
Mementos: System Support for Long-Running
Computation on RFID-Scale Devices

Benjamin Ransford
Department of Computer Science

University of Massachusetts Amherst
ransford@cs.umass.edu

Jacob Sorber
Institute for Security, Technology, and Society

Dartmouth College
jacob.m.sorber@dartmouth.edu

Kevin Fu
Department of Computer Science

University of Massachusetts Amherst
kevinfu@cs.umass.edu

Abstract
Transiently powered computing devices such as RFID tags, kinetic
energy harvesters, and smart cards typically rely on programs that
complete a task under tight time constraints before energy starva-
tion leads to complete loss of volatile memory. Mementos is a soft-
ware system that transforms general-purpose programs into inter-
ruptible computations that are protected from frequent power losses
by automatic, energy-aware state checkpointing. Mementos com-
prises a collection of optimization passes for the LLVM compiler
infrastructure and a linkable library that exercises hardware support
for energy measurement while managing state checkpoints stored
in nonvolatile memory. We evaluate Mementos against diverse test
cases in a trace-driven simulator of transiently powered RFID-scale
devices. Although Mementos’s energy checks increase run time
when energy is plentiful, they allow Mementos to safely suspend
execution when energy dwindles, effectively spreading computa-
tion across zero or more power failures. This paper’s contributions
are: a study of the runtime environment for programs on RFID-
scale devices; an energy-aware state checkpointing system for these
devices that is implemented for the MSP430 family of microcon-
trollers; and a trace-driven simulator of transiently powered RFID-
scale devices.

Categories and Subject Descriptors C.3 [SPECIAL-PURPOSE
AND APPLICATION-BASED SYSTEMS]: Real-time and embed-
ded systems

General Terms Design, Experimentation

Keywords Mementos, RFID-Scale Devices, Computational RFID,
Energy-Aware Checkpointing

1. Introduction
Demand for tiny, easily deployable computers has driven the devel-
opment of general-purpose transiently powered computers that lack
both batteries and wired power, operating exclusively on energy
harvested from remote supplies or the environment. Such devices
range from computational RFIDs [36]—microcontroller-based de-
vices that harvest RF from readers and communicate via RFID
protocols—to general-purpose batteryless sensor devices [45].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0266-1/11/03. . . $10.00

Computing under transient power conditions is a challenge.
Transiently powered RFID tags use simple state machines instead
of supporting general-purpose computation. Contactless smart
cards perform more complicated special-purpose computations
(e.g. cardholder authentication); however, they offer no execution
guarantees, and instead rely on the user to provide the needed
RF power for a sufficient period of time. When energy consump-
tion outpaces energy harvesting, these computations fail and must
restart from scratch, when adequate energy becomes available.

With ultra-low-power microcontrollers (MCUs), tiny programm-
able devices can perform computation and sensing under RFID-
scale energy constraints; however, these MCUs consume more
power than conventional RFID circuitry, and energy consumption
can easily outpace harvesting, resulting in frequent power loss.

Today, programs that run CPU-intensive operations like cryp-
tography on these devices are pessimistically and painstakingly
hand-tuned to complete within a short time window (often under
100 ms) [7, 9]. The usefulness and power of RFID-scale devices
can be dramatically improved if designers can confidently write
programs without being limited by power failures.

Mementos is a software system that enables long-running com-
putations to span power loss events by combining compile-time in-
strumentation and run-time energy-aware state checkpointing 1. At
compile time, Mementos inserts function calls that estimate avail-
able energy. At run time, Mementos predicts power losses and,
when appropriate, saves program state to nonvolatile memory. Af-
ter a failure, program state is restored and execution continues
rather than restarting from scratch.

This paper makes the following contributions: (1) An energy-
aware state checkpointing system that splits program execution
across multiple lifecycles on transiently powered RFID-scale de-
vices. The system is implemented for the MSP430 family of mi-
crocontrollers, requires no hardware modifications to existing de-
vices, and operates automatically at run time without user interven-
tion. (2) A suite of compile-time optimization passes that insert en-
ergy checks at control points in a program. The optimization passes
employ three different instrumentation strategies that favor differ-
ent program structures. (3) A trace-driven simulator to evaluate the
behavior of programs on transiently powered RFID-scale devices.
The simulator, modeled after a prototype hardware device with an
off-the-shelf microcontroller, takes executable code as input and
simulates power loss events during runs. We evaluate the simula-
tor’s accuracy and Mementos’s performance under simulation in
Section 5.

1 In the indie film Memento, the main character would unpredictably lose
short-term memory, especially when sleeping. He checkpointed state with
notes and tattoos in an attempt to execute long-running tasks.

159

0 50 100 150 200 250

0
2

4

Time (ms)

Vo
lt

ag
e

(V
)

0 100 200 300 400

0
2

4

Time (ms)
0 50 100 200 300

0
2

4

Time (ms)

Figure 1. Energy availability under RF harvesting is difficult to predict on a transiently powered computer (TPC), threatening the successful
completion of long-running programs. These plots show the output of a prototype TPC’s energy-harvesting frontend during three different
smooth movements within 2 m of an RFID reader. The dashed line at 2.2 V represents this prototype’s nominal minimum voltage for flash
writes. The solid line at 1.8 V depicts the prototype’s nominal minimum operating voltage, below which it loses volatile state.

The compile-time analysis and program transformation com-
ponents of Mementos are built on the LLVM compiler infrastruc-
ture [21]. Our simulation of a transiently powered device is imple-
mented as a set of enhancements to MSPsim [14] and is guided by
the hardware parameters of a WISP [39] (Revision 4.1) prototype
computational RFID.

Applications. Mementos enables long-running or computation-
ally intensive applications on RFID-scale devices. Moving com-
puting into environments that are ill-suited to batteries and teth-
ered power, promising applications include environmental monitor-
ing where battery replacement is not practical, insect-scale wildlife
tracking where batteries are too heavy, and implantable medical
devices [29] where battery recharging might heat and damage sur-
rounding tissue. Mementos aims to enable these new applications
by extending the computational capabilities of transiently powered
computers beyond simple programs.

An example of a long-running application that could benefit
from Mementos’s automatic checkpointing is compressive sens-
ing [8]. RFID-scale devices can measure environmental phenomena—
like temperature, acceleration, and light—that may exhibit infor-
mative trends over time spans larger than a few seconds. Compres-
sive sensing maintains a set of frequently updated variables that
collectively represent a sparse, compressible signal, preserving the
structure and information of the signal with high probability. By
providing automatic state checkpointing, Mementos would enable
a compressive sensing program to accumulate measurements over
many lifecycles separated by power loss events. Section 5 includes
an evaluation of Mementos on a simplified sensing application that
cannot complete under reasonable assumptions in a single lifecycle
of our trace-driven simulator or the platform it models.

2. Computing on Transient Power
Multiple platforms at various stages of maturity enable battery-
less, RFID-scale, transiently powered computing. The WISP [39]
uses an MSP430 microcontroller [43] for computation and har-
vests energy from off-the-shelf RFID readers. A system-on-chip
variant, the SoCWISP [46], is small (2.0 mm2) and light enough
to attach to insects in flight. The Blue Devil WISP [44] improves
performance for RF harvesting and communication. The UMass
WISP under development provides increased storage and supports
more peripherals (http://www.cs.umass.edu/~zhangh/). The
EnHANTs [16] platform under development aims to behave like an
RFID tag and a sensor mote. All share the goal of enabling sensing
and general-purpose computation under transient power.

Previously proposed applications for transiently powered com-
puters include environmental monitoring [17], activity recogni-
tion [6], and cryptographic protocols [9]. Mote-class devices (e.g.
Telos [35], TinyNode [12]) offer similar capabilities and can also be

used in these applications, but their size, weight, and maintenance
cost (i.e., dependence on batteries) significantly limits their deploy-
ability. Transiently powered devices potentially provide the bene-
fits of programmability and general-purpose computing without the
drawbacks associated with more powerful mote-class devices.

Despite their benefits, designing and deploying these systems is
challenging. By definition, these systems cannot depend on contin-
uous power. Figure 1 illustrates typical fluctuations in supply volt-
age that occur under RF energy harvesting. Prototype systems like
the WISP use capacitors as short-term energy buffers. For a sense
of scale, consider that a WISP’s 10 μF capacitor can store roughly
100 μJ, whereas a Telos sensor mote’s two AA batteries can store
over 20,000 J—eight orders of magnitude more.

