
An Evaluation of the TRIPS Computer System

Mark Gebhart Bertrand A. Maher Katherine E. Coons Jeff Diamond Paul Gratz
Mario Marino Nitya Ranganathan Behnam Robatmili Aaron Smith James Burrill

Stephen W. Keckler Doug Burger Kathryn S. McKinley

Department of Computer Sciences
The University of Texas at Austin

cart@cs.utexas.edu www.cs.utexas.edu/users/cart

Abstract
The TRIPS system employs a new instruction set architec-
ture (ISA) called Explicit Data Graph Execution (EDGE)
that renegotiates the boundary between hardware and soft-
ware to expose and exploit concurrency. EDGE ISAs use a
block-atomic execution model in which blocks are composed
of dataflow instructions. The goal of the TRIPS design is
to mine concurrency for high performance while tolerating
emerging technology scaling challenges, such as increas-
ing wire delays and power consumption. This paper eval-
uates how well TRIPS meets this goal through a detailed
ISA and performance analysis. We compare performance,
using cycles counts, to commercial processors. On SPEC
CPU2000, the Intel Core 2 outperforms compiled TRIPS
code in most cases, although TRIPS matches a Pentium 4.
On simple benchmarks, compiled TRIPS code outperforms
the Core 2 by 10% and hand-optimized TRIPS code out-
performs it by factor of 3. Compared to conventional ISAs,
the block-atomic model provides a larger instruction win-
dow, increases concurrency at a cost of more instructions
executed, and replaces register and memory accesses with
more efficient direct instruction-to-instruction communica-
tion. Our analysis suggests ISA, microarchitecture, and com-
piler enhancements for addressing weaknesses in TRIPS and
indicates that EDGE architectures have the potential to ex-
ploit greater concurrency in future technologies.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Design Studies

General Terms Performance, Measurement

1. Introduction
Growing on-chip wire delays, coupled with complexity and
power limitations, have placed severe constraints on the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’09, March 7–11, 2009, Washington, DC, USA.
Copyright c© 2009 ACM 978-1-60558-406-5/09/03. . . $5.00

issue-width scaling of conventional superscalar architec-
tures. Because of these trends, major microprocessor ven-
dors have abandoned architectures for single-thread perfor-
mance and turned to the promise of multiple cores per chip.
While many applications can exploit multicore systems, this
approach places substantial burdens on programmers to par-
allelize their codes. Despite these trends, Amdahl’s law dic-
tates that single-thread performance will remain key to the
future success of computer systems [9].

In response to semiconductor scaling trends, we designed
a new architecture and microarchitecture intended to extend
single-thread performance scaling beyond the capabilities of
superscalar architectures. TRIPS is the first instantiation of
these research efforts. TRIPS uses a new class of instruction
set architectures (ISAs), called Explicit Data Graph Execu-
tion (EDGE), which renegotiate the hardware and software
boundary. EDGE ISAs use a block-atomic execution model,
in which EDGE blocks consist of dataflow instructions. This
model preserves sequential memory semantics and exposes
greater instruction level concurrency without requiring ex-
plicit software parallelization. We constructed a custom 170
million transistor ASIC, an instantiation of the ISA (TRIPS
ISA), TRIPS system circuit boards, a runtime system, per-
formance evaluation tools, and a compiler that optimizes and
translates C and Fortran programs to the TRIPS ISA. The
distributed processing cores of a TRIPS processor issue up
to 16 instructions per cycle from an instruction window of
up to 1024 instructions contained in 8 blocks. The TRIPS
ISA and distributed microarchitecture are designed to ex-
ploit concurrency and reduce the influence of long wire de-
lays by exposing the spatial nature of the microarchitecture
to the compiler for optimization.

