterizing uncertainty bugs;
(2) Uncertain〈T〉, an abstraction and semantics for uncertain

data; (3) implementation strategies that make this semantics
practical; and (4) case studies that show Uncertain〈T〉’s
potential to improve expressiveness and correctness.

2. Motivation
Modern and emerging applications compute over uncertain
data from mobile sensors, search, vision, medical trials,
benchmarking, chemical simulations, and human surveys.
Characterizing uncertainty in these data sources requires do-
main expertise, but non-expert developers (perhaps with other
expertise) are increasingly consuming the results. This sec-
tion uses Global Positioning System (GPS) data to motivate
a correct and accessible abstraction for uncertain data.

On mobile devices, GPS sensors estimate location. APIs
for GPS typically include a position and estimated error
radius (a confidence interval for location). The Windows
Phone (WP) API returns three fields:
public double Latitude, Longitude; // location
public double HorizontalAccuracy; // error estimate

This interface encourages three types of uncertainty bugs.

Interpreting Estimates as Facts Our survey of the top 100
WP and 100 Android applications finds 22% of WP and 40%
of Android applications use GPS for location. Only 5% of the
WP applications that use GPS read the error radius and only
one application (Pizza Hut) acts on it. All others treat the
GPS reading as a fact. Ignoring uncertainty this way causes
errors such as walking through walls or driving on water.

Current abstractions encourage this treatment by obscur-
ing uncertainty. Consider the map applications on two differ-
ent smartphone operating systems in Figure 2, which depict
location with a point and horizontal accuracy as a circle.
Smaller circles should indicate less uncertainty, but the left
larger circle is a 95% confidence interval (widely used for
statistical confidence), whereas the right is a 68% confidence
interval (one standard deviation of a Gaussian). The smaller
circle has a higher standard deviation and is less accurate!
(We reverse engineered this confidence interval detail.) A
single accuracy number is insufficient to characterize the
underlying error distribution or to compute on it. The hor-
izontal accuracy abstraction obscures the true uncertainty,
encouraging developers to ignore it completely.

Compounding Error Computation compounds uncertainty.
To illustrate, we recorded GPS locations on WP while walk-

(a) 95% CI, σ = 33 m (b) 68% CI, σ = 39 m

Figure 2. GPS samples at the same location on two smart-
phone platforms. Although smaller circles appear more accu-
rate, the WP sample in (a) is actually more accurate.
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Figure 3. Speed computation on GPS data produces absurd
walking speeds (59 mph, and 7 mph for 35 s, a running pace).

ing and computed speed each second. Our inspection of smart-
phone applications shows this computation on GPS data is
very common. Figure 3 plots speed computed by the code
in Figure 5(a) using the standard GPS API. Whereas Us-
ain Bolt runs 100 m at 24 mph, the average human walks at
3 mph. This experimental data shows an average of 3.5 mph,
35 s spent above 7 mph (running speed), and absurd speeds
of 30, 33, and 59 mph. These errors are significant in both
magnitude and frequency. The cause is compounded error,
since speed is a function of two uncertain locations. When
the locations have a 95% confidence interval of 4 m (the best
that smartphone GPS delivers), speed has a 95% confidence
interval of 12.7 mph. Current abstractions do not capture the
compounding of error because they do not represent the dis-
tribution nor propagate uncertainty through calculations.

Conditionals Programs eventually act on estimated data
with conditionals. Consider using GPS to issue tickets for
a 60 mph speed limit with the conditional Speed > 60. If
your actual speed is 57 mph and GPS accuracy is 4 m, this
conditional gives a 32% probability of a ticket due to random
noise alone. Figure 4 shows this probability across speeds
and GPS accuracies. Boolean questions ignore the potential
for random error, leading to false positives and negatives.
Applications instead should ask probabilistic questions; for
example, only issuing a ticket if the probability is very high
that the user is speeding.

Without an appropriate abstraction for uncertain data,
propagation of errors through computations, and prob-
abilistic semantics for conditionals, correctness is out
of reach for many developers.

3. A First-Order Type for Uncertain Data
We propose a new generic data type Uncertain〈T〉 and opera-
tions to capture and manipulate uncertain data as probability
distributions. The operations propagate distributions through
computations and conditionals with an intuitive semantics
that help developers program with uncertain data. The un-
certain type programming language abstraction is broadly
applicable to many languages and we implemented proto-
types in C#, C++, and Python. Unlike existing probabilistic
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Figure 4. Probability of issuing a speeding ticket at a 60 mph
speed limit. With a true speed of 57 mph and GPS accuracy
of 4 m, there is a 32% chance of issuing a ticket.

programming approaches, which focus on statistics and ma-
chine learning experts, Uncertain〈T〉 focuses on creating an
accessible interface for non-expert developers, who are in-
creasingly encountering uncertain data.

This section first overviews Uncertain〈T〉’s syntax and
probabilistic semantics and presents an example. It then de-
scribes the syntax and semantics for specifying distributions,
computing with distributions by building a Bayesian network
representation of computations, and executing conditional
expressions by evaluating evidence for a conclusion. We then
describe how Uncertain〈T〉 makes it easier for developers
to improve estimates with domain knowledge. Section 4 de-
scribes our lazy evaluation and sampling implementation
strategies that make these semantics efficient.

Overview An object of type Uncertain〈T〉 encapsulates a
random variable of a numeric type T . To represent computa-
tions, the type’s overloaded operators construct Bayesian net-
works, directed acyclic graphs in which nodes represent ran-
dom variables and edges represent conditional dependences
between variables. The leaf nodes of these Bayesian networks
are known distributions defined by expert developers. Inner
nodes represent the sequence of operations that compute on
these leaves. For example, the following code

Uncertain<double> a = new Gaussian(4, 1);
Uncertain<double> b = new Gaussian(5, 1);
Uncertain<double> c = a + b;

results in a simple Bayesian network

+

a

c

b

with two leaf nodes (shaded) and one inner node (white) rep-
resenting the computation c = a + b. Uncertain〈T〉 evalu-
ates this Bayesian network when it needs the distribution of
c, which depends on the distributions of a and b. Here the
distribution of c is more uncertain than a or b, as Figure 6
shows, since computation compounds uncertainty.

This paper describes a runtime that builds Bayesian net-
works dynamically and then, much like a JIT, compiles those
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double dt = 5.0; // seconds
GeoCoordinate L1 = GPS.GetLocation();

while (true) {
Sleep(dt); // wait for dt seconds
GeoCoordinate L2 = GPS.GetLocation();
double Distance = GPS.Distance(L2, L1);
double Speed = Distance / dt;
print("Speed: " + Speed);
if (Speed > 4) GoodJob();
else SpeedUp();
L1 = L2; // Last Location = Current Location;

}

(a) Without the uncertain type

double dt = 5.0; // seconds
Uncertain<GeoCoordinate> L1 = GPS.GetLocation();

while (true) {
Sleep(dt); // wait for dt seconds
Uncertain<GeoCoordinate> L2 = GPS.GetLocation();
Uncertain<double> Distance = GPS.Distance(L2, L1);
Uncertain<double> Speed = Distance / dt;
print("Speed: " + Speed.E());
if (Speed > 4) GoodJob();
else if ((Speed < 4).Pr(0.9)) SpeedUp();
L1 = L2; // Last Location = Current Location;

}

(b) With the uncertain type

Figure 5. A simple fitness application (GPS-Walking), encouraging users to walk faster than 4 mph, implemented with and
without the uncertain type. The type GeoCoordinate is a pair of doubles (latitude and longitude) and so is numeric.

a b

c

Figure 6. The sum c = a+b is more uncertain than a or b.

expression trees to executable code at conditionals. The se-
mantics establishes hypothesis tests at conditionals. The run-
time samples by repeatedly executing the compiled code until
the test is satisfied.