The amount of energy harvested from RF, solar, and other
sources varies widely and is difficult to predict [31, 47]—a prob-
lem often compounded by device mobility. Consequently, unlike
traditional computing systems, transiently powered systems fre-
quently lose power and computational state as a rule, not as a rare
exception. Experience with the WISP has shown that power fail-
ures every ∼100 ms are a reasonable expectation [9, 36]. Existing
lightweight operating systems like TinyOS [22] boot too slowly—
in an informal test, TinyOS on a TinyNode booted in 253 ms, and
193 ms without clock calibration—to provide robustness via OS
services on an RFID-scale device. Under these conditions, long-
running programs may never complete, as they restart their work
after each failure. In the context of transiently powered devices, we
refer to such long-running programs as Sisyphean tasks.2

A key to solving the problem of Sisyphean tasks on RFID-scale
devices is that many general-purpose microcontrollers, notably the
MSP430 found on WISP-derived devices, feature nonvolatile mem-
ory that can be written to at run time. The most common form of
on-chip nonvolatile memory is flash memory, typically available on
prototype RFID-scale devices in the amount of several kilobytes.
Four complications make it nontrivial to use flash memory for
checkpoint storage. First, even small flash memories are coarsely
divided into segments, 512 bytes each on the MSP430. Each seg-
ment must be erased all at once, and erasing a segment requires
energy comparable to filling the entire segment with data. Second,
flash memories have a one-way property: once a bit is set to 0, the
only way to set it back to 1 is to erase the entire segment that con-
tains it. Third, flash reads are nearly as fast as volatile RAM reads,
but flash writes are two orders of magnitude slower (and corre-
spondingly more energy intensive) than RAM writes. Fourth, many
microcontrollers use flash memory for program storage, which lim-
its the amount of nonvolatile storage available for other purposes.

2 In Greek mythology, Sisyphus was the first king of Corinth and a conniv-
ing malefactor. His punishment in Tartarus was forever to repeat the task of
rolling a boulder to the top of a hill only to have it roll back to the bottom.

160

3. Design of Mementos
The key observation motivating the design of Mementos is that it
is difficult to predict the behavior of energy harvesting on a tran-
siently powered RFID-scale computer. For example, devices that
harvest energy from RFID readers are subject to fluctuations in
voltage (Figure 1) that are highly dependent on the operating en-
vironment and the device’s physical orientation. With the advent
of programmable, general-purpose transiently powered computing
comes a need for general-purpose power failure recovery mech-
anisms. Without general-purpose mechanisms, programs on these
devices must either finish quickly—not always an option—or in-
clude potentially complicated application-specific logic to manage
their own computational state. Mementos aims to remove both of
these obstacles.

Mementos has two parts: a set of program transformation passes
that insert energy-measurement code at control points in a pro-
gram, and a compact library that provides state checkpointing and
recovery functions. Mementos can be integrated into a project’s
build system via standard means (e.g. a Makefile). Following are
Mementos’s high-level design goals and guiding design princi-
ples. Given the constraints of RFID-scale devices, we consider the
goals of minimizing overhead and maximizing efficiency to be self-
evident. Section 5 evaluates Mementos against our design goal.

Goal: Split programs across multiple lifecycles. Mementos
must, at run time, automatically suspend and resume programs
without user intervention. This program splitting aims to expand
the range of applications suitable for RFID-scale devices.

Principle #1: Run on existing hardware. Mementos requires no
special hardware support other than the ability to measure the volt-
age of the platform’s energy buffer. Circuitry for voltage measure-
ment is common on computing devices that operate on finite energy
supplies (e.g. batteries).

Principle #2: Reason minimally about energy at compile time,
maximally at run time. Past work has demonstrated that even ex-
pert programmers cannot be trusted to reason correctly about en-
ergy [40]. Reasoning about run-time energy availability at com-
pile time may be impossible because of inconsistent harvesting and
limited computation available for prediction. Mementos estimates
available energy at run time and inserts energy checks at compile
time, obviating the need for complex logic to deal with changing
energy conditions.

3.1 Compile-Time Instrumentation

Mementos modifies programs in two ways at compile time. First,
it places trigger points—calls to a Mementos library function that
estimates available energy—at control points in the program. Sec-
ond, it wraps the program’s main() function with code that restores
execution from an available checkpoint.

To suspend execution in time for a checkpoint to complete, Me-
mentos should insert enough energy measurements at compile time
so that run-time energy trends are effectively sampled; however, it
should not insert so many that measurement cost predominates over
execution. To satisfy our goal of supporting a wider range of ap-
plications, Mementos must also be compatible with programs that
are structured in different ways. To these ends, Mementos offers
three different instrumentation strategies that enable it to instru-
ment common structures—loops and function calls. In loop-latch
mode, Mementos places a trigger point at each loop latch (the back-
edge from the bottom to the top of a loop), resulting in an energy
check for each iteration of each loop in the program. In function-
return mode, Mementos places a trigger point after each call in-
struction, resulting in an energy check each time a function returns.
In timer-aided mode, which is designed to reduce the frequency of
energy-intensive checkpointing operations, Mementos adds to ei-
ther the loop-latch or function-return mode a hardware timer inter-

rupt that raises a flag at predetermined intervals. Each trigger point
then checks the flag and proceeds with an energy check only if the
flag is up. The flag is lowered again for the next trigger point.

Besides offering three strategies for automatic trigger-point
placement, Mementos supports application-specific customization
by providing a simple API. A programmer can opt not to run any of
Mementos’s instrumentation passes and instead insert trigger points
manually, simply by including a header file and placing function
calls in the program. She can similarly insert her own calls to Me-
mentos functions to skip energy checks and force checkpointing.

3.2 Run-Time Energy Estimation

At run time, Mementos estimates the energy remaining in the de-
vice’s energy buffer by measuring its voltage. Microcontrollers
suitable for RFID-scale devices typically have on-chip analog-to-
digital converters (ADCs) that sample voltage as a proxy for any
number of environmental phenomena (e.g. temperature and physi-
cal orientation); Mementos simply makes use of this subsystem.

For an ideal capacitor, the amount of energy it presently con-
tains (E) is determined by the capacitor’s present voltage (V) and
its fixed capacitance (C), via the following equation: E = CV 2/2.
However, since calculating energy from voltage may require com-
putationally intensive operations such as squaring or floating-point
arithmetic, Mementos uses the ADC’s voltage measurement di-
rectly when making checkpointing decisions: it compares the mea-
sured voltage to a checkpoint threshold voltage (Vthresh). Above this
voltage, Mementos assumes that it does not need to write a state
checkpoint. It interprets a voltage below the threshold as indicating
that power failure is imminent and begins checkpointing state.

Ideally, program state should be saved at the last practicable
opportunity before a power failure in order to minimize unsaved
computation. However, unpredictable energy harvesting and the
variations in the cost of saving checkpoints make perfect failure
prediction infeasible.

Mementos predicts future power failures conservatively by as-
suming that no energy will be harvested between the trigger point
and a power failure. Worst-case run times can be calculated as fol-
lows. The charge on a capacitor is Q =CV . Under a constant cur-
rent draw I, the charge decreases as dQ

dt = I, and the time between
two voltage levels Vmax and Vmin is Δt = C(Vmax −Vmin)/I. If, for
example, an MSP430 draws 238 μA in active mode, fails to write
to flash below 2.2 V, and needs 17.5 ms to write a 200-byte check-
point, Mementos should start checkpointing at the latest when sup-
ply voltage falls to 2.62 V. However, two factors complicate the task
of checkpointing at the last moment: checkpoint sizes and times
may vary at run time depending on stack depth; and Mementos’s
ability to precisely time a checkpoint depends on the frequency of
trigger points. Section 4 describes the mechanisms that help a pro-
grammer choose a reasonable checkpoint threshold voltage above
the lower bound.

Because it may suffer power loss during a checkpointing oper-
ation, Mementos exhibits defensive behavior that ensures correct-
ness at a cost of time—i.e., its precautions err on the conservative
side and may increase the amount of redundant computation during
a complete execution. Mementos’s first precaution is that it writes
checkpoints head first and tail last: the first word of data it writes to
nonvolatile memory contains enough length information for a com-
plete checkpoint to be reconstructed and an incomplete checkpoint
to be detected; the last word it writes is the magic number that ends
every valid checkpoint. Second, if Mementos detects an incomplete
checkpoint during recovery or next-checkpoint location, it refuses
to write any more information to the containing segment of non-
volatile memory and marks the segment for deletion. Mementos
erases such marked segments immediately after boot when avail-
able energy is guaranteed to be above a predefined threshold.

161

Loop test

Loop latch

Booted from a
checkpoint Cp?

Fast-forward to end of
Cp, then skip over any

partial checkpoints,
marking full segments

for erasure

Mementos
Trigger point

Erase any segments
marked for erasure

Stride through flash
segments A then B
looking for space,

marking full segments
for erasure

Voltage ≤ Vthresh?

Write header

Write registers

Write stack

Write globals

Write magic number

Loop body

Yes

No

Yes

(b) Locate next checkpoint (c) Write checkpoint(a) Trigger point

Figure 2. Overview of run-time checkpointing in Mementos. This diagram depicts the loop-latch mode in which Mementos instruments
loop back-edges with energy checks that conditionally trigger checkpointing.

3.3 Run-Time Checkpointing

Mementos links trigger-point instrumented programs with a run-
time checkpointing library. When a trigger point initiates a check-
point, Mementos copies relevant program state to nonvolatile mem-
ory along with meta-information (Figure 2). After a power failure,
Mementos searches for a restorable checkpoint and, if it finds one,
copies the stored state into RAM and resumes execution.

Checkpointing on RFID-scale devices is more difficult than
checkpointing on more powerful platforms. With no operating sys-
tem, Mementos must be linked into a deployed program. Memen-
tos shares all of the program’s resources and must perform in-place
checkpointing to capture the state of the program as it was imme-
diately before entering the trigger point. Additionally, the limita-
tions of flash memory (discussed in Section 2 and below) compli-
cate checkpoint management.