This paper presents a performance analysis that explores
how well the TRIPS system meets its goals of exploiting
concurrency, hiding latency, and distributing control. Using
the TRIPS hardware and microarchitectural simulators, we
use compiled and hand-optimized benchmarks to compare
the EDGE ISA, microarchitecture, and performance to mod-
ern processors. While we measured the power consumed by
one TRIPS processor and the memory system to be 17W
(30W for the whole chip with two processors and no clock

1

gating), a detailed power analysis and an examination of
multicore execution is beyond the scope of this paper.

Our microarchitecture analysis shows that TRIPS can fill
much of its instruction window; compiled code shows an av-
erage of 400 total instructions in flight (887 peak for the best
benchmark) and hand-optimized code shows an average of
630 (1013 peak). While much higher than conventional pro-
cessors, the number of instructions in flight is less than the
maximum of 1024 because the compiler does not completely
fill blocks and the hardware experiences pipeline stalls and
flushes due to I-cache misses, branch mispredictions, and
load dependence mispredictions. The EDGE ISA incurs sub-
stantial increases in instructions fetched and executed rel-
ative to conventional RISC architectures because of pred-
ication and instruction overheads required by the dataflow
model. A strength of the EDGE ISA and distributed con-
trol is that TRIPS requires less than half as many register
and memory accesses than a RISC ISA (Alpha in this paper)
because it converts these into direct producer to consumer
communications. Furthermore, communicating instructions
are usually on the same tile or an adjacent tile, which makes
them power efficient and minimizes latency.

We compare the performance (measured in cycles) of
TRIPS to the Intel Core 2, Pentium III, and Pentium 4 us-
ing hardware performance counters on compiled and hand-
optimized programs. On EEMBC, the Core 2 executes 30%
fewer cycles than TRIPS compiled code. On SPEC2000,
TRIPS compiled code executes more than twice as many cy-
cles than Core 2 on integer benchmarks but the same number
of cycles on floating-point benchmarks. TRIPS executes 3
times fewer cycles than the Core 2 on hand-optimized bench-
marks. These experiments suggest that EDGE processors
have the capability to achieve substantial performance im-
provements over conventional microprocessors by exploit-
ing concurrency. However, realizing this potential relies on
the compiler to better expose concurrency and create large
blocks of TRIPS instructions, as well as microarchitectural
innovations in control distribution and branch prediction.

2. The TRIPS Processor Architecture
The foundations of the TRIPS system were published in
2001 [16]. Between 2001 and 2004, we refined the archi-
tecture so as to realize it in silicon and began the compiler
implementation. The TRIPS chip taped out in August 2006
and was fully functional (no known bugs) in the lab in Febru-
ary 2007. The TRIPS chip uses a 130nm ASIC technology
and contains 170 million transistors. One chip contains two
processors and the simplest system consists of four TRIPS
chips. Each chip contains two processors and 2GB of lo-
cal DRAM connected to a motherboard. While we designed
the system to scale to eight motherboards (64 processors),
this paper examines a single TRIPS processor using single-
threaded codes. We summarize the architecture and compiler
below; details are in prior publications [2, 20, 23].

Figure 1. RISC and TRIPS code with dataflow graph.

EDGE ISA: Two defining features of an Explicit Data
Graph Execution (EDGE) ISA are block-atomic execu-
tion [14] and direct instruction communication within a
block, which together enable efficient hybrid dataflow ex-
ecution. An EDGE microarchitecture maps each compiler-
generated dataflow graph to a distributed execution sub-
strate. The ISA was designed to provide high-performance,
single-threaded, concurrent, and distributed execution.

The TRIPS ISA aggregates up to 128 instructions in a
block. The block-atomic execution model logically fetches,
executes, and commits each block as a single entity. Blocks
amortize per-instruction bookkeeping and reduce branch
predictions, providing latency tolerance to make distributed
execution practical. Blocks communicate through registers
and memory. Within a block, direct instruction communica-
tion delivers results from producer to consumer instructions
in dataflow fashion. This supports distributed execution by
eliminating accesses to a shared register file.