Example Program Figure 5 shows a simple fitness appli-
cation (GPS-Walking) written in C#, both without (left) and
with (right) Uncertain〈T〉. GPS-Walking encourages users to
walk faster than 4 mph. The Uncertain〈T〉 version produces
more accurate results in part because the type encourages
the developer to reason about false positives and negatives.
In particular, the developer chooses not to nag, admonishing
users to SpeedUp only when it is very confident they are
walking slowly. As in traditional languages, Uncertain〈T〉
only executes one side of conditional branches. Some proba-
bilistic languages execute both sides of conditional branches
to create probabilistic models, but Uncertain〈T〉 makes con-
crete decisions at conditional branches, matching the host
language semantics. We demonstrate the improved accuracy
of the Uncertain〈T〉 version of GPS-Walking in Section 5.1.

This example serves as a good pedagogical tool because
of its simplicity, but the original embodies a real-world
uncertainty problem because many smartphone applications
on all major platforms use the GPS API exactly this way.
Uncertain〈T〉’s simple syntax and semantics result in very
few changes to the program: the developer only changes the
variable types and the conditional operators.

3.1 Syntax with Operator Overloading

Table 1 shows the operators and methods of Uncertain〈T〉.
Uncertain〈T〉 defines an algebra over random variables to
propagate uncertainty through computations, overloading the
usual arithmetic operators from the base numeric type T .

Operators
Math (+ − ∗/) op :: U〈T〉 → U〈T〉 → U〈T〉
Order (<>≤≥) op :: U〈T〉 → U〈T〉 → U〈Bool〉
Logical (∧∨) op :: U〈Bool〉 → U〈Bool〉 → U〈Bool〉
Unary (¬) op :: U〈Bool〉 → U〈Bool〉
Point-mass Pointmass :: T → U〈T〉
Conditionals
Explicit Pr :: U〈Bool〉 → [0,1]→ Bool
Implicit Pr :: U〈Bool〉 → Bool

Evaluation
Expected value E :: U〈T〉 → T

U〈T〉 is shorthand for Uncertain〈T〉.

Table 1. Uncertain〈T〉 operators and methods.

Developers may override other types as well. Developers
compute with Uncertain〈T〉 as they would with T , and the
Bayesian network the operators construct captures how error
in an estimate flows through computations.

Uncertain〈T〉 addresses two sources of random error: do-
main error and approximation error. Domain error motivates
our work and is the difference between an estimate and its true
value. Approximation error is created because Uncertain〈T〉
must approximate distributions. Developers ultimately make
concrete decisions on uncertain data through conditionals.
Uncertain〈T〉’s conditional operators enforce statistical tests
at conditionals, mitigating both sources of error.

3.2 Identifying Distributions

The underlying probability distribution for uncertain data
is specific to the problem domain. In many cases expert
library developers already know these distributions, and
sometimes they use them to produce crude error estimates
such as the GPS horizontal accuracy discussed in Section 2.
Uncertain〈T〉 offers these expert developers an abstraction
to expose these distributions while preserving the simplic-
ity of their current API. The non-expert developers who
consume this uncertain data program against the common
Uncertain〈T〉 API, which is very similar to the way they al-
ready program with uncertain data today, but aids them in
avoiding uncertainty bugs.
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The expert developer has two broad approaches for select-
ing the right distribution for their particular problem.

(1) Selecting a theoretical model. Many sources of uncer-
tain data are amenable to theoretical models which library
writers may adopt. For example, the error in the mean of
a data set is approximately Gaussian by the Central Limit
Theorem. Section 5.1 uses a theoretical approach for the
GPS-Walking case study.

(2) Deriving an empirical model. Some problems do not
have or are not amenable to theoretical models. For these
cases, expert developers may determine an error distribu-
tion empirically by machine learning or other mechanisms.
Section 5.3 uses an empirical approach for machine learning.

Representing Distributions

There are a number of ways to store probability distributions.
The most accurate mechanism stores the probability density
function exactly. For finite domains, a simple map can as-
sign a probability to each possible value [30]. For continuous
domains, one might reason about the density function alge-
braically [4]. For example, a Gaussian random variable with
mean µ and variance σ2 has density function

f (x) =
1

σ
√

2π
exp
{
− (x−µ)2

2σ2

}
.

An instance of a Gaussian random variable need only store
this formula and values of µ and σ2 to represent the variable
exactly (up to floating point error).

Exact representation has two major downsides. First, the
algebra quickly becomes impractical under computation:
even the sum of two distributions requires evaluating a con-
voluted convolution integral. Second, many important distri-
butions for sensors, road maps, approximate hardware, and
machine learning do not have closed-form density functions
and so cannot be stored this way.

To overcome these issues, Uncertain〈T〉 represents distri-
butions through approximate sampling functions. Approxi-
mation can be arbitrarily accurate given sufficient space and
time [31], leading to an efficiency-accuracy trade-off. Many
possible approximation schemes might be appropriate for
Uncertain〈T〉, including fixed vectors of random samples,
Chebyshev polynomials [16], or sampling functions [23]. We
use sampling functions because they implement a principled
solution for balancing accuracy and efficiency.

3.3 Computing with Distributions

Developers combine uncertain data by using the usual opera-
tors for arithmetic, logic, and comparison, and Uncertain〈T〉
manages the resultant uncertainty. Uncertain〈T〉 overloads
such operators from the base type T to work over distributions.
For example, the example program in Figure 5(b) calculates
the user’s speed by division:

Uncertain<double> Speed = Distance / dt;

D = A / B
E = D - C

-

C/

E

BA

D

Figure 7. Bayesian network for a simple program with
independent leaves.

The type Double has a division operator of type
/ :: Double→ Double→ Double.

The type Uncertain〈Double〉 lifts this operator to work over
random variables, providing a new operator

/ :: U〈Double〉 → U〈Double〉 → U〈Double〉.
Note given x of type T , the semantics coerces x to type
Uncertain〈T〉 with a pointmass distribution centered at x,
so the denominator dt is cast to type Uncertain〈Double〉.
The same lifting occurs on other arithmetic operators of type
T → T → T , as well as comparison operators (type T →
T → Bool) and logical operators (type Bool→ Bool→ Bool).
A lifted operator may have any type. For example, we can
define real division of integers as type Int→ Int→ Double,
which Uncertain〈T〉 lifts without issue.