In-place checkpointing. Most checkpointing systems are de-
signed to run on multiprogrammed operating systems (e.g. the MPI
checkpointing of Bronevetsky et al. [3]) or in hardware environ-
ments that support the issuance of commands by other devices (e.g.
the sensornet checkpointing of Österlind et al. [30]). Mementos
runs on RFID-scale devices without resources to run conventional
operating systems and may have no electrical connection to their
environs. It interacts with its host program via function calls and
shares the program’s address space, stack, registers, and globals.

Flash writes are slow and energy intensive relative to volatile
memory writes, so instead of blindly copying the entire contents
of RAM in each checkpoint, Mementos captures only the regions
of RAM that are in use at the time the trigger point is called.
These comprise the stack, whose depth can be calculated via the
stack pointer; the global variables, captured by Mementos in an
analysis pass at compile time; and the register file, which includes
the stack pointer, program counter, and a status register. Mementos
does not capture the program’s executable code because this code
is typically already stored in nonvolatile memory.

Keeping with a convention generally followed by programs tar-
geting memory-limited mote-class devices, none of our test cases
allocates memory dynamically. This allows our implementation of
Mementos to sidestep the problem of checkpointing a fragmented
heap by not checkpointing the heap at all; we note instead that the
feasibility of efficient heap checkpointing depends on the quality of
the dynamic memory allocator and its internal state at the time of
checkpointing. setjmp and longjmp operations are unsupported
for similar reasons; exception-style control flow is not typically
used in embedded software. Notably, the Embedded C++ standard
lacks support for exceptions [34]. However, Mementos is compat-
ible with interrupt service routines (ISRs) that behave like normal
function calls, as they do on MSP430. Finally, Mementos does not

currently provide special support for reentrant code or threading
libraries; its checkpointing operation is non-reentrant.

At checkpoint time, Mementos first pushes all of the registers
onto the stack; registers tend to change during program execution.
(On the MSP430, the register file includes the status register R2;
Mementos takes minor precautions to avoid affecting this register’s
value before saving it.) It stores the value of the stack pointer,
adjusted for the function call that initiated the checkpoint, and sets
the stored value of the program counter to the return address from
the checkpoint function’s own stack frame. It then finds space for a
new checkpoint (details below), and writes at the beginning of the
free space a checkpoint size header that includes the adjusted stack
depth. Mementos then writes the saved registers, stack, and globals
to flash. Finally, it writes a magic number to indicate the end of the
checkpoint. The location of the magic number is trivial to calculate
from the size header, allowing Mementos to detect incomplete
checkpoints that are due to power failures during checkpointing.

At boot, Mementos searches for an active checkpoint (details
below), then copies its contents into RAM. As when checkpointing,
it must copy carefully so that it restores the saved state rather than
a mixture of the saved state and its own state. For example, on the
MSP430 architecture, it restores the register file in descending nu-
meric order, leaving the stack pointer (R1) and the program counter
(R0) for last. Restoring the program counter from the checkpoint
implicitly transfers control to the program where it left off.

Idempotent actions. Some code cannot be re-executed safely.
For example, an RFID-scale device may contain an actuator that
toggles a property of another device. To enable programmers to
work with non-idempotent code, Mementos allows programmers
to selectively disable instrumentation on a per-loop or per-function
basis. Appending the token _mnotp (mnemonic: “Mementos, no
trigger points!”) to any function’s name causes Mementos to skip
the function, i.e., not instrument its loops or a return from it.
A programmer can disable instrumentation even for inline func-
tions, which means she can direct Mementos to ignore any piece
of code she wishes. We implemented an optional additional pass
that emits compile-time warnings upon encountering possibly non-
idempotent actions such as volatile writes—e.g. a write to a mem-
ory address that is mapped to a hardware output pin. The warning
messages suggest points at which the programmer might profitably
disable checkpointing.

Checkpoint management. Unlike prior systems that rely on
OS facilities to simply dump process memory to a file system (e.g.
libckpt [33]), Mementos must manage its own checkpoint storage.
Its strategy approximates a circular buffer, but the characteristics of
flash memory require special care.

Mementos is designed to facilitate the execution of programs
from beginning to end; as a result, once a checkpoint is success-

162

fully written to nonvolatile memory, all previous checkpoints are
superseded. Mementos maintains at most one active checkpoint at
any given time. At boot or when searching for free space, Memen-
tos uses a simple active-checkpoint search algorithm: it walks a
reserved region of flash memory, skipping over sequentially stored
valid checkpoints (those that end with correct magic numbers) and
stopping when it discovers a valid checkpoint that is followed by a
byte in the erase state (0xFF for flash).

Flash is erasable only segment-by-segment. To erase old or in-
valid checkpoints without destroying active checkpoints, Memen-
tos reserves two segments of flash memory to checkpoint storage.
When a checkpoint is completely written to one of these segments,
it supersedes all checkpoints stored in the other, and Mementos
marks the other segment erasable by zeroing its first word—an op-
eration that can be reversed in flash only by erasing a whole seg-
ment. Mementos erases segments marked erasable at two times: at
boot, when energy is likely to be plentiful, and when it cannot find
space for a new checkpoint in either segment (i.e., when one seg-
ment is marked for erasure and the other is full of checkpoints).

Energy polling versus interrupts. A natural question is why
Mementos polls the hardware energy supply instead of waiting for
an interrupt to occur when voltage falls below a threshold. Voltage
supervisors are common circuit components, but most—crucially,
including existing prototype RFID-scale devices—do not feature
an adjustable threshold voltage. Mementos is designed to work on
existing devices without design modifications, so it polls for supply
voltage. However, if such a device featured an adjustable or multi-
level voltage supervisor, Mementos could avoid polling and simply
associate itself with the appropriate interrupt(s). The checkpointing
routine is designed to be called as a subroutine and works equally
well as an interrupt handler (which is how the checkpointing oracle
described in Section 5 works).

4. Implementation
Mementos formulates its program transformations as LLVM [21]
optimization passes. These passes operate on intermediate LLVM
bitcode before LLVM’s MSP430 backend generates target-specific
assembly. They are implemented in C++ and comprise a total of
601 lines of code including whitespace, comments and header files.
Mementos’s run-time library comprises an additional 761 lines of
C and inline MSP430 assembly.

We provide a build harness that instruments an existing C pro-
gram with Mementos and builds multiple MSP430 ELF executa-
bles per input program: one version for each of Mementos’s three
instrumentation strategies and an uninstrumented version for com-
parison. A script repeatedly calls the build harness with differ-
ent parameters, varying the checkpointing voltage threshold Vthresh
and, when applicable, the timer interval used for timer-aided check-
pointing. Finally, another script allows a programmer to compare
the performance of all the variants in a simulator. Section 5 details
our use of this simulator for evaluation.

Implementation tradeoffs. Instrumenting programs at the level
of LLVM’s intermediate representation allows Mementos to use
simple, target-agnostic transformations, but it limits Mementos’s
visibility into later compilation stages. In particular, Mementos’s
LLVM passes do not have access to the results of code genera-
tion, so they cannot, for example, leverage empirically measured
instruction-energy estimates [36]. We originally considered static
analysis to count post–code-generation instructions and simply tag
basic blocks with energy estimates, but that simple approach proved
inadequate because of the complexity of calculating at run time the
amount of work remaining until program completion; such calcu-
lations necessarily occur at trigger points, which may be frequent.

5. Evaluation
This section evaluates Mementos’s ability to correctly and effi-
ciently preserve computational state across frequent power fail-
ures. To simulate the energy conditions a deployed device might
face, we feed voltage traces from a hardware prototype’s analog
energy-harvesting frontend into a trace-driven, cycle-accurate sim-
ulation of an RFID-scale device. We consider three distinct work-
loads that exercise different computational resources found on pro-
totype RFID-scale devices: computation, sensing, and storage. We
evaluate executions of these workloads with each of Mementos’s
instrumentation strategies and compare the results to baseline mea-
surements taken against predictable energy conditions and unin-
strumented programs. Finally, we offer the results of running Me-
mentos on hardware instances of the model we simulate.

5.1 Mementos in Simulation

Mementos is designed with RFID-scale devices in mind, so we de-
veloped a flexible, trace-driven testbed featuring a simulated mi-
crocontroller (MCU) and energy supply modeling those found on
a hardware device (a prototype WISP [39], revision 4.1). While
the WISP supports interactive debugging via a standard JTAG in-
terface, the simulator adds several key features: the ability to per-
form repeatable experiments against recorded traces of RF energy
harvesting; the ability to vary hardware parameters (e.g. available
memory) to overcome limitations of the prototype device; and the
ability to obtain exact profiling information such as cycle counts.
We therefore primarily present results obtained in simulation.

We augmented MSPsim [14], a cycle-accurate MSP430 simula-
tor that accepts MSP430 ELF binaries, with a simulated capacitor
of our design that obeys the basic capacitor equations for charging
and discharging.3 The simulated capacitor halts execution when-
ever its voltage falls below the MCU’s nominal minimum operating
level and resets the MCU when the voltage returns to an operable
level after a power failure. We also added to MSPsim a notion of
electrical current, which governs the speed at which a capacitor’s
energy is depleted, and associated each of the simulated MCU’s
operating modes (active mode, flash write, analog-to-digital con-
version, and five low-power modes) with current values measured
from a hardware WISP. We made other minor changes to MSP-
sim to simulate power failures (e.g. preserving nonvolatile memory
contents across resets).