Figure 1 compares RISC and TRIPS EDGE code on an
example. The TRIPS register reads (R0, R1) at the beginning
of the block start dataflow execution by injecting values
from the register file into the block. The block ejects the
register write (W0) and writes register $g4 when the block
commits. Instruction operands within the block, such as $t2,
are passed directly from producer to consumer without an
intervening register access. Because the instructions encode
their targets, rather than a register in a common register file, a
32-bit instruction encoding has room for at most two targets.
When more targets are required, such as the value read in
instruction R0, the program needs a mov (move) instruction
(I0) to replicate the value flowing in the dataflow graph.
The TRIPS code also shows that branch and non-branch
instructions can be predicated. To enable the hardware to

2

Processor 1

Processor 0

O
n

-C
h

ip
 N

et
w

o
rk

EEEE

R R R R

D

D

D

D

I

I

I

I

I G

EEEE

EEEE

EEEE

G: Global Control
 (predict/fetch)
R: Register File
 I: Instruction Cache
D: Data Cache
 E: Execution
 (ALU array)

DMA: DMA
 SDC: SDRAM
 C2C: Chip-to-Chip
 EBC: External Bus

TRIPS Tiles

TRIPS Controllers

L2 Cache/Memory
(16 NUCA tiles)

SDC
DMA
EBC

SDC
DMA
C2C

EEEE

EEEE

EEEE

EEEE

R R R R

D

D

D

D

G
I

I

I

I

I

Figure 2. TRIPS die photo with tile overlays.

detect block completion, the execution model requires that
all block outputs (register writes and stores) be produced
regardless of the predicated path within the block. The null
instruction produces a token that when passed through the
st (store) indicates that the store output has been produced,
but does not modify memory. In our experiments, we do
not classify these dataflow execution helper instructions as
useful when comparing to conventional ISAs. The dataflow
graph shows the producer/consumer relationships encoded
in the TRIPS binary.

TRIPS Microarchitecture: Because the goals of the
TRIPS microarchitecture include scalability and distributed
execution, it has no global wires, reuses a small set of
components on routed networks, and can be extended to
a wider-issue implementation without source recompilation
or ISA changes. Figure 2 superimposes the tile-level block
diagram on a TRIPS die photo. Each TRIPS chip contains
two processors and a secondary memory system, each inter-
connected by one or more micronetworks. Each processor
uses five types of tiles: one global control tile (GT), 16 exe-
cution tiles (ET), four register tiles (RT), four data tiles (DT),
and five instruction tiles (IT). The tiles communicate via
six micronetworks that implement distributed control and
data protocols. The main micronetwork is the operand net-
work (OPN), which replaces a bypass network in a conven-
tional superscalar. The two-dimensional, wormhole-routed,
5x5 mesh OPN delivers one 64-bit operand per link per cy-
cle [8]. The other networks perform distributed instruction
fetch, dispatch, I-cache refill, and completion/commit.

TRIPS fetches and executes each block en masse. The GT
sends a block address to the ITs which deliver the block’s
computation instructions to the reservation stations in the 16
execution tiles (ETs), 8 per tile as specified by the compiler.
The ITs also deliver the register read/write instructions to
reservation stations in the RTs. The RTs read values from
the global register file and send them to the ETs, starting
dataflow execution. The GT instigates the commit protocol
once each DT and RT receives all block outputs. The commit

protocol updates the data caches and register file with the
speculative state of the block. The GT uses its next block
predictor (branch predictor) to begin fetching and executing
the next block while previous blocks are still executing.
The prototype can simultaneously execute up to eight 128-
instruction blocks (one non-speculative, seven speculative)
giving it a maximum window size of 1024 instructions.

At 130 nm, each TRIPS processor occupies approxi-
mately 92 mm2 of a total chip area of 330 mm2. If scaled
down to 65 nm, a TRIPS core would be approximately 23
mm2, similar to the 29 mm2 of a Core 2 processor. A direct
comparison is difficult because TRIPS uses an ASIC tech-
nology and lacks some hardware needed for an operating
system. Nonetheless, TRIPS has a greater density of arith-
metic units in a similar area and the architecture provides
greater issue width and instruction window scaling.