Instead of executing operations instantaneously, the lifted
operators construct Bayesian network representations of
the computations. A Bayesian network is a probabilistic
graphical model and is a directed acyclic graph whose
nodes represent random variables and whose edges represent
conditional dependences between those variables [5]. Figure 7
shows an example of this Bayesian network representation.
The shaded leaf nodes are known distributions (such as
Gaussians) specified by expert developers, as previously
noted. The final Bayesian network defines a joint distribution
over all the variables involved in the computation:
Pr[A,B,C,D,E] = Pr[A]Pr[B]Pr[C]Pr[D |A,B]Pr[E |C,D].

The incoming edges to a node in the Bayesian network graph
specify the other variables that the node’s variable depends
on. For example, A has no dependences while E depends
on C and D. Since we know the distributions of the leaf
nodes A, B, and C, we use the joint distribution to infer the
marginal distributions of the variables D and E, even though
their distributions are not explicitly specified by the program.
The conditional distributions of inner nodes are specified by
their associated operators. For example, the distribution of
Pr[D |A = a,B = b] in Figure 7 is simply a pointmass at a/b.

Dependent Random Variables

Two random variables X and Y are independent if the value of
one has no bearing on the value of the other. Uncertain〈T〉’s
Bayesian network representation assumes that leaf nodes are
independent. This assumption is common in probabilistic pro-
gramming, but expert developers can override it by specifying
the joint distribution between two variables.
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Figure 8. Bayesian networks for a simple program with
dependent leaves.

4 mph Pr[Speed > 4]

0 2 4 6 8 10
Speed (mph)

Figure 9. Uncertainty in data means there is only a probabil-
ity that Speed > 4, not a concrete boolean value.

The Uncertain〈T〉 semantics automatically addresses
program-induced dependences. For example, Figure 8(a)
shows a simple program with a naive incorrect construc-
tion of its Bayesian network. This network implies that the
operands to the addition that defines B are independent, but
in fact both operands depend on the same variable X. When
producing a Bayesian network, Uncertain〈T〉’s operators
echo static single assignment by determining that the two
X occurrences refer to the same value, and so A depends on
the same X as B. Our analysis produces the correct Bayesian
network in Figure 8(b). Because the Bayesian network is
constructed dynamically and incrementally during program
execution, the resulting graph remains acyclic.

3.4 Asking the Right Questions

After computing with uncertain data, programs use it in
conditional expressions to make decisions. The example
program in Figure 5 compares the user’s speed to 4 mph. Of
course, since speed is computed with uncertain estimates of
location, it too is uncertain. The naive conditional Speed > 4
incorrectly asks a deterministic question of probabilistic data,
creating uncertainty bugs described in Section 2.

Uncertain〈T〉 defines the semantics of conditional expres-
sions involving uncertain data by computing evidence for a
conclusion. This semantics encourages developers to ask ap-
propriate questions of probabilistic data. Rather than asking
“is the user’s speed faster than 4 mph?” Uncertain〈T〉 asks
“how much evidence is there that the user’s speed is faster
than 4 mph?” The evidence that the user’s speed is faster than
4 mph is the quantity Pr[Speed > 4]; in Figure 9, this is the
area under the distribution of the variable Speed to the right

of 4 mph. Since we are considering probability distributions,
the area A satisfies 0≤ A≤ 1.

When the developer writes a conditional expression
if (Speed > 4) ...

the program applies the lifted version of the > operator
> :: Uncertain〈T〉 → Uncertain〈T〉 → Uncertain〈Bool〉.

This operator creates a Bernoulli distribution with param-
eter p ∈ [0,1], which by definition is the probability that
Speed > 4 (i.e., the shaded area under the curve). Unlike
other probabilistic programming languages, Uncertain〈T〉
executes only a single branch of the conditional to match the
host language’s semantics. The Uncertain〈T〉 runtime must
therefore convert this Bernoulli distribution to a concrete
boolean value. This conditional uses the implicit conditional
operator, which compares the parameter p of the Bernoulli
distribution to 0.5, asking whether the Bernoulli is more
likely than not to be true. This conditional therefore evaluates
whether Pr[Speed > 4]> 0.5, asking whether it is more likely
that the user’s speed is faster than 4 mph.

Using an explicit conditional operator, developers may
specify a threshold to compare against. The second compari-
son in Figure 5(b) uses this explicit operator:

else if ((Speed < 4).Pr(0.9)) ...

This conditional evaluates whether Pr[Speed < 4]> 0.9. The
power of this formulation is reasoning about false positives
and negatives. Even if the mean of the distribution is on
one side of the conditional threshold, the distribution may
be very wide, so there is still a strong likelihood that the
opposite conclusion is correct. Higher thresholds for the
explicit operator require stronger evidence, and produce fewer
false positives (extra reports when ground truth is false) but
more false negatives (missed reports when ground truth is
true). In this case, the developer chooses to favor some false
positives for encouraging users (GoodJob), and to limit false
positives when admonishing users (SpeedUp) by demanding
stronger evidence that they are walking slower than 4 mph.

Hypothesis Testing for Approximation Error

Because Uncertain〈T〉 approximates distributions, we must
consider approximation error in conditional expressions. We
use statistical hypothesis tests, which make inferences about
population statistics based on sampled data. Uncertain〈T〉
establishes a hypothesis test when evaluating the implicit and
explicit conditional operators. In the implicit case above, the
null hypothesis is H0 : Pr[Speed > 4]≤ 0.5 and the alternate
hypothesis HA : Pr[Speed > 4] > 0.5. Section 4.3 describes
our sampling process for evaluating these tests in detail.

Hypothesis tests introduce a ternary logic. For example,
given the code sequence

if (A < B) ...
else if (A >= B) ...

neither branch may be true because the runtime may not be
able to reject the null hypothesis for either conditional at
the required confidence level. This behavior is not new: just
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Figure 10. Domain knowledge as a prior distribution im-
proves the quality of GPS estimates.

as programs should not compare floating point numbers for
equality, neither should they compare distributions for equal-
ity. However, for problems that require a total order, such
as sorting algorithms, Uncertain〈T〉 provides the expected
value operator E. This operator outputs an element of type T
and so it preserves the base type’s ordering properties.

3.5 Improving Estimates

Bayesian statistics represents the state of the world with
degrees of belief and is a powerful mechanism for improving
the quality of estimated data. Given two random variables, B
representing the target variable to estimate (e.g., the user’s
location), and E the estimation process (e.g., the GPS sensor
output), Bayes’ theorem says that

Pr[B = b|E = e] =
Pr[E = e|B = b] ·Pr[B = b]

Pr[E = e]
.

Bayes’ theorem combines evidence from estimation pro-
cesses (the value e of E) with hypotheses about the true value
b of the target variable B. We call Pr[B = b] the prior distri-
bution, our belief about B before observing any evidence, and
Pr[B = b|E = e] the posterior distribution, our belief about B
after observing evidence.

Uncertain〈T〉 unlocks Bayesian statistics by encapsulating
entire data distributions. Abstractions that capture only single
point estimates are insufficient for this purpose and force
developers to resort to ad-hoc heuristics to improve estimates.