Our simulator optionally accepts a voltage trace that governs en-
ergy availability over time. On a physical RF-harvesting device that
buffers energy in a capacitor, such as a WISP, the capacitor’s volt-
age increases when the analog frontend gathers energy from an os-
cillating radio wave and sends charge through a diode; the voltage
decreases as a factor of both time (via leakage) and current draw
(via circuit usage). To capture voltage traces from real hardware,
we isolated a WISP’s RF-harvesting analog frontend, attached it
to a ∼ 10 KΩ resistor that approximated the electrical load of the
WISP’s microcontroller during active computation, and recorded
ten traces of voltage across the resistor (sequences of time, volt-
age pairs) corresponding to ten different patterns of motion near an
RFID reader. Figure 1 shows several of these traces.

As for the simulated capacitor, we tested it under the simula-
tor’s suite of simulated electrical currents (drawn from our mea-
surements of a real MSP430 in its various modes) and confirmed
that its decay time under each regime was accurate to within 5 ms.
Figure 3 compares the voltage trends exhibited by both a hardware
WISP and our simulated WISP after each was charged to 4.5 V
and allowed to discharge to 2.2 V (the voltage threshold for flash
writes) while executing an infinite loop in active mode.

3 We refer the reader to Horowitz and Hill [18] for a detailed discussion of
capacitor behavior.

163

0 20 40 60 80

0
1

2
3

4
5

Time (milliseconds)

V
ol

ta
ge

 (
V

)

WISP
Simulator

Figure 3. Simulated capacitor’s voltage approximates the dis-
charge time and voltage drop of a hardware WISP’s capacitor. Both
were charged to 4.5 V and allowed to discharge while executing an
infinite loop at 1 MHz in active mode. Both traces end at 2.2 V, the
nominal minimum voltage for flash writes on an MSP430.

The WISP and our simulator are instantiations of the same
model: both are transiently powered computational platforms. We
tuned the simulator according to empirical measurements of WISP
devices, including current consumption in every power mode and
the timing and current consumption of flash and ADC operations.
However, the only properties of the simulator that bear directly
on our design goal of spreading program execution across multi-
ple lifecycles are: (1) our simulations of the hardware peripherals
Mementos employs—ADC and flash memory—must incur realis-
tic time and energy costs (Section 5.1.2), and (2) the time and en-
ergy available between Mementos’s checkpointing threshold Vthresh
and the power cutoff threshold must be realistic (Section 5.1.3).

WISP property Simulator mechanism
MSP430 MCU MSPsim fully supports MSP430 ISA
RF harvesting Sim. accepts voltage trace recorded on

hardware WISP’s analog frontend
Low-power modes Sim. obeys low-power setting, changes

simulated MCU’s current consumption
Electrical current Tracks (power mode, voltage) → current

mapping measured empirically
Dynamic power Sim. capacitor obeys capacitor equation

for discharging under load
Quiescent power Sim. capacitor obeys exponential decay

equation
Flash, ADC Simulated current tracks empirical time

and current measurements
Radio (Not simulated)

Table 1. Mapping of WISP hardware properties to simulator
mechanisms.

Table 1 maps simulation mechanisms to the hardware features
they simulate. The simulator does not simulate the cost of using
radio for two reasons: (1) the device being simulated has no ac-
tive radio, instead using backscatter to reflect radio waves; and (2)
backscatter modulation operates on the same radio waves that pro-
vide energy, making communication effectively free on backscat-
tering devices. The simulator also makes no attempt to account for
environmental parameters such as temperature because the varia-
tions they induce are typically small.

5.1.1 Test cases

Our evaluation of Mementos considers three test cases representing
common tasks for low-power embedded systems.

The rsa64 test case uses iterative left-to-right modular expo-
nentiation of multiple-precision integers to encrypt a 64-bit mes-
sage under a 64-bit public key and 17-bit exponent. (Larger sizes

cause the computation to exceed the RAM capacity of a WISP.) The
program’s data segment comprises 124 bytes of globals. Mementos
instruments 24 loop latches in loop-latch mode and 51 call sites in
function-return mode, in both cases primarily inside the multiple-
precision integer library underlying the RSA implementation.

The sense test case takes 64 consecutive ADC samples of a
simulated accelerometer and computes the minimum, maximum,
mean, and standard deviation of the samples, then stores these
statistics to nonvolatile memory. Such computations are common
in sensing applications that sample environmental phenomena. The
program stores raw sensor readings in a 128-byte global in RAM.
Mementos instruments three loop latches in loop-latch mode and
four call sites in function-return mode.

The crc test case, drawn directly from WISP firmware, com-
putes a CRC16–CCITT checksum over a 2 KB region of on-chip
flash memory. The WISP firmware computes CRC checksums to
send along with responses to an RFID reader. CRC also provides a
mechanism for data-integrity checks; we imagine such a check be-
ing important for future in-place firmware updates on RFID-scale
devices. The program comprises a tight CRC nested loop and an
outer loop that repeatedly calls the CRC function; Mementos in-
struments three loop latches in loop-latch mode and two call sites
in function-return mode. Because the CRC loop is tight, we use the
crc test case to evaluate the _mnotp mechanism for selectively dis-
abling checkpoints (Section 3), reducing the number of loop latches
instrumented to one.

A testbed provided with Mementos compiles each test case
against a variety of Mementos configurations, varying by instru-
mentation strategy and static checkpoint threshold voltage Vthresh.
It runs each variant against two modes of the simulator: trace-
driven mode and decay-only mode. In trace-driven mode, a volt-
age trace from real hardware governs simulated energy availabil-
ity. In decay-only mode, the simulated capacitor’s voltage begins
at a fixed value and strictly decreases with time and use; it starts
at the same voltage in subsequent lifecycles. In both modes, trig-
ger points induce checkpointing below Vthresh and simulated power
loss occurs at the platform’s nominal minimum voltage for flash
writes (2.2 V). Finally, the simulator collects baseline measure-
ments by running each variant without instrumentation, then with-
out energy constraints, and finally in an “oracle” mode that predicts
power losses and checkpoints at the last practicable opportunity
(Section 5.1.2).

5.1.2 Baselines and Metrics for Comparison

Programs instrumented with Mementos differ in several key ways
from their uninstrumented counterparts. First, they include addi-
tional code that provides checkpointing and restoration mecha-
nisms. This extra code endows programs with robustness proper-
ties at a cost of storage space and available cycles at run time.
Second, they can execute over multiple device lifecycles instead of
restarting from the beginning with each failure. Third, they exhibit
different behavior under different energy conditions; checkpoint
sizes vary with stack size, and the point at which checkpointing
begins varies with supply voltage. With these differences in mind,
we adopt the metrics shown in Table 2.

A natural question is what is the smallest number of CPU cy-
cles in which a program can complete? To determine the minimum
number of CPU cycles required to execute each test case variant,
we consider a scenario in which the simulated capacitor’s voltage
is held in the CPU’s normal operating range. Under these circum-
stances, Mementos’s voltage checks never trigger checkpointing
and the program completes in a single lifecycle. It is easy to see
that, for a given program, its run time against unlimited energy is
a lower bound on its run time against any energy scenario. Table 3
gives results for all three test cases. For the instrumented variants,

164

Metric Description
Lifecycles The number of reboots (including initial

boot) required to complete the program
Total cycle count The number of CPU cycles required to

complete the program over all lifecycles
Mementos cycles Percentage of total cycle count spent in

Mementos code
Waste Percentage of total cycles that occurred

between the last checkpoint in a lifecycle
and the subsequent power loss

Table 2. Metrics for evaluation.

the program spends a nonzero number of cycles executing energy
checks at trigger points. The differences in percentage of cycles
spent in Mementos are due to the prevalence of different control-
flow structures in the test cases.

Instr. Type crc/% sense/% rsa64/%
Uninstr. 575,315/— 157,635/— 70,218/—
Loop latches 619,450/6.9 284,795/44.3 303,250/76.2
Fn. returns 577,702/0.2 201,151/21.9 214,177/66.5
Timer+latches 598,171/3.4 166,375/4.5 78,914/8.6

Table 3. Cycle counts (and percentage of cycles spent in Memen-
tos code) for three Mementos test cases under an unlimited-energy
scenario, i.e., voltage always above Vthresh. This table illustrates the
base cost of Mementos’s energy checks at run time.

Versus an Energy Oracle. Another natural question is what is
the minimum number of lifecycles over which a program’s execu-
tion can spread? If energy is scarce, lifecycles may occur infre-
quently and the difference between k and k+ 1 lifecycles may be
vast. To establish a baseline for evaluation, we implemented an or-
acle mode for the simulator. In oracle mode, the simulator accepts
an uninstrumented program that has been linked against Mementos.
It monitors the simulated capacitor’s voltage during the program’s
execution and, for each power lifecycle, initiates checkpointing at
the last practicable opportunity—i.e., when allowing the voltage to
fall any farther would result in an incomplete checkpoint. Given the
difficulty of predicting power loss events at run time (Section 3),
the simulator uses a binary search strategy to adjust its notion of
“last practicable” over repeated executions of each lifecycle.