TRIPS Compiler: The TRIPS compiler first performs
conventional optimizations such as inlining, unrolling, com-
mon subexpression elimination, scalar replacement, and
TRIPS-specific optimizations such as tree-height reduction
to expose parallelism. The compiler next translates the code
to the TRIPS Intermediate Language (TIL), a RISC-like IR,
and progressively transforms TIL into blocks that conform to
the TRIPS block constraints: up to 128 instructions, up to 32
register read/writes with 8 per bank, and up to 32 load/store
identifiers [23]. The compiler aggregates basic blocks from
multiple control paths into optimized TRIPS blocks using
predication, tail duplication, and loop optimizations [24, 13].
This process is similar to hyperblock formation, but more
challenging because of the additional block constraints that
simplify the hardware. The compiler iteratively merges and
optimizes blocks until they are as full as possible and then
performs register allocation. This phase produces completed
TIL with correct and fully specified blocks, as in Figure 1.

The compiler’s scheduler then transforms TIL to TRIPS
assembly language (TASL), which includes a mapping of in-
structions to execution tiles. The scheduler seeks a mapping
that exposes instruction concurrency and minimizes commu-
nication overheads (distance and contention) [3]. This map-
ping optimizes performance without restricting functional
portability as the hardware can remap an EDGE binary to
different hardware topologies (number of tiles) without re-
compilation or changes to the binary.

3. Evaluation Methodology
We evaluate the TRIPS system and compare its performance
with conventional architectures using performance counters
on the TRIPS hardware and on commercial platforms. Sec-
tions 4 and 5 present TRIPS and Alpha simulation results
to gain insights into the relative strengths and weaknesses
of TRIPS. All performance measurements in Section 6 are
from actual hardware.

The TRIPS System: A TRIPS chip consists of two pro-
cessors that share a 1 MB L2 static NUCA cache [11] and 2

3

Issue Proc Mem Proc/Mem L1 Cap. L2 Mem
System Width Speed Speed Ratio (D/I) Cap. Cap.

(MHz) (MHz) (KB) (MB) (GB)

TRIPS 16 366 200 1.83 32 / 80 1 2
Core 2 4 1600 800 2.00 32 / 32 2 2
Pentium 4 4 3600 533 6.75 16 / 150 2 2
Pentium III 3 450 100 4.50 16 / 16 0.5 0.256

Table 1. Reference platforms.

GB of DDR Memory; we use one processor for all experi-
ments in this study. Each processor has a private 32 KB L1
data cache and a private 80 KB L1 instruction cache. We run
the processor core at 366 MHz and the DRAM with 100/200
MHz DDR clocks. TRIPS system calls interrupt program ex-
ecution, halt the processor, and execute off-chip on a com-
mercial processor running Linux. Because the TRIPS cycle
counters increment only when the processor is not halted,
the program performance measurements ignore the time to
process system calls. The tools we use to measure cycles in
the commercial systems also exclude operating system exe-
cution time, thus providing a fair comparison.

Simulators: We use functional and cycle-level TRIPS
simulators to gather statistics not available from the hard-
ware [26]. Validation of the TRIPS cycle counters against
the TRIPS simulators indicates statistical differences of less
than 5%. We use a customized version of the M5 simula-
tor [1] to produces statistics that measure loads, stores, and
register accesses from gcc-compiled Alpha-Linux binaries.

Reference Platforms: We compare TRIPS performance
to three reference platforms from the Intel x86 product fam-
ily (Pentium III, Pentium 4, and Core 2). Table 1 shows
the platform configurations including processor and DDR
DRAM clock speed and the memory hierarchy capacities.
Because each machine is implemented in a different process
technology, we compare cycle counts obtained from perfor-
mance counters, using PAPI on the Intel processors [17].
Cycle count is an imperfect metric because some architec-
tures, particularly the Pentium 4, emphasize clock rate over
cycle count. However, we expect that the TRIPS microar-
chitecture, with its partitioned design and no global wires,
could be implemented in a clock rate equivalent to the Core
2, given a custom design and the same process technology.
Another pitfall is that the relatively slow clock rate of TRIPS
may make memory accesses less expensive relative to high
clock-rate processors. To counter this effect, we under-clock
the Core 2 from 1.8 GHz to 1.6 GHz to make the proces-
sor/memory speed more similar to that of TRIPS. Because
the benchmarks are largely L2 cache resident, the relative
memory speed has little effect on application execution time.