Incorporating Knowledge with Priors

Bayesian inference is powerful because developers can en-
code their domain knowledge as prior distributions, and use
that knowledge to improve the quality of estimates. For ex-
ample, a developer working with GPS can provide a prior
distribution that assigns high probabilities to roads and lower
probabilities elsewhere. This prior distribution achieves a
“road-snapping” behavior [21], fixing the user’s location to
nearby roads unless GPS evidence to the contrary is very
strong. Figure 10 illustrates this example – the mean shifts
from p to s, closer to the road the user is actually on.

Specifying priors, however, requires a knowledge of statis-
tics beyond the scope of most developers. In our current im-
plementation, applications specify domain knowledge with
constraint abstractions. Expert developers add preset prior
distributions to their libraries for common cases. For example,

GPS libraries would include priors for driving (e.g., roads
and driving speeds), walking (walking speeds), and being
on land. Developers combine priors through flags that select
constraints specific to their application. The library applies
the selected priors, improving the quality of estimates with-
out much burden on developers. This approach is not very
satisfying because it is not compositional, so the application
cannot easily mix and match priors from different sources
(e.g., maps, calendars, and physics for GPS). We anticipate
future work creating an accessible and compositional abstrac-
tion for prior distributions, perhaps with the Bayes operator
P]Q for sampled distributions by Park et al. [23].

4. Implementation
This section describes our practical and efficient C# imple-
mentation of the Uncertain〈T〉 abstraction. We also imple-
mented prototypes of Uncertain〈T〉 in C++ and Python and
believe most high-level languages could easily implement it.

4.1 Identifying Distributions

Uncertain〈T〉 approximates distributions with sampling func-
tions, rather than storing them exactly, to achieve expressive-
ness and efficiency. A sampling function has no arguments
and returns a new random sample, drawn from the distribu-
tion, on each invocation [23]. For example, a pseudo-random
number generator is a sampling function for the uniform dis-
tribution, and the Box-Mueller transform [8] is a sampling
function for the Gaussian distribution.

In the GPS-Walking application in Figure 5(b), the variables
L1 and L2 are distributions obtained from the GPS library.
The expert developer who implements the GPS library derives
the correct distribution and provides it to Uncertain〈T〉 as a
sampling function. Bornholt [7] shows in detail the derivation
for the error distribution of GPS data. The resulting model
says that the posterior distribution for a GPS estimate is

Pr[Location = p |GPS = Sample]

= Rayleigh(‖Sample− p‖ ;ε/
√

ln400)
where Sample is the raw GPS sample from the sensor, ε is
the sensor’s estimate of the 95% confidence interval for the
location (i.e., the horizontal accuracy from Section 2), and
the Rayleigh distribution [22] is a continuous non-negative
single-parameter distribution with density function

Rayleigh(x;ρ) =
x

ρ2 exp
{
− x2

2ρ2

}
, x≥ 0.

Figure 11 shows the posterior distribution given a particular
value of ε . Most existing GPS libraries return a coordinate
(the center of the distribution) and present ε as a confidence
parameter most developers ignore. Figure 11 shows that the
true location is unlikely to be in the center of the distribution
and more likely to be some fixed radius from the center.

We built a GPS library that captures error in its estimate
with Uncertain〈T〉 using this distribution. Figure 12 shows
our library function GPS.GetLocation, which returns an
instance of Uncertain〈GeoCoordinate〉 by implementing a
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Figure 11. The posterior distribution for GPS is a distribution
over the Earth’s surface.

Uncertain<GeoCoordinate> GetLocation() {
// Get the estimates from the hardware
GeoCoordinate Point = GPS.GetHardwareLocation();
double Accuracy = GPS.GetHardwareAccuracy();
// Compute epsilon
double epsilon = Accuracy / Math.Sqrt(Math.Log(400));
// Define the sampling function
Func<GeoCoordinate> SamplingFunction = () => {

double radius, angle, x, y;
// Samples the distribution in Figure 11 using
// polar coordinates
radius = Math.RandomRayleigh(epsilon);
angle = Math.RandomUniform(0, 2*Math.PI);
// Convert to x,y coordinates in degrees
x = Point.Longitude;
x += radius*Math.Cos(angle)*DEGREES_PER_METER;
y = Point.Latitude;
y += radius*Math.Sin(angle)*DEGREES_PER_METER;
// Return the GeoCoordinate
return new GeoCoordinate(x, y);

}
// Return the instance of Uncertain<T>
return new Uncertain<GeoCoordinate>(SamplingFunction);

}

Figure 12. The Uncertain〈T〉 version of GPS.GetLocation
returns an instance of Uncertain〈GeoCoordinate〉.

sampling function to draw samples from the posterior distri-
bution. The sampling function captures the values of Point
and Accuracy. Although the sampling function is later in-
voked many times to draw samples from the distribution,
the GPS hardware functions GetHardwareLocation and
GetHardwareAccuracy are only invoked once for each call
to GetLocation.

4.2 Computing with Distributions

Uncertain〈T〉 propagates error through computations by over-
loading operators from the base type T . These lifted operators
dynamically construct Bayesian network representations of
the computations they represent as the program executes.
However, an alternate implementation could statically build a
Bayesian network and only dynamically perform hypothesis
tests at conditionals. We use the Bayesian network to define
the sampling function for a computed variable in terms of
the sampling functions of its operands. We only evaluate the
sampling function at conditionals and so the root node of a
network being sampled is always a comparison operator.

The computed sampling function uses the standard ances-
tral sampling technique for graphical models [5]. Because

the Bayesian network is directed and acyclic, its nodes can be
topologically ordered. We draw samples in this topological
order, starting with each leaf node, for which sampling func-
tions are explicitly defined. These samples then propagate
up the Bayesian network. Each inner node is associated with
an operator from the base type, and the node’s children have
already been sampled due to the topological order, so we
simply apply the base operator to the operand samples to
generate a sample from an inner node. This process continues
up the network until reaching the root node of the network,
generating a sample from the computed variable. The topo-
logical order guarantees that each node is visited exactly once
in this process, and so the sampling process terminates.

In the GPS-Walking application in Figure 5(b), the user’s
speed is calculated by the line

Uncertain<double> Speed = Distance / dt;

The lifted division operator constructs a Bayesian network
for this computation:

/

Distance

Speed

dt

td

Here shaded nodes indicate leaf distributions, for which
sampling functions are defined explicitly.

To draw a sample from the variable Speed, we draw a
sample from each leaf: a sample d from Distance (defined
by the GPS library) and t from dt (a pointmass distribution,
so all samples are equal). These samples propagate up the
network to the Speed node. Because this node is a division
operator, the resulting sample from Speed is simply d/t.

4.3 Asking Questions with Hypothesis Tests

Uncertain〈T〉’s conditional and evaluation operators address
the domain error that motivates our work. These operators
require concrete decisions under uncertainty. The conditional
operators must select one branch target to execute. In the GPS-
Walking application in Figure 5(b), a conditional operator

if (Speed > 4)...

must decide whether or not to enter this branch. Sec-
tion 3.4 describes how Uncertain〈T〉 executes this condi-
tional by comparing the probability Pr[Speed > 4] to a de-
fault threshold 0.5, asking whether it is more likely than
not that Speed > 4. To control approximation error, this
comparison is performed by a hypothesis test, with null hy-
pothesis H0 : Pr[Speed > 4] ≤ 0.5 and alternate hypothesis
HA : Pr[Speed > 4]> 0.5.