Because programs executed in oracle mode are uninstrumented,
they contain no trigger points and no automatically inserted calls to
the checkpointing function. The build process splices Mementos’s
restoration code in front of the program’s original main() function
to enable boot-time restoration from saved checkpoints.

The oracle mode’s main benefit is establishing a lower bound on
the number of lifecycles and CPU cycles a program needs to com-
plete under a given energy condition, e.g. a trace in the simulator.
An ancillary benefit is that the oracle mode guides the implementer
in selecting a fixed voltage threshold Vthresh. As the simulator runs
in oracle mode, it reports the last practicable threshold voltage dis-
covered for each lifecycle. If the implementer can provide a repre-
sentative voltage trace to the simulator, then choosing a Vthresh suit-
able for the application is a matter of observing the oracle mode’s
reported cutoff voltages and choosing a slightly higher value.

Table 4 shows results obtained in oracle mode under variable
voltage (rather than the fixed high voltage of Table 3). The cycle
counts and lifecycle counts in the table should be considered lower
bounds on those metrics for instrumented versions.

Fixed overhead. Mementos adds space overhead in two ways:
by increasing code size and by reserving two flash segments (1 KB
total on the MSP430) for checkpoint storage. Without compiler
optimizations for code size, Mementos increases executable size

crc sense rsa64
Decay-only 621,501 (8) 197,215 (3) 70,886 (1)

Trace #1 685,555 (15) 308,986 (7) 179,626 (4)
#2 685,150 (15) 304,678 (6) 158,187 (3)
#3 685,801 (15) 308,724 (7) 219,970 (5)
#4 685,641 (15) 288,063 (6) 157,438 (3)
#5 685,096 (15) 840,594 (16) 153,181 (3)
#6 685,099 (15) 287,876 (6) 139,211 (3)
#7 683,884 (15) 287,573 (6) 180,195 (4)
#8 685,005 (15) 287,741 (6) 139,840 (3)
#9 685,608 (15) 287,422 (6) 157,613 (3)

#10 685,045 (15) 287,927 (6) 158,805 (3)

Table 4. Oracle-mode lower bounds [CPU cycles (lifecycles)] for
three test cases against ten voltage traces and decay-only mode.
For the crc test case, the mean proportion of cycles spent in
Mementos code was 24.5 ± 1.3%; for sense, 49.1 ± 11.0%; for
rsa64, 56.6±5.6%.

by a constant amount (just under 2.4 KB) plus 4 bytes per trigger
point. While a 2.4 KB increase in code size accounts for 30% of
the code memory on our prototype, the sibling chips used in newer
RFID-scale devices have much more code space (up to 116 KB)
and nearly identical energy characteristics.

We used an oscilloscope to precisely time flash and ADC op-
erations on a WISP prototype, then confirmed that the simulator
matched the measured values exactly. Each trigger point that uses
the ADC to check voltage consumes 647 clock cycles (647 μs at
1 MHz). Checkpoint operations consume 105 μs per 16-bit word
written, plus the aforementioned ADC cost for the trigger point,
plus several hundred cycles for bookkeeping (depending on the
number of currently stored checkpoints). When Mementos must
erase a flash segment, the erasure takes 13,062 μs. Matching these
timings with corresponding electrical current measurements gives
us confidence that the simulator’s behavior is accurate.

5.1.3 Performance and Overhead

Via experiments on our test cases in the simulator and on WISP
hardware, we find that Mementos satisfies the design goal of split-
ting program execution across multiple lifecycles with intervening
power losses.

For a given voltage trace and test case, the performance of Me-
mentos along all of our metrics depends on the compile-time choice
of voltage threshold Vthresh. There are natural bounds on practicable
values for this variable. From above, Vthresh is practically bounded
by the wakeup threshold Vw at which the platform boots after a
power failure. If Vthresh ≥Vw, Mementos will in the worst case be-
gin checkpointing the first time a trigger point is encountered. From
below, Vthresh is strictly bounded by the minimum flash-write volt-
age, but a higher application-specific threshold effectively lower-
bounds Vthresh because incomplete checkpoints are not restorable.

For an example of how the above bounds apply, consider the
crc test case and a particular voltage trace (#9). Uninstrumented,
the test case fails to complete against the trace because it cannot
sustain computation for long enough. According to the simulator’s
oracle mode (Table 4), the minimum number of lifecycles required
to run the test case to completion against trace #9 is 15. With
loop latches instrumented, the test case runs to completion in 17
or more lifecycles depending on the fixed voltage value Vthresh.
With function-return instrumentation, the test case fails to complete
against the trace: the computation’s work loop does not use function
calls to transfer control flow, so there are no function returns to
instrument until the main loop completes. With timer-controlled
loop-latch instrumentation, the test case fails to complete against

165

0 1000 2000 3000 4000 5000 6000

0
2

4

Time (ms)

Vo
lt

ag
e

(V
)

3820 3830 3840 3850 3860

0
2

4

Time (ms)

Vo
lt

ag
e

(V
)

Figure 4. Simulated voltage versus time as Mementos spreads the execution of the crc test case across 17 power lifecycles (16 resets)
against a voltage trace (#9). The bottom plot highlights a single power lifecycle from the top plot.

the trace because of infelicitous timing (the voltage when the timer
fired was too low for a subsequent checkpoint to complete).

Figure 4 depicts a complete execution of the crc test case
against the same voltage trace (#9) in the simulator. The simu-
lated capacitor charges (dotted gray line) when the input voltage
increases and discharges (solid black line) during computation and
storage. When capacitor voltage falls into the shaded region be-
tween Vthresh (set to 2.6 V at compile time) and the CPU’s minimum
voltage for flash writes (2.2 V), Mementos checkpoints. Mementos
uses the CPU (vertical lines) to check energy, find space for check-
points, collect state, and write state to flash. Gaps in the trace are
due to waiting for hardware peripherals (flash and ADC).

Table 5 shows the relationships among Vthresh, Mementos’s
share of CPU cycles, and waste for the sense test case instru-
mented in each of Mementos’s modes. For brevity, we delve into
detail for only a single test case and only two energy conditions.
The top half of the table gives results for decay-only mode, in
which the capacitor’s energy is set to a fixed level and no more
energy is delivered until the next lifecycle. The bottom half of the
table gives results for a voltage trace (#9) that elicits representative
behavior. Without Mementos instrumentation and given unlimited
energy, the sense test case requires 157,635 CPU cycles to com-
plete. However, when run against any of our voltage traces, the
uninstrumented program cannot complete because it never receives
enough energy to run for long enough; this uninstrumented pro-
gram satisfies our definition of a Sisyphean task.

Mementos spreads the sense task across multiple lifecycles,
but it increases the total number of CPU cycles needed for program
completion. In oracle mode, the simulator reports that, if Mementos
checkpoints at the last practicable opportunity in each lifecycle, the
program can complete in 3 lifecycles and 197,215 CPU cycles, an
increase of 25.1% over the uninstrumented program. Varying the
compile-time Vthresh and (in timer-aided mode) the timer interval,
we find that Mementos adds between 65.4% and 360.0% CPU cy-
cles over the uninstrumented program. We infer from Table 5 that
Vthresh is effectively lower-bounded by 2.6 V; the oracle-mode log
confirms that the oracle began its last-minute checkpointing at 2.61
and 2.64 V in the two lifecycles before program completion. The
evident difference between loop-latch and function-return modes
in this scenario is that, while loop-latch mode can accommodate
a lower Vthresh with its more frequent trigger points on this loop-
structured program, function-return mode requires fewer CPU cy-

cles and lifecycles when it is applicable. We also see that timer
mode, in which trigger points at loop latches are activated only
when a timer interrupt raises a flag, offers a tradeoff: a program
may require less time to complete, but a suboptimal value for the
timer interval can introduce unexpected timing-related failures.

Against a specific voltage trace (#9), oracle mode reports that
the sense test case requires at least 6 lifecycles and 287,422 CPU
cycles; the last-minute checkpointing voltage thresholds it found
were between 2.58 V and 2.62 V. Table 5 shows the effects of auto-
matically varying the instrumentation mode and timer interval over
a series of simulated runs. It shows that Mementos adds at least
64.7% CPU cycles over the uninstrumented program. Table 5 also
illustrates a hazard of choosing a fixed Vthresh value too close to
upper bound of the oracle’s reported last-minute voltage threshold
choices: at Vthresh = 2.6 V, the latch-instrumented program makes
progress only when it runs against certain felicitous portions of the
voltage trace; none of the other instrumentation modes allow the
program to complete. At Vthresh = 2.8 V, the program completes
in all tested instrumentation modes, and it becomes evident that
the program’s structure lends itself to function-return instrumen-
tation as well as loop-latch instrumentation. At Vthresh = 3.0 V,
the program’s run time increases because Mementos begins check-
pointing earlier in any given lifecycle, and the timer-aided latch-
instrumented program begins to evince an advantage over the plain
latch-instrumented program because of less-frequent checkpoint-
ing. At higher Vthresh values, the non-timer-aided modes fail to com-
plete in fewer than 500 lifecycles because the time between check-
point restoration and subsequent checkpointing leaves little time
for computational progress. A reasonable interpretation of Table 5
is that a fixed value of 3.0 V for Vthresh is appropriate for the sense
test case if energy conditions are not known in advance; in this case
a programmer can reasonably expect the Mementos-instrumented
computation to complete within twice the number of lifecycles that
the oracle reports.