Benchmarks: Table 2 shows our benchmarks, ranging
from simple kernels to complex uniprocessor workloads,
compiled with the TRIPS C and Fortran compiler [23].
The suite labeled simple refers to applications with hand-
optimizations: 4 application kernels, 3 stream and bit op-
eration benchmarks from the VersaBench suite [18], and
8 medium-sized benchmarks from the EEMBC bench-

Suite Count Benchmarks

Kernels 4 transpose (ct), convolution (conv), vector-add
(vadd), matrix multiply (matrix)

VersaBench 3 of 10 bit and stream (fmradio, 802.11a, 8b10b)
EEMBC 28 of 30 Embedded benchmarks
Simple 15 Hand-optimized versions of Kernels,

VersaBench, and 8 EEMBC benchmarks
SPEC 2K Int 9 of 12 All but gap, vortex and C++ benchmarks1

SPEC 2K FP 9 of 14 All but sixtrack and 4 Fortran 90 benchmarks1

Table 2. Benchmark suites.

marks [5]. We hand-optimized benchmarks to guide com-
piler efforts and explore the potential of the system. We per-
formed hand-optimization on the compiler-generated TIL
code and scheduled the result with the compiler. Most of the
hand-optimizations are mechanical, but not yet implemented
in the compiler. We more extensively hand-optimized four
scientific kernels on TRIPS: matrix transpose (ct), convolu-
tion (conv), vector add (vadd), and matrix multiply (matrix);
further, we hand-scheduled matrix and vadd.

The most complex benchmarks come from SPEC2000
and include 10 integer and 8 floating-point benchmarks [25].
Three SPEC programs that currently fail to build correctly
with our toolchain are omitted. We use a consistent set of
compiler flags for all benchmarks rather than tuning the flags
for performance on a per-benchmark basis. We use SimPoint
simulation regions for our simulation-based evaluation of the
SPEC benchmarks [22]. This paper shows some benchmark
measurements in aggregates; the complete set of measure-
ments are in a companion technical report [6].

4. ISA Evaluation
This section uses simulation to examine how well programs
map to the TRIPS ISA, characterizing block size, instruction
overheads, and code size. We compare TRIPS and RISC ISA
(Alpha) statistics to quantify the relative overheads of the
TRIPS ISA. We present details for the simple benchmarks
and means for EEMBC, SPEC INT, and SPEC FP.

4.1 TRIPS Block Size and Composition

A key parameter for a block-atomic EDGE ISA is the block
size. Early experience demonstrated that creating programs
with average block sizes of 20+ instructions was not difficult
with standard compiler transformation and that larger blocks
would increase the instruction window, better amortize block
overheads, and have the potential for better performance.
Seeking this performance, we chose to push the compiler
technology by selecting 128-instruction block sizes.

Figure 3 shows the average block size weighted by execu-
tion frequency and broken down by the number of arithmetic
instructions, memory instructions, branch/jump/call/return
instructions, test instructions (used for branches and predi-
cation), and move instructions (used to fan out intermediate

1 Section 5 omits ammp and parser as they do not execute correctly on the
TRIPS microarchitecture simulator.

4

 Fetched Not Executed
 Executed Not Used
 Moves
 Tests
 Control Flow
 Memory
 Arithmetic