Sampling functions in combination with this hypothesis
test control the efficiency-accuracy trade-off that approxima-
tion introduces. A higher confidence level for the hypothesis
test leads to fewer approximation errors but requires more
samples to evaluate. We perform the hypothesis test using
Wald’s sequential probability ratio test (SPRT) [32] to dy-
namically choose the right sample size for a particular condi-
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tional, only taking as many samples as necessary to obtain a
statistically significant result.

We specify a step size, say k = 10, and start by drawing
n = k samples from the Bernoulli distribution Speed > 4.
We then apply the SPRT to these samples to decide if
the parameter p of the distribution (i.e., the probability
Pr[Speed > 4]) is significantly different from 0.5. If so, we
can terminate immediately and take (or not take) the branch,
depending on in which direction the significance lies. If the
result is not significant, we draw another batch of k samples,
and repeat the process with the now n = 2k collection of
samples. We repeat this process until either a significant
result is achieved or a maximum sample size is reached
to ensure termination. The SPRT ensures that this repeated
sampling and testing process still achieves overall bounds
on the probabilities of false positives (significance level) and
false negatives (power).

Sampling functions and a Bayesian network representa-
tion may draw as many samples as we wish from any given
variable. We may therefore exploit sequential methods, such
as the SPRT, which do not fix the sample size for a hypothesis
test in advance. Sequential methods are a principled solution
to the efficiency-accuracy trade-off. They ensure we draw the
minimum necessary number of samples for a sufficiently ac-
curate result for each specific conditional. This goal-oriented
sampling approach is a significant advance over previous ran-
dom sampling approaches, which compute with a fixed pool
of samples. These approaches do not efficiently control the
effect of approximation error.

Wald’s SPRT is optimal in terms of average sample size,
but is potentially unbounded in any particular instance, so
termination is not guaranteed. The artificial maximum sample
size we introduce to guarantee termination has a small effect
on the actual significance level and power of the test. We
anticipate adapting the considerable body of work on group
sequential methods [17], widely used in medical clinical
trials, which provide “closed” sequential hypothesis tests
with guaranteed upper bounds on the sample size.

We cannot apply the same sequential testing approach
to the evaluation operator E, since there are no alternatives
to compare against (i.e., no goal to achieve). Currently for
this operator we simply draw a fixed number of samples and
return their mean. We believe a more intelligent adaptive
sampling process, sampling until the mean converges, may
improve the performance of this approach.

5. Case Studies
We use three case studies to explore the expressiveness and
correctness of Uncertain〈T〉 on uncertain data. (1) We show
how Uncertain〈T〉 improves accuracy and expressiveness of
speed computations from GPS, a widely used hardware sen-
sor. (2) We show how Uncertain〈T〉 exploits prior knowledge
to minimize random noise in digital sensors. (3) We show
how Uncertain〈T〉 encourages developers to explicitly rea-
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Figure 13. Data from the GPS-Walking application. Develop-
ers improve accuracy with priors and remove absurd values.

son about and improve accuracy in machine learning, using a
neural network that approximates hardware [12, 26].

5.1 Uncertain<T> on Smartphones: GPS-Walking

The modern smartphone contains a plethora of hardware sen-
sors. Thousands of applications use the GPS sensor, and many
compute distance and speed from GPS readings. Our walking
speed case study serves double duty, showing how uncer-
tainty bugs occur in practice as well as a clear pedagogical
demonstration of how Uncertain〈T〉 improves correctness
and expressiveness. We wrap the Windows Phone (WP) GPS
location services API with Uncertain〈T〉, exposing the error
distribution. The GPS-Walking application estimates the user’s
speed by taking two samples from the GPS and computing
the distance and time between them. Figure 5 compares the
code for GPS-Walking with and without the uncertain type.

Defining the Distributions Our Uncertain〈T〉 GPS library
provides the function
Uncertain<GeoCoordinate> GPS.GetLocation();

which returns a distribution over the user’s possible locations.
Section 4.1 overviews how to derive the GPS distribution,
and Figure 12 shows the implementation.

Computing with Distributions GPS-Walking uses locations
from the GPS library to calculate the user’s speed, since
Speed = ∆Distance/∆Time. Of course, since the locations
are estimates, so too is speed. The developer must change the
line
print("Speed: " + Speed);

from the original program in Figure 5(a), since Speed now
has type Uncertain〈Double〉. It now prints the expected value
Speed.E() of the speed distribution.

We tested GPS-Walking by walking outside for 15 minutes.
Figure 13 shows the expected values Speed.E() measured
each second by the application (GPS speed). The uncertainty
of the speed calculation, with extremely wide confidence
intervals, explains the absurd values.

Conditionals GPS-Walking encourages users to walk faster
than 4 mph with messages triggered by conditionals. The
original implementation in Figure 5(a) uses naive condition-
als, which are susceptible to random error. For example, on
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our test data, such conditionals would report the user to be
walking faster than 7 mph (a running pace) for 30 seconds.

The Uncertain〈T〉 version of GPS-Walking in Figure 5(b)
evaluates evidence to execute conditionals. The conditional
if (Speed > 4) GoodJob();

asks if it is more likely than not that the user is walking fast.
The second conditional

else if ((Speed < 4).Pr(0.9)) SpeedUp();

asks if there is at least a 90% chance the user is walking
slowly. This requirement is stricter than the first conditional
because we do not want to unfairly admonish the user (i.e., we
want to avoid false positives). Even the simpler more likely
than not conditional improves the accuracy of GPS-Walking:
such a conditional would only report the user as walking
faster than 7 mph for 4 seconds.

Improving GPS Estimates with Priors Because GPS-
Walking uses Uncertain〈T〉, we may incorporate prior knowl-
edge to improve the quality of its estimates. Assume for
simplicity that users only invoke GPS-Walking when walking.
Since humans are incredibly unlikely to walk at 60 mph or
even 10 mph, we specify a prior distribution over likely walk-
ing speeds. Figure 13 shows the improved results (Improved
speed). The confidence interval for the improved data is much
tighter, and the prior knowledge removes the absurd results,
such as walking at 59 mph.

Summary Developers need only make minimal changes
to the original GPS-Walking application and are rewarded
with improved correctness. They improve accuracy by rea-
soning correctly about uncertainty and eliminating absurd
data with domain knowledge. This complex logic is difficult
to implement without the uncertain type because a developer
must know the error distribution for GPS, how to propagate it
through calculations, and how to incorporate domain knowl-
edge to improve the results. The uncertain type abstraction
hides this complexity, improving programming productivity
and application correctness.

5.2 Uncertain<T> with Sensor Error: SensorLife

This case study emulates a binary sensor with Gaussian noise
to explore accuracy when ground truth is available. For many
problems using uncertain data, ground truth is difficult and
costly to obtain, but it is readily available in this problem
formulation. This case study shows how Uncertain〈T〉makes
it easier for non-expert developers to work with noisy sensors.
Furthermore, it shows how expert developers can simply and
succinctly use domain knowledge (i.e., the fact that the noise
is Gaussian with known variance) to improve these estimates.