5.2 Mementos on Hardware

We have tested Mementos on a WISP (revision 4.1) prototype like
those described in Section 4. Running Mementos on this prototype
device required only one small hardware change: we substituted a
readily available 2.8 V voltage regulator for the supplied 1.8 V reg-
ulator in order to meet the nominal minimum voltage requirement
to write to the MSP430’s on-chip flash memory. (Other prototype

166

Loop-latch mode Function-return mode Timer-aided mode interval (μs)
Vthresh lifecycles (cycles/%waste/%M) 20,000 40,000
2.4 V — — — —
2.6 — — — —
2.8 7 (502,576/6.8/63.9) — 4 (298,890/52.8/21.2) —
3.0 8 (586,788/12.6/68.6) 5 (368,255/13.0/52.9) 4 (298,890/52.8/21.2) —
3.2 9 (671,849/7.2/72.1) 6 (429,754/2.6/58.4) 4 (260,796/2.6/34.5) —
3.4 9 (725,214/15.9/73.3) 6 (453,827/16.5/59.8) 5 (361,471/4.6/49.1) 4 (314,181/20.4/27.8)
2.4 — — — —
2.6 89 (5,235,399/89.4/64.2) — — —
2.8 13 (708,641/10.5/71.3) 11 (557,164/10.8/63.7) 53 (2,779,635/70.7/32.8) 22 (1,044,242/70.8/29.5)
3 46 (2,852,111/20.4/81.6) 16 (843,093/22.6/73.4) 10 (473,396/13.8/55.1) 31 (1,421,150/77.9/29.7)
3.2 — — 10 (489,739/13.5/55.3) 15 (702,151/56.6/29.4)
3.4 — — — 22 (1,194,221/30.0/58.3)

Table 5. In decay-only mode (top half) and against a voltage trace (#9, bottom half), the sense test case exhibits behavior that is dependent
on the voltage threshold Vthresh and, in timer-aided mode, the timer interval. %M refers to the portion of CPU cycles spent within Mementos
code. This table illustrates the key differences among Mementos’s various instrumentation modes.

RFID-scale devices, including others in the WISP family, regulate
the chip’s voltage at the required level, so we expect this substitu-
tion to be unnecessary except in the case of this prototype.)

We added to Mementos a simple hardware signaling mechanism
using several of the WISP’s general-purpose I/O pins; toggling
these pins at run time allowed us to observe Mementos’s basic
activity at run time. We observe via the signaling mechanism that
Mementos successfully completes simple computations that span
multiple lifecycles, but we omit results comparing hardware runs
of our test cases to simulator runs because the poorly suited 2.8 V
regulator dominates the platform’s energy consumption—its high
static power consumption roughly halves the lifecycle duration.

5.3 Improvements

We suggest—but do not evaluate, for brevity—several improve-
ments to Mementos that may improve its performance. Code for
these improvements is available with the Mementos distribution un-
less noted otherwise.

Techniques to reduce trigger point frequency. As we ob-
served above for the crc test case, Mementos’s loop latch instru-
mentation can result in excessively frequent trigger points when
applied to loops with small bodies and large trip counts. Detecting
small loop bodies and large trip counts, whether via static analysis
or profiling or a combination, may prove useful toward reducing
Mementos’s share of CPU cycles.

Compression. Reducing checkpoint sizes has been a concern
for previous checkpointing systems; past approaches have included
memory exclusion [32] and straightforward file compression via
external programs. On an RFID-scale device with flash memory
that is expensive to write and erase, Mementos should minimize
checkpoint sizes to minimize the cost of writing them (and the
amortized cost of erasing them). However, Mementos is designed
to run without an operating system or file system, and we found
that most implementations of well-known compression algorithms
were too large to fit in our devices’ limited code space.

Because many programs do not use all available registers, one
promising but not fully implemented scheme compresses the regis-
ter file by using a 16-bit bitmask to indicate which of the CPU’s 16
registers are zero valued. During checkpointing, Mementos walks
the register file, builds the bitmap, and avoids storing any registers
that are zero valued.

We have also considered compressing full checkpoints instead
of just the register file; all of the options predictably trade check-
point size for run time. Our simulator saves checkpoints to files as
it validates them, so we used checkpoint files as inputs to compres-

sion algorithms running in a separate MSP430 simulator. We im-
plemented a reduced variant of the WK compression algorithm [19]
but found that, while it reduced checkpoint sizes by an average of
55% for the crc example, it required 3.5 times as many CPU cycles
as it would have taken to write the full checkpoint to flash. We im-
plemented a variant of the popular LZ compression algorithm and
found that it reduced checkpoint sizes 30% more than WK but was
18 times slower than simply writing the checkpoint to flash.

A third type of compression, not yet implemented, is incremen-
tal compression of checkpoints. We have not yet implemented in-
cremental compression because of the complexity of computing in-
cremental updates in a small memory footprint at run time, but the
idea is promising—often the changes between two successive loop
iterations, for example, are small. Additional compile-time analy-
sis combined with per-trigger-point adjustments might make incre-
mental checkpointing feasible in a future version of Mementos.

Run-time adaptations. As the rest of Section 5 illustrates in
detail, compile-time tuning of Mementos’s parameters can signif-
icantly change its behavior. We have designed several schemes by
which Mementos could adapt its behavior at run time based on
its measurement of key metrics. For example, to avoid executing
time- and energy-intensive flash erasures at the beginning of life-
cycles, Mementos could decrease the frequency of failed check-
points by including in each checkpoint header the current value of
the checkpoint threshold voltage. If Mementos notices an aborted
checkpoint, it can adjust the checkpoint threshold voltage as appro-
priate. A similar technique might enable Mementos to gradually
minimize the amount of wasted work at run time to approach the
results of oracle-mode simulations.

We have not designed an energy prediction model for Memen-
tos’s run-time system because we assume that such a scheme would
be prohibitively time intensive. Relaxing some of our assumptions
about unpredictability might lead us to develop lightweight predic-
tion schemes—integer versions of first- and second-order voltage
trend approximations, for example—that could allow Mementos to
avoid checkpointing if it believes power failure is not imminent.

Sleeping when appropriate. Most microcontrollers have RAM-
retention modes that retain processor state and the contents of
volatile memory. Such modes typically require two orders of mag-
nitude less electrical current than active-mode computation, which
slows—but does not stop—capacitor drain. We designed Memen-
tos to be useful when energy delivery is arbitrarily sporadic. Some
energy-harvesting mechanisms, such as solar panels, exhibit sud-
den or prolonged periods of harvesting nothing; in this case, Me-
mentos’s strategy of checkpointing to nonvolatile memory would

167

be more suitable than simply entering RAM-retention mode. How-
ever, we suspect that a hybrid approach incorporating both RAM
retention and nonvolatile checkpoints would be a fruitful avenue
for improvements to Mementos.

6. Discussion and Future Work
In this section, we discuss some alternatives to Mementos that an
application developer might consider. We then suggest some future
extensions to Mementos.

6.1 Alternative approaches

As discussed previously, traditional RFID-scale devices provide
system designers with three options: use only trivially simple pro-
grams, require users to provide adequate power, or add state-saving
logic to application code. Mementos uses automatic checkpoint-
ing to expand the use of RFID-scale devices beyond simplistic
computation—without placing additional requirements on the user
or the programmer. In addition to checkpointing, we have also con-
sidered other approaches to attain these goals.

Applications permitting, computations might instead be short-
ened using profiling and quality-of-service (QoS) information [1,
28]. These techniques make sense only for applications that tolerate
lossy or noisy results, and would require more accurate predictions
of power failures. To remain general, Mementos does not include
these program transformations, though they are trivially compatible
provided that Mementos’s instrumentation points are preserved.

Another approach would perform long-running computation on
a more powerful device (e.g. a Linux-based RFID reader), rather
than the more constrained RFID-scale device. While this removes
many impediments, it imposes others. To save power, prototype
RFID-scale devices use low-throughput radio mechanisms, includ-
ing software-controlled backscatter, that limit radio throughput. In
security-sensitive applications, outsourcing cryptographic opera-
tions may violate security requirements, and existing techniques
for outsourcing computation to untrusted infrastructure [15] still
require a nontrivial amount of work on the client.

Finally, some CPU-intensive computations such as cryptogra-
phy can be executed on dedicated peripheral hardware instead of
a general-purpose microcontroller. Hardware acceleration allows
some operations to complete more quickly but removes the flexibil-
ity afforded by reprogrammable microcontrollers. To remain gen-
eral, Mementos does not assume that such peripherals are available.

6.2 Future Hardware

Moore’s Law does not have an analogue for batteries [31], and
increasing energy storage will likely continue to add significant
bulk and weight. Since larger energy storage also makes devices
less responsive—they take more time to charge—we expect RFID-
scale devices to continue to have small energy buffers akin to
today’s capacitors.