Average

 0

 20

 40

 60

 80

 100

 120

C CCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHC

A
ve

ra
ge

 B
lo

ck
 C

om
po

si
tio

n

a2
tim

e

rsp
ee

d
os

pf

ro
ute

loo
ku

p

au
toc

or

co
nv

en

fb
ita

l
fft

80
2.1

1a

8b
10

b

fm
rad

io ct
co

nv

matr
ix

va
dd

EEM
BC

SPEC IN
T

SPEC F
P

Ave
rag

e

Figure 3. TRIPS block size and composition for compiled (C) and hand-optimized (H) benchmarks.

operands). The figure does not include the register read/write
instructions, which reside in the block header and not in
the 128 instructions. Fetched Not Executed instructions in a
block are never executed either because they did not receive
a matching predicate or because they did not receive all of
their operands due to predicated instructions earlier in the
block’s dataflow graph. Executed Not Used instructions were
fetched and executed speculatively but their values were un-
used due to predication later in the dependence graph.

For some programs, such as a2time, mispredicated in-
structions account for a third of the instructions within a
block. A2time contains several nested if/then/else state-
ments. To fill blocks and minimize executed blocks, the com-
piler produces code that speculatively executes both then
and else clauses simultaneously within one block and pred-
icates to select the correct outputs. Aggressive predication
can improve system performance by eliminating branch mis-
predictions and increasing front-end fetch bandwidth.

The remainder of the instruction types, tests, control flow,
memory, and arithmetic, are required for correct execution.
The number of useful instructions (excluding move and mis-
predicated instructions) varies. Some programs with com-
plex control have only 10 instructions per block while others
with more regular control have as many as 80 instructions
per block. To implement dataflow execution in a block, the
TRIPS ISA uses move instructions. Because TRIPS instruc-
tions have fixed width (32 bits), arithmetic and load instruc-
tions can target at most two consumers. The compiler there-
fore inserts move and special move3 and move4 instructions
to fanout values consumed by more than two instructions.
Predicate merge points may require predicated move instruc-
tions. The result is that move instructions account for nearly
20% of all instructions, more than anticipated at the start of
the design. Support for wider fanout move instructions (mul-
ticast) would substantially reduce this overhead.

Compiled code has an average block utilization of 70 in-
structions, but with high variance, ranging from 35 to over
110 instructions. Hand-optimizations execute fewer blocks
by increasing block utilization. For example, the hand-

optimized version of ospf has blocks two times larger than
its compiled versions. Hand-optimizations include elimi-
nating unnecessary instructions and then merging adjacent
smaller blocks or increasing unrolling factors to fill blocks.
Higher block utilization is correlated with higher perfor-
mance. Routelookup and autocor actually have smaller block
size when hand-optimized but a similar number of useful in-
structions. These programs are memory and control bound;
larger blocks do not improve performance due to the pred-
ication overhead. Both hand-optimized and compiled code
utilize the aggressive 128-instruction block size to achieve
average block sizes ranging from 20 to 128.

4.2 TRIPS ISA versus Alpha

To quantify the differences between the TRIPS ISA and
a RISC ISA, we compare to the Alpha. Figure 4 shows
fetched instruction counts on TRIPS normalized to Alpha,
with TRIPS including neither register read/write instructions
from the block header nor NOPs in underfull blocks. For both
TRIPS and Alpha, the instruction count omits incorrectly
fetched instructions due to branch mispredictions.

The number of useful instructions varies widely by
benchmark suite which is a function of the state of the
TRIPS compiler and gcc Alpha compiler. TRIPS executes
half as many useful instructions on the simple benchmarks,
an equal number on SPEC INT, and twice as many on SPEC
FP. One of the SPEC FP benchmarks, mgrid, is an outlier
with TRIPS executing 10 times more instructions. This is
a reflection of the current state of the compiler. On com-
piled code, TRIPS tends to execute more instructions due
to prototype simplifications, which introduce inefficiencies
in constant generation and sign extension unrelated to its
execution model. For hand-optimized benchmarks, TRIPS
executes fewer instructions because its larger register set
(128 registers) eliminates store/load pairs and because more
aggressive unrolling exposes more opportunities for instruc-
tion reduction. The number of fetched but mispredicated
instructions varies across the benchmarks, depending on the
degree of predication. Overall, TRIPS may need to fetch as