We use Conway’s Game of Life, a cellular automaton that
operates on a two-dimensional grid of cells that are each dead
or alive. The game is broken up into generations. During
each generation, the program updates each cell by (i) sensing
the state of the cell’s 8 neighbors, (ii) summing the binary
value (dead or alive) of the 8 neighbors, and (iii) applying the
following rules to the sum:

1. A live cell with 2 or 3 live neighbors lives.
2. A live cell with less than 2 live neighbors dies.
3. A live cell with more than 3 live neighbors dies.
4. A dead cell with exactly 3 live neighbors becomes live.

These rules simulate survival, underpopulation, overcrowd-
ing, and reproduction, respectively. Despite simple rules, the
Game of Life provides complex and interesting dynamics
(e.g., it is Turing complete [3]). We focus on the accuracy of
sensing if the neighbors are dead or alive.

Defining the Distributions The original Game of Life’s
discrete perfect sensors define our ground truth. We view
each cell as being equipped with up to eight sensors, one
for each of its neighbors. Cells on corners and edges of the
grid have fewer sensors. Each perfect sensor returns a binary
value s ∈ {0,1} indicating if the associated neighbor is alive.

We artificially induce zero-mean Gaussian noise N(0,σ)
on each of these sensors, where σ is the amplitude of the
noise. Each sensor now returns a real number, not a binary
value. We define three versions of this noisy Game of Life:
NaiveLife reads a single sample from each noisy sensor and

sums the results directly to count the live neighbors.
SensorLife wraps each sensor with Uncertain〈T〉. The sum

uses the overloaded addition operator and each sensor may
be sampled multiple times in a single generation.

BayesLife uses domain knowledge to improve SensorLife, as
we describe below.

Our construction results in some negative sensor readings,
but choosing a non-negative noise distribution, such as the
Beta distribution, does not appreciably change our results.

Computing with Distributions Errors in each sensor are
independent, so the function that counts a cell’s live neighbors
is almost unchanged:
Uncertain<double> CountLiveNeighbors(Cell me) {
Uncertain<double> sum = new Uncertain<double>(0.0);
foreach (Cell neighbor in me.GetNeighbors())
sum = sum + SenseNeighbor(me, neighbor);

return sum; }

Because each sensor now returns a real number rather than
a binary value, the count of live neighbors is now a distri-
bution over real numbers rather than an integer. Operator
overloading means that no further changes are necessary, as
the addition operator will automatically propagate uncertainty
into the resulting sum.

Conditionals The Game of Life applies its rules with four
conditionals to the output of CountLiveNeighbors:
bool IsAlive = IsCellAlive(me);
bool WillBeAlive = IsAlive;
Uncertain<double> NumLive = CountLiveNeighbors(me);
if (IsAlive && NumLive < 2)

WillBeAlive = false;
else if (IsAlive && 2 <= NumLive && NumLive <= 3)

WillBeAlive = true;
else if (IsAlive && NumLive > 3)

WillBeAlive = false;
else if (!IsAlive && NumLive == 3)

WillBeAlive = true;

Each comparison involving NumLive implicitly performs a
hypothesis test.
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Figure 14. SensorLife uses Uncertain〈T〉 to significantly decrease the rate of incorrect decisions compared to a naive version,
but requires more samples to make decisions. BayesLife incorporates domain knowledge into SensorLife for even better results.

Evaluation We compare the noisy versions of the Game
of Life to the precise version. We perform this comparison
across a range of noise amplitude values σ . Each execution
randomly initializes a 20× 20 cell board and performs 25
generations, evaluating a total of 10000 cell updates. For each
noise level σ , we execute each Game of Life 50 times. We
report means and 95% confidence intervals.

Figure 14(a) shows the rate of incorrect decisions (y-axis)
made by each noisy Game of Life at various noise levels
(x-axis). NaiveLife has a consistent error rate of 8%, as it takes
only a small amount of noise to cross the integer thresholds
in the rules of the Game of Life. SensorLife’s errors scale with
noise, as it considers multiple samples and so can correct
smaller amounts of noise. At all noise levels, SensorLife is
considerably more accurate than NaiveLife.

Mitigating noise has a cost, as Uncertain〈T〉 must sample
each sensor multiple times to evaluate each conditional.
Figure 14(b) shows the number of samples drawn for each cell
update (y-axis) by each noisy Game of Life at various noise
levels (x-axis). Clearly NaiveLife only draws one sample per
conditional. The number of samples for SensorLife increases
as the noise level increases, because noisier sensors require
more computation to reach a conclusion at the conditional.

Improving Estimates SensorLife achieves better results than
NaiveLife despite not demonstrating any knowledge of the fact
that the underlying true state of a sensor must be either 0 or
1. To improve SensorLife, an expert can exploit knowledge of
the distribution and variance of the sensor noise. We call this
improved version BayesLife.

Let v be the raw, noisy sensor reading, and s the underlying
true state (either 0 or 1). Then v = s+N(0,σ) for some σ we
know. Since s is binary, we have two hypotheses for s: H0 says
s = 0 and H1 says s = 1. The raw sensor reading v is evidence,
and Bayes’ theorem calculates a posterior probability

Pr[H0|v] = Pr[v|H0]Pr[H0]/Pr[v]
for H0 given the evidence, and similarly for H1. To improve
an estimate, we calculate which of H0 and H1 is more likely
under the posterior probability, and fix the sensor reading to
be 0 or 1 accordingly.

This formulation requires (i) the prior likelihoods Pr[H0]
and Pr[H1]; and (ii) a likelihood function to calculate Pr[v|H0]
and Pr[v|H1]. We assume no prior knowledge, so both H0 and
H1 are equally likely: Pr[H0] = Pr[H1] = 0.5. Because we
know the noise is Gaussian, we know the likelihood function
is just the likelihood that N(0,σ) = s− v for each of s = 0
and 1, which we calculate trivially using the Gaussian density
function. We need not calculate Pr[v] since it is a common
denominator of the two probabilities we compare.

To implement BayesLife we wrap each sensor with a new
function SenseNeighborFixed. Since the two likelihoods
Pr[v|H0] and Pr[v|H1] have the same variance and shape and
are symmetric around 0 and 1, respectively, and the priors
are equal, the hypothesis with higher posterior probability
is simply the closer of 0 or 1 to v. The implementation is
therefore trivial:
Uncertain<double>
SenseNeighborFixed(Cell me, Cell neighbor) {
Func<double> samplingFunction = () => {
Uncertain<double> Raw = SenseNeighbor(me, neighbor);
double Sample = Raw.Sample();
return Sample > 0.5 ? 1.0 : 0.0;

};
return new Uncertain<double>(samplingFunction); }

Evaluation of BayesLife Figure 14(a) shows that BayesLife
makes no mistakes at all at these noise levels. At noise levels
higher than σ = 0.4, considering individual samples in iso-
lation breaks down as the values become almost completely
random. A better implementation could calculate joint like-
lihoods with multiple samples, since each sample is drawn
from the same underlying distribution. Figure 14(b) shows
that BayesLife requires fewer samples than SensorLife, but of
course still requires more samples than NaiveLife.