While Mementos is currently implemented to use widely avail-
able flash memory, other types of nonvolatile memory may be bet-
ter suited to frequent checkpointing in the future. Flash cells can
tolerate 10,000 to 1 million erasures before becoming unusable. In-
formation coding schemes that allow rewrites without erasures [4]
might extend a system’s lifetime; however, alternatives like phase-
change memory (PCM), magneto-resistive RAM (MRAM) and fer-
roelectic RAM (FeRAM) all promise fewer complications. Our ini-
tial experiments with EEPROM storage on a prototype WISP indi-
cate that its energy characteristics are similar to flash memory’s, but
EEPROM reads are significantly slower. Still, EEPROM or other
auxiliary storage may be useful for storing small pieces of meta-
data without necessitating coarse-grained erasures.

6.3 Future Work

A key opportunity for improvement lies in making Mementos more
adaptive. Each binary linked against Mementos is currently subject
to a single set of checkpointing parameters—checkpoint threshold
voltage Vthresh and (if applicable) timer interrupt interval—chosen
by the programmer prior to run time based on simulation results. In-
stead of using a fixed configuration that may perform poorly when
program behavior is highly variable or depends on environmental
factors, future versions of Mementos will adaptively tune check-
pointing behavior as described in Section 5.3.

7. Related Work
A wealth of research on checkpointing exists at various levels
of computer systems. Most related approaches adopt a similar (if
broader) approach to Mementos’s: capture relevant program state.
A key difference between Mementos and previous work is that, on
RFID-scale devices, Mementos must consider catastrophic failure
to be the common case and not an occasional event. We group
related work into general checkpointing papers and papers related
to tolerating failures on small-scale devices.

Checkpointing. We borrow our definition of checkpointing
from Bernstein et al. [2], who define it as “an activity that writes
information to stable storage during normal operation in order to
reduce the amount of work [the system] has to do after a fail-
ure.” Automatic checkpointing has long provided insurance against
occasional failures. Systems in the 1980s and 1990s explored
checkpointing for distributed systems [20, 26, 27], particularly
for process migration or high-assurance computing. Checkpoint-
ing is especially useful for systems that handle precious data or
make promises about fidelity, such as databases [2, 25] or file sys-
tems [37, 42].

Plank et al. [33] discuss checkpointing strategies in detail. Their
portable libckpt library for UNIX implements both automatic (peri-
odic, checkpoint-on-write) and user-directed checkpointing strate-
gies. In the terminology of libckpt, Mementos implements sequen-
tial checkpointing, wherein the checkpointing procedure stops ex-
ecution of the main program to capture its state. Like Mementos in
timer-aided mode, libckpt automatically captures application state
(registers and RAM) at a predefined frequency. Unlike Mementos,
libckpt also supports incremental checkpointing by using page pro-
tection mechanisms to keep track of pages dirtied since the last
checkpoint operation. We have not implemented a similar system
because Mementos is designed to run directly on hardware.

Previous work has considered the use of static analysis and
compile-time modifications to facilitate checkpointing. Compiler-
assisted checkpointing systems [23, 24] require users to insert
checkpointing cues into programs, unlike Mementos, although Me-
mentos shares the notion of using compile-time instrumentation to
make programs amenable to checkpointing. The Porch source-to-
source compiler [41] enables programs to be suspended, migrated
and resumed on different architectures. Porch uses compile-time
analysis to generate program-specific checkpoint and resume func-
tions specific to each possible stopping point. We consider Porch
to be too heavyweight for Mementos’s target platforms (owing to
its lofty goals) although the checkpointing mechanism is similar.

Also relevant, perhaps surprisingly, are checkpointing systems
that work on large-scale computers. These computers must tolerate
frequent node failures, so job migration is a key feature. Bronevet-
sky et al. [3] propose a compile- and run-time system that modifies
shared-memory programs and coordinates checkpointing and re-
covery among application threads. Their compiler techniques are
essentially the same as Porch’s and import the same differences
versus Mementos.

168

Checkpointing for small-scale devices. Recent work in sen-
sor networks considers the problem of whole-network checkpoint-
ing [30], using MSPsim for experimentation on continuously-
powered sensor networks running the Contiki OS [13]. Their
checkpointing mechanism saves the entire contents of a sensor
node’s memory, plus the state of several peripherals, via the node’s
serial port. A master node freezes and restores nodes using serial-
port commands. Using an OS thread to save a complete memory
dump is considerably simpler than Mementos; however, the re-
quired OS support for threads and the size of the resulting check-
points make this approach impractical for RFID-scale devices.

The Neutron operating system [10], based on TinyOS [22], uses
selective software restarts to mitigate the effects of software errors.
Neutron allows programmers can mark “precious” state that must
be preserved across software resets—but not across hardware re-
boots. Rather than requiring programmers to manually mark im-
portant state, Mementos favors an automatic approach. Mementos
also does not require an operating system like TinyOS or Contiki.
In our tests on a MSP430-based TinyNode [12], a vanilla TinyOS
instance required 253.4±1.5 ms to boot—much too slow to run a
device that loses power every ∼ 100 ms.

Specific to RFID-scale devices, Buettner et al. [5] describe
WISP-based RFID sensor networks (RSNs) and the difficulty of
predicting energy availability. They suggest, but do not implement,
program splitting as an approach to execute large programs.

Chae et al. [9] implemented the RC5 block cipher on a WISP
by carefully choosing parameters so that computations would fin-
ish in a single lifecycle. Mementos, aims to enable such resource-
intensive programs to run to completion without requiring modifi-
cations to already-complex existing code.

Clark et al. [11] and Gummeson et al. [17] modify the WISP’s
hardware to increase its ability to survive power outages. Specif-
ically, they experiment with larger capacitor sizes—which store
more energy but take longer to charge—and auxiliary solar pan-
els that together prolong the WISP’s ability to retain state in low-
power modes. Mementos eschews these hardware modifications for
the sake of generality.

The flash storage mechanisms of Salajegheh et al. [38] treat
flash memory as probabilistic “half-wits” and provide reliable
writes to flash memory at voltages well below the nominal op-
erating voltage specified by microcontrollers such as the MSP430.
Mementos currently treats the nominal threshold values as hard
boundaries; the half-wits result suggests that Mementos could re-
lax those constraints to reliably write checkpoints to flash memory
at voltages significantly below the 2.8 V threshold.

Scheduling on computational RFIDs. Buettner et al. integrate
a voltage-aware task scheduler into the firmware of a WISP [7].
Given a measured voltage level, their scheduler selects a task from
predefined set based on its stated resource requirements; they de-
fine tasks as small programs that can run to completion in a single
lifecycle under reasonable energy conditions. Mementos instead fo-
cuses on completing a single task that might otherwise not com-
plete in a single lifecycle.

8. Conclusions
Transiently powered RFID-scale devices enable general-purpose
computation in scenarios where energy is scarce. However, the lack
of a steady supply of energy results in frequent complete losses of
power and state. Today, programmers either write short programs or
hand-tune assembly code to ensure that computation finishes before
a power loss—severely limiting the application space for these
devices and making programming cumbersome and error prone.

Mementos addresses the challenge of enabling long-running
programs to make steady progress on transiently powered devices.
It instruments programs with energy checks at compile time and

provides automatic state checkpointing and recovery at run time.
A suite of simulation tools based on MSPsim enables a program-
mer to evaluate the behavior of Mementos-instrumented programs
before deploying them.

Source code for Mementos, the simulator, and voltage traces for
testing are available for download via the first author’s web page.

Acknowledgments
This material is supported by a Sloan Research Fellowship and
the NSF under CNS-0627529, CNS-0845874, NSF CNS-0923313,
and a Graduate Research Fellowship. Any opinions, findings, and
conclusions expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF.

We thank John Brattin for code and discussions; Shane Clark
for help with simulation; Mark Corner for providing resources;
Michael Buettner, Chris Erway, and Quinn Stewart for feedback
on drafts; Edwin Foo, Anton Korobeynikov, Dmitriy Matveev, and
John Regehr for help with LLVM’s MSP430 backend; Jeremy
Gummeson and John Tuttle for conducting measurements; Scott
Kaplan for advice on compression; Emery Berger for discussions;
and Joshua Smith and Alanson Sample at Intel Labs Seattle for
providing the WISP over the last three years.

We thank our shepherd, David Lie, for guidance and the anony-
mous ASPLOS reviewers for their helpful comments.

References
[1] W. Baek and T. Chilimbi. Green: A system for supporting energy-

conscious programming using principled abstractions. Technical Re-
port MSR-TR-2009-89, Microsoft Research, July 2009.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley, 1987. ISBN
0-201-10715-5.

[3] G. Bronevetsky, D. Marques, K. Pingali, P. K. Szwed, and M. Schulz.
Application-level checkpointing for shared memory programs. In
Proc. 11th Int’l Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-XI), pages 235–
247. ACM, Oct. 2004.

[4] J. Bruck, A. Vardy, A. Jiang, E. Yaakobi, J. Wolf, R. Mateescu, and
P. Siegel. Storage coding for wear leveling in flash memories. In IEEE
Int’l Symposium on Information Theory (ISIT ’09), pages 1229–1233,
June 2009.

[5] M. Buettner, B. Greenstein, A. Sample, J. R. Smith, and D. Wetherall.
Revisiting smart dust with RFID sensor networks. In Proc. 7th ACM
Workshop on Hot Topics in Networks (HotNets-VII), Oct. 2008.

[6] M. Buettner, R. Prasad, M. Philipose, and D. Wetherall. Recognizing
daily activities with rfid-based sensors. In Proc. 11th Int’l Conference
on Ubiquitous Computing (UbiComp ’09), pages 51–60. ACM, Sept.
2009.

[7] M. Buettner, B. Greenstein, and D. Wetherall. Dewdrop: An energy-
aware task scheduler for computational RFID. In Proc. 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
’11). USENIX Association, Mar. 2011. To appear.

[8] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency infor-
mation. IEEE Transactions on Information Theory, 52(2):489–509,
Feb. 2006.

[9] H.-J. Chae, D. J. Yeager, J. R. Smith, and K. Fu. Maximalist cryptog-
raphy and computation on the WISP UHF RFID tag. In Proc. Confer-
ence on RFID Security, July 2007.

[10] Y. Chen, O. Gnawali, M. Kazandjieva, P. Levis, and J. Regehr. Sur-
viving sensor network software faults. In Proc. ACM SIGOPS 22nd
Symposium on Operating Systems Principles (SOSP ’09), pages 235–
246, Oct. 2009.

169

[11] S. S. Clark, J. Gummeson, K. Fu, and D. Ganesan. Towards
autonomously-powered CRFIDs. In Workshop on Power Aware Com-
puting and Systems (HotPower ’09), Oct. 2009.

[12] H. Dubois-Ferrière, L. Fabre, R. Meier, and P. Metrailler. TinyNode:
a comprehensive platform for wireless sensor network applications.
In Proc. 5th Int’l Conference on Information Processing in Sensor
Networks (IPSN ’06), pages 358–365. ACM, Apr. 2006.

[13] A. Dunkels, B. Grönvall, and T. Voigt. Contiki—a lightweight and
flexible operating system for tiny networked sensors. In Proc. First
IEEE Workshop on Embedded Networked Sensors (Emnets-I). IEEE
Computer Society, Nov. 2004.

[14] J. Eriksson, A. Dunkels, N. Finne, F. Österlind, and T. Voigt.
MSPsim—an extensible simulator for MSP430-equipped sensor
boards. In Proc. 4th European Conference on Wireless Sensor Net-
works (EWSN ’07), Poster/Demo session. Springer, Jan. 2007.

[15] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Advances in
Cryptology—CRYPTO 2010, volume 6223 of Lecture Notes in Com-
puter Science, pages 465–482. Springer, Aug. 2010.

[16] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang, and
G. Zussman. Challenge: Ultra-low-power Energy-Harvesting Active
Networked Tags (EnHANTs). In Proc. 15th Annual Int’l Conference
on Mobile Computing and Networking (MobiCom ’09), pages 253–
260. ACM, Sept. 2009.

[17] J. Gummeson, S. S. Clark, K. Fu, and D. Ganesan. On the limits
of effective micro-energy harvesting on mobile CRFID sensors. In
Proc. 8th Annual ACM/USENIX Int’l Conference on Mobile Systems,
Applications, and Services (MobiSys ’10). ACM, June 2010.

[18] P. Horowitz and W. Hill. The Art of Electronics. Cambridge University
Press, 1989. ISBN 0-521-37095-7.

[19] S. F. Kaplan. Compressed caching and modern virtual memory simu-
lation. PhD thesis, University of Texas at Austin, Dec. 1999.

[20] R. Koo and S. Toueg. Checkpointing and rollback-recovery for dis-
tributed systems. In Proceedings of 1986 ACM Fall Joint Computer
Conference (ACM ’86), pages 1150–1158. IEEE Computer Society,
1986.

[21] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proc. 2004 Int’l Symposium on
Code Generation and Optimization (CGO’04). ACM, Mar. 2004.

[22] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS:
An operating system for sensor networks. In Ambient Intelligence.
Springer Verlag, 2004.

[23] C. Li and W. Fuchs. CATCH—Compiler-assisted techniques for
checkpointing. In Digest of Papers, 20th Int’l Symposium on Fault-
Tolerant Computing (FTCS-20), pages 74–81. IEEE, June 1990.

[24] C. Li, E. Stewart, and W. Fuchs. Compiler-assisted full checkpointing.
Software: Practice & Experience, 24(10):871–886, 1994.

[25] J.-L. Lin, M. H. Dunham, and M. A. Nascimento. A survey of dis-
tributed database checkpointing. Distributed and Parallel Databases,
5(3):289–319, July 1997.

[26] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor—a hunter of idle
workstations. In Proc. 8th Int’l Conference on Distributed Computing
Systems (ICDCS ’88), pages 104–111. IEEE Computer Society, June
1988.

[27] J. A. McDermid. Checkpointing and error recovery in distributed
systems. In Proc. 2nd Int’l Conference on Distributed Computing
Systems (ICDCS ’81), pages 271–282. IEEE Computer Society, 1981.

[28] S. Misailovic, S. Sidiroglou, H. Hoffman, and M. C. Rinard. Quality
of service profiling. In Proc. 32nd ACM/IEEE Int’l Conference on
Software Engineering (ICSE ’10). ACM, May 2010.

[29] J. Olivo, S. Carrara, and G. D. Micheli. Energy harvesting and remote
powering for implantable biosensors. IEEE Sensors Journal, PP(99),
October 2010.

[30] F. Österlind, A. Dunkels, T. Voigt, N. Tsiftes, J. Eriksson, and
N. Finne. Sensornet checkpointing: Enabling repeatability in testbeds

and realism in simulators. In Proc. 6th European Conference on Wire-
less Sensor Networks (EWSN ’09). Springer, Feb. 2009.

[31] J. A. Paradiso and T. Starner. Energy scavenging for mobile and
wireless electronics. IEEE Pervasive Computing, 4(1):18–27, 2005.

[32] J. S. Plank, M. Beck, and G. Kingsley. Compiler-assisted memory ex-
clusion for fast checkpointing. IEEE Technical Committee on Operat-
ing Systems and Application Environments, 7(4):10–14, Winter 1995.

[33] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent
checkpointing under Unix. In Proc. USENIX 1995 Technical Confer-
ence on UNIX and Advanced Computing Systems, pages 213–223, Jan.
1995.

[34] P. Plauger. Embedded C++: An Overview. Embedded Systems Pro-
gramming, 10:40–53, 1997.

[35] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low
power wireless research. In Proc. 4th Int’l Symposium on Information
Processing in Sensor Networks: Special track on Platform Tools and
Design Methods for Network Embedded Sensors (IPSN/SPOTS ’05).
IEEE, Apr. 2005.

[36] B. Ransford, S. Clark, M. Salajegheh, and K. Fu. Getting things
done on computational RFIDs with energy-aware checkpointing and
voltage-aware scheduling. In USENIX Workshop on Power Aware
Computing and Systems (HotPower ’08), Dec. 2008.

[37] M. Rosenblum and J. K. Ousterhout. The design and implementation
of a log-structured file system. ACM Transactions on Computer
Systems (TOCS), 10(1):26–52, 1992.

[38] M. Salajegheh, Y. Wang, K. Fu, A. A. Jiang, and E. Learned-Miller.
Exploiting half-wits: Smarter storage for low-power devices. In Proc.
9th USENIX Conference on File and Storage Technologies (FAST ’11),
Feb. 2011. To appear.

[39] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R.
Smith. Design of an RFID-based battery-free programmable sensing
platform. IEEE Transactions on Instrumentation and Measurement,
57(11):2608–2615, Nov. 2008.

[40] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner, and
E. D. Berger. Eon: A language and runtime system for perpetual sys-
tems. In Proceedings of The Fifth Int’l ACM Conference on Embedded
Networked Sensor Systems (SenSys ’07), pages 161–174, Nov. 2007.

[41] V. Strumpen. Portable and fault-tolerant software systems. IEEE
Micro, 18(5):22–32, 1998.

[42] S. Sundararaman, S. Subramanian, A. Rajimwale, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dusseau, and M. M. Swift. Membrane: Oper-
ating system support for restartable file systems. In Proc. 8th USENIX
Conference on File and Storage Technologies (FAST ’10), Feb. 2010.

[43] Texas Instruments Incorporated. MSP430 Ultra-Low Power Micro-
controllers. http://www.ti.com/msp430.

[44] S. Thomas, J. Teizer, and M. Reynolds. Electromagnetic energy
harvesting for sensing, communication, and actuation. In Proc. 27th
Int’l Symposium on Automation and Robotics in Construction (ISARC
’10). IAARC, June 2010.

[45] Y. Yang, L. Wang, D. K. Noh, H. K. Le, and T. F. Abdelzaher. So-
larStore: Enhancing data reliability in solar-powered storage-centric
sensor networks. In Proc. 7th Annual Int’l Conference on Mobile
Systems, Applications, and Services (MobiSys ’09), pages 333–346.
ACM, 2009.

[46] D. Yeager, F. Zhang, A. Zarrasvand, N. George, T. Daniel, and B. Otis.
A 9 μa, addressable Gen2 sensor tag for biosignal acquisition. IEEE
Journal of Solid-State Circuits, 45(10):2198–2209, Oct. 2010.

[47] E. Yeatman. Advances in power sources for wireless sensor nodes.
In Proc. Int’l Workshop on Wearable and Implantable Body Sensor
Networks (BSN ’04), pages 20–21. IEEE Computer Society, Apr. 2004.

170