5

 Useful
 Moves
 Executed but not useful
 Fetched but not executed

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

CC CHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHC

In
st

ru
ct

io
ns

 R
el

at
iv

e
to

 A
lp

ha

a2
tim

e

rsp
ee

d
os

pf

ro
ute

loo
ku

p

au
toc

or

co
nv

en
fb

ita
l

fft

80
2.1

1a

8b
10

b

fm
rad

io

matr
ix

va
dd

co
nv ct

SPEC F
P

SPEC IN
T

EEM
BC

Geometric Mean
Geo

metr
ic

M
ea

n

Figure 4. TRIPS instructions normalized to Alpha for compiled (C) and hand-optimized (H) benchmarks.

 Loads Executed
 Stores Committed

 Reads Fetched
 Writes Committed
 ET_ET Operands

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

C

C

C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

a2
tim

e

rsp
ee

d
os

pf

ro
ute

loo
ku

p

au
toc

or

co
nv

en
fb

ita
l

fft

80
2.1

1a

8b
10

b

fm
rad

io
co

nv ct
matr

ix
va

dd

EEM
BC

SPEC IN
T

SPEC F
P

St
or

ag
e

A
cc

es
se

s
(N

or
m

al
iz

ed
 to

 A
lp

ha
)

Geometric Mean
Geo

metr
ic

M
ea

n

Figure 5. Storage accesses normalized to Alpha for compiled (C) and hand-optimized (H) benchmarks.

many as 2–4 times more instructions than the Alpha, due to
aggressive predication.

4.3 Register and Memory Access

TRIPS inter-block communication uses registers and mem-
ory while intra-block communication is direct between in-
structions, reducing the number of accesses to registers and
memory. TRIPS has a total of 128 registers spanning four
register banks (32 registers per bank). Each bank has one
read and one write port. The large register file reduces load
on the memory system since the compiler can register allo-
cate more of a program’s variables [15]. Compared to a con-
ventional architecture, TRIPS replaces memory instructions
with less expensive register reads and writes, and replaces
register reads and writes with less expensive direct commu-
nication between producing and consuming instructions.

The left bar stack of each pair in Figure 5 shows the num-
ber of loads and stores on TRIPS normalized to loads and
stores on the Alpha. TRIPS executes about half as many
memory instructions as the Alpha and as few as 10%, due
to its larger register file and direct instruction communica-
tion. Several hand-optimized benchmarks have significantly
fewer memory accesses than the compiled versions because

they register allocate fields in structures and small arrays,
whereas the compiler currently does not. The right bar stack
shows the number of register reads, writes, and operand
network communications on TRIPS normalized to register
reads and writes on the Alpha. Because of direct operand
communication, TRIPS accesses the register file 80–90%
less often than the Alpha. The top bar shows direct operand
communication that replaces register accesses on TRIPS.

Compared to their compiled counterparts, hand-optimized
benchmarks generally have fewer register accesses, OPN
communications, and memory accesses. The hand-optimized
versions aggressively register allocate more memory ac-
cesses by using programmer knowledge about pointer alias-
ing, much of which may be automated. They also eliminate
instructions, such as unnecessary sign extensions, which
could be automated with aggressive peephole optimizations.
On average, the sum of register reads, writes, and direct
communications approximates the number of Alpha register
reads and writes. On some benchmarks (SPEC INT), direct
communication is large because of the distribution of predi-
cates and communication of useless values by mispredicated
instructions. On SPEC FP the large number of accesses is a
result of TRIPS executing many more instructions than Al-

6

 Fetched but not executed

 Useful
 Moves
 Executed but not useful

 0

 200

 400

 600

 800

 1,000

CCCCCCCCCCCCCCCCCCHCHCHCHCHCHCHCHCHCHCHCHCHCHC

a2
tim

e

rsp
ee

d
os

pf

ro
ute

loo
ku

p

au
toc

or

co
nv

en
fb

ita
l fft

80
2.1

1a

8b
10

b

matr
ix

va
dd

co
nv

C H

ct

C

bz
ip2

cra
ftygc

c
gz

ip
mcf

pe
rlb

mk
tw

olfvp
r
ap

pluap
si art

eq
ua

ke
mes

a

mgr
id

wup
wise

sw
im

EEM
BC

SPEC F
P

SPEC IN
T

N
um

be
r

of
 I

ns
tr

uc
tio

ns
in

 W
in

do
w

Ave
rag

e

Average

Figure 6. Average number of in-flight instructions for compiled (C) and hand-optimized (H) benchmarks.

pha. In a conventional architecture, the register file broad-
casts an instruction’s result to other instructions. In TRIPS,
fanout may require a tree of move instructions, which in-
creases communication and the number of instructions.

4.4 Code Size

The TRIPS ISA significantly increases dynamic code size
over Alpha. Each block has 128 32-bit instructions, a 128-bit
header, 32 22-bit read instructions, and 32 six-bit write in-
structions. The compiler inserts NOPs when a block has fewer
than 32 reads/writes or fewer than 128 instructions. NOPs
consume space in the L1 I-cache but are not executed. We
compared dynamic code size of TRIPS to Alpha by counting
the number of unique instructions that are fetched. The dy-
namic code size of TRIPS, including the overheads from the
block header, read and write instructions, and nops, averages
about 11 times larger than the Alpha, but with a wide vari-
ance. Without the block header, read and write instructions,
and the nop overheads, the number of unique instructions for
TRIPS is 5 times that of Alpha, while the number of unique
useful instructions for TRIPS (discounting the instructions
that are fetched but not needed) is 2–3 times greater than
Alpha. Thus instruction replication due to TRIPS block op-
timizations accounts for about half of the code bloat.

Experiments generally show a low instruction cache miss
rate on small and medium sized benchmarks, but some SPEC
benchmarks have miss rates in the range of 20–40%, indicat-
ing that cache pressure is a problem for some real applica-
tions. The TRIPS prototype can compress underfull instruc-
tion blocks in memory and in the L2 cache down to 32, 64,
or 96 instructions, depending on block capacity, which re-
duces the expansion factor over Alpha from 11 to 6. Block
compression in the instruction cache may unduly slow down
instruction fetch or require more complex instruction rout-
ing from the instruction cache banks to the execution tiles.
The results indicate that the benefits of variable block sizes
warrant this complexity for future designs. Furthermore, in-
creasing the instruction cache size in distributed architec-
tures is relatively easy and will also mitigate cache pressure.

5. Microarchitecture Evaluation
5.1 Filling a 1K Instruction Window

With up to 128 instructions per block and eight concur-
rently executing blocks, TRIPS has a maximum dynamic in-
struction window size of 1024 instructions. Figure 6 shows
the average number of TRIPS instructions in the window.
This metric multiplies the average number of blocks in flight
(speculative and non-speculative) and the average number of
instructions per block. Compiled codes have on average 400
total instructions of which more than 170 are useful. The
hand-optimized programs with larger blocks achieve a mean
of 630 instructions, more than 380 of which are useful. Com-
pared with issue windows of 64 to 80 on modern superscalar
processors, TRIPS exposes more concurrency at the cost of
more communication due to the distributed window.

The principal speculation mechanisms in TRIPS are pred-
ication, load-store dependence prediction, and next-block
prediction. When the load/store queue detects that a spec-
ulative load is incorrect, it flushes the block pipeline and
enters the load into the dependence predictor’s partitioned
load-wait table. The predictor is effective in part because
the compiler reduces the number of loads and stores (as dis-
cussed in Section 4.3). For the SPEC benchmarks, TRIPS
flushes fewer than one block per 2000 useful instructions,
without overly constraining speculative load issue.

The TRIPS next-block predictor selects the next specula