5.3 Uncertain<T> for Machine Learning: Parakeet

This section explores using Uncertain〈T〉 for machine learn-
ing, inspired by Parrot [12], which trains neural networks
for approximate hardware. We study the Sobel operator from
the Parrot evaluation, which calculates the gradient of im-
age intensity at a pixel. Parrot creates a neural network that
approximates the Sobel operator.
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Machine learning algorithms estimate the true value of
a function. One source of uncertainty in their estimates is
generalization error, where predictions are good on training
data but poor on unseen data. To combat this error, Bayesian
machine learning considers distributions of estimates, re-
flecting how different estimators would answer an unseen
input. Figure 15 shows for one such input a distribution of
neural network outputs created by the Monte Carlo method
described below, the output from the single naive neural net-
work Parrot trains, and the true output. The one Parrot value
is significantly different from the correct value. Using a dis-
tribution helps mitigate generalization error by recognizing
other possible predictions.

Computation amplifies generalization error. For example,
edge-detection algorithms use the Sobel operator to report
an edge if the gradient is large (e.g., s(p) > 0.1). Though
Parrot approximates the Sobel operator well, with an average
root-mean-square error of 3.4%, using its output in such a
conditional is a computation. This computation amplifies the
error and results in a 36% false positive rate. In Figure 15,
by considering the entire distribution, the evidence for the
condition s(p) > 0.1 is only 70%. To accurately consume
estimates, developers must consider the effect of uncertainty
not just on direct output but on computations that consume it.

We introduce Parakeet, which approximates code using
Bayesian neural networks, and encapsulates the distribution
with Uncertain〈T〉. This abstraction encourages developers to
consider uncertainty in the machine learning prediction. We
evaluate Parakeet by approximating the Sobel operator s(p)
and computing the edge detection conditional s(p)> 0.1.

Identifying the Distribution We seek a posterior predictive
distribution (PPD), which tells us for a given input how likely
each possible output is to be correct, based on the training
data. Intuitively, this distribution reflects predictions from
other neural networks that also explain the training data well.

Formally, a neural network is a function y(x;w) that
approximates the output of a target function f (x). The weight
vector w describes how each neuron in the network relates
to the others. Traditional training uses example inputs and
outputs to learn a single weight vector w for prediction. In
a Bayesian formulation, we learn the PPD p(t|x,D) (the
distribution in Figure 15), a distribution of predictions of
f (x) given the training data D.

We adopt the hybrid Monte Carlo algorithm to create
samples from the PPD [20]. Each sample describes a neural
network. Intuitively, we create multiple neural networks by
perturbing the search. Formally, we sample the posterior
distribution p(w|D) to approximate the PPD p(t|x,D) using
Monte Carlo integration, since

p(t|x,D) =
∫

p(t|x,w)p(w|D)dw.

The instance of Uncertain〈T〉 that Parakeet returns draws
samples from this PPD. Each sample of p(w|D) from hybrid
Monte Carlo is a vector w of weights for a neural network.

True value Parrot values(p) > 0.1

0.00 0.05 0.10 0.15 0.20
Value of Sobel operator, s(p)

P
ro

ba
bi

lit
y

Figure 15. Error distribution for Sobel approximated by
neural networks. Parrot experiences a false positive on this
test, which Parakeet eliminates by evaluating the evidence
that s(p)> 0.1 (the shaded area).

To evaluate a sample from the PPD p(t|x,D), we execute a
neural network using the weights w and input x. The resulting
output is a sample of the PPD.

We execute hybrid Monte Carlo offline and capture a fixed
number of samples in a training phase. We use these samples
at runtime as a fixed pool for the sampling function. If the
sample size is sufficiently large, this approach approximates
true sampling well. As with other Markov chain Monte Carlo
algorithms, the next sample in hybrid Monte Carlo depends
on the current sample, which improves on pure random
walk behavior that scales poorly in high dimensions. To
compensate for this dependence we discard most samples
and only retain every Mth sample for some large M.

Hybrid Monte Carlo has two downsides. First, we must
execute multiple neural networks (one for each sample of
the PPD). Second, it often requires hand tuning to achieve
practical rejection rates. Other PPD approximations strike dif-
ferent trade-offs. For example, a Gaussian approximation [5]
to the PPD would mitigate all these downsides, but may be an
inappropriate approximation in some cases. Since the Sobel
operator’s posterior is approximately Gaussian (Figure 15), a
Gaussian approximation may be appropriate.

Evaluation We approximate the Sobel operator with Para-
keet, using 5000 examples for training and a separate 500
examples for evaluation. For each evaluation example we
compute the ground truth s(p) > 0.1 and then evaluate
this conditional using Uncertain〈T〉, which asks whether
Pr[s(p)> 0.1]> α for varying thresholds α .

Figure 16 shows the results of our evaluation. The x-axis
plots a range of conditional thresholds α and the y-axis plots
precision and recall for the evaluation data. Precision is the
probability that a detected edge is actually an edge, and so de-
scribes false positives. Recall is the probability that an actual
edge is detected, and so describes false negatives. Because
Parrot does not consider uncertainty, it locks developers into
a particular balance of precision and recall. In this example,
Parrot provides 100% recall, detecting all actual edges, but
only 64% precision, so 36% of reported edges are false pos-
itives. With a conditional threshold, developers select their
own balance. For example, a threshold of α = 0.8 (i.e., eval-
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Figure 16. Developers choose a balance between false posi-
tives and negatives with Parakeet using Uncertain〈T〉.

uating Pr[s(p) > 0.1] > 0.8) results in 71% recall and 99%
precision, meaning more false negatives (missed edges) but
fewer false positives. The ideal balance of false positives and
negatives depends on the particular application and is now in
the hands of the developer.

Summary Machine learning approximates functions and so
introduces uncertainty. Failing to consider uncertainty causes
uncertainty bugs; even though Parrot approximates the Sobel
operator with 3.4% average error, using this approximation in
a conditional results in a 36% false positive rate. Parakeet uses
Uncertain〈T〉, which encourages the developer to consider
the effect of uncertainty on machine learning predictions.
The results on Parakeet show that developers may easily con-
trol the balance between false positives and false negatives,
as appropriate for the application, using Uncertain〈T〉. Of
course, Uncertain〈T〉 is not a panacea for machine learning.
Our formulation leverages a probabilistic interpretation of
neural networks, which not all machine learning techniques
have, and only addresses generalization error.

These case studies highlight the need for a programming
language solution for uncertainty. Many systems view error in
a local scope, measuring its effect only on direct output, but as
all the case studies clearly illustrate, the effect of uncertainty
on programs is inevitably global. We cannot view estimation
processes such as GPS and machine learning in isolation.
Uncertain〈T〉 encourages developers to reason about how
local errors impact the entirety of their programs.

6. Related Work
This section relates our work to programming languages
with statistical semantics or that support solving statistical
problems. Because we use, rather than add to, the statistics
literature, prior sections cite this literature as appropriate.

Probabilistic Programming Prior work has focused on the
needs of experts. Probabilistic programming creates genera-
tive models of problems involving uncertainty by introducing
random variables into the syntax and semantics of a program-
ming language. Experts encode generative models which the
program queries through inference techniques. The founda-
tion of probabilistic programming is the monadic structure of

earthquake = Bernoulli(0.0001)
burglary = Bernoulli(0.001)
alarm = earthquake or burglary
if (earthquake)
phoneWorking = Bernoulli(0.7)

else
phoneWorking = Bernoulli(0.99)

observe(alarm) # If the alarm goes off...
query(phoneWorking) # ...does the phone still work?

Figure 17. A probabilistic program. To infer the probability
of phoneWorking requires exploring both branches [10].

probability distributions [14, 25], an elegant representation
of joint probability distributions (i.e., generative models) in
a functional language. Researchers have evolved this idea
into a variety of languages such as BUGS [13], Church [15],
Fun [6], and IBAL [24].

Figure 17 shows an example probabilistic program that
infers the likelihood that a phone is working given that an
alarm goes off. The program queries the posterior distribution
of the Bernoulli variable phoneWorking given the observa-
tion that alarm is true. To infer this distribution by sampling,
the runtime must repeatedly evaluate both branches. This
program illustrates a key shortcoming of many probabilistic
programming languages: inference is very expensive for poor
rejection rates. Since there is only a 0.11% chance of alarm
being true, most inference techniques will have high rejection
rates and so require many samples to sufficiently infer the
posterior distribution. Using Church [15], we measured 20
seconds to draw 100 samples from this model [7].

Uncertain〈T〉 is a probabilistic programming language,
since it manipulates random variables in a host language.
Unlike other probabilistic languages, Uncertain〈T〉 only ex-
ecutes one side of a conditional branch, and only reasons
about conditional distributions. For example, air temperature
depends on variables such as humidity, altitude, and pressure.
When programming with data from a temperature sensor, the
question is not whether temperature can ever be greater than
85◦ (which a joint distribution can answer), but rather whether
the current measurement from the sensor is greater than 85◦.
This measurement is inextricably conditioned on the current
humidity, altitude, and pressure, and so the conditional distri-
bution that Uncertain〈T〉 manipulates is appropriate. For pro-
grams consuming estimated data, problems are not abstract
but concrete instances and so the conditional distribution is
just as useful as the full joint distribution. Uncertain〈T〉 ex-
ploits this restriction to achieve efficiency and accessibility,
since these conditional distributions are specified by operator
overloading and evaluated with ancestral sampling.

Like the probability monad [25], Uncertain〈T〉 builds
and later queries a computation tree, but it adds continu-
ous distributions and a semantics for conditional expres-
sions that developers must implement manually using the
monad. Uncertain〈T〉 uses sampling functions in the same
fashion as Park et al. [23], but we add accessible and prin-
cipled conditional operators. Park et al. do not describe a
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mechanism for choosing how many samples to draw from
a sampling function; instead their query operations use a
fixed runtime-specified sample size. We exploit hypothesis
testing in conditional expressions to dynamically select the
appropriate sample size. Sankaranarayanan et al. [27] pro-
vide a static analysis for checking assertions in probabilistic
programs. Their estimateProbability assertion calcu-
lates the probability of a conditional expression involving
random variables being true. While their approach is super-
ficially similar to Uncertain〈T〉’s conditional expressions,
estimateProbability handles only simple random vari-
ables and linear arithmetic operations so that it can operate
without sampling. Uncertain〈T〉 addresses arbitrary random
variables and operations, and uses hypothesis testing to limit
the performance impact of sampling in a principled way.

Domain-Specific Approaches In robotics, CES [30] ex-
tends C++ to include probabilistic variables (e.g., prob<int>)
for simple distributions. Instances of prob<T> store a list of
pairs (x, p(x)) that map each possible value of the variable
to its probability. This representation restricts CES to simple
discrete distributions. Uncertain〈T〉 adopts CES’s idea of
encapsulating random variables in a generic type, but uses
a more robust representation for distributions and adds an
accessible semantics for conditional expressions.

In databases, Barbara et al. incorporate uncertainty and
estimation into the semantics of relational operators [1]. Ben-
jelloun et al. trace provenance back through probabilistic
queries [2], and Dalvi and Suciu describe a “possible worlds”
semantics for relational joins [11]. Hazy [18] asks develop-
ers to write Markov logic networks (sets of logic rules and
confidences) to interact with databases while managing un-
certainty. These probabilistic databases must build a model
of the entire joint posterior distribution of a query. In contrast,
Uncertain〈T〉 reasons only about conditional distributions.

Interval analysis represents an uncertain value as a simple
interval and propagates it through computations [19]. For
example, if X = [4,6], then X/2 = [2,3]. Interval analysis is
particularly suited to bounding floating point error in scien-
tific computation. The advantage of interval analysis is its
simplicity and efficiency, since many operations over real
numbers are trivial to define over intervals. The downside is
that intervals treat all random variables as having uniform
distributions, an assumption far too limiting for many appli-
cations. By using sampling functions, Uncertain〈T〉 achieves
the simplicity of interval analysis when defining operations,
but is more broadly applicable.

In approximate computing, EnerJ [26] uses the type sys-
tem to separate exact from approximate data and govern how
they interact. This type system encourages developers to rea-
son about approximate data in their program. Uncertain〈T〉
builds on this idea with a semantics for the quantitative impact
of uncertainty on data. Rely is a programming language that
statically reasons about the quantitative error of a program
executing on unreliable hardware [9]. Developers use Rely to

express assertions about the accuracy of their code’s output,
and the Rely analyzer statically verifies whether these asser-
tions could be breached based on a specification of unreliable
hardware failures. In contrast to Uncertain〈T〉, Rely does not
address applications that compute with random variables and
does not reason dynamically about the error in a particular
instance of uncertain data.

7. Conclusion
Emerging applications solve increasingly ambitious and am-
biguous problems on data from tiny smartphone sensors, huge
distributed databases, the web, and simulations. Although
practitioners in other sciences have principled ways to make
decisions under uncertainty, only recently have programming
languages begun to assist developers with this task. Because
prior solutions are either too simple to aid correctness or too
complex for most developers to use, many developers create
bugs by ignoring uncertainty completely.

This paper presents a new abstraction and shows how it
helps developers to correctly operate on and reason with
uncertain data. We describe its syntax and probabilistic se-
mantics, emphasizing simplicity for non-experts while en-
couraging developers to consider the effects of random error.
Our semantics for conditional expressions helps developers
to understand and control false positives and false negatives.
We present implementation strategies that use sampling and
hypothesis testing to realize our goals efficiently. Compared
to probabilistic programming, Uncertain〈T〉 gains substan-
tial efficiency through goal-specific sampling. Our three case
studies show that Uncertain〈T〉 improves application correct-
ness in practice without burdening developers.

Future directions for Uncertain〈T〉 include runtime and
compiler optimizations that exploit statistical knowledge;
exploring accuracy, efficiency, and expressiveness for more
substantial applications; and improving correctness with
models of common phenomena, such as physics, calendar,
and history in uncertain data libraries.

Uncertainty is not a vice to abstract away, but many appli-
cations and libraries try to avoid its complexity. Uncertain〈T〉
embraces uncertainty while recognizing that most develop-
ers are not statistics experts. Our research experience with
Uncertain〈T〉 suggests that it has the potential to change how
developers think about and solve the growing variety of prob-
lems that involve uncertainty.
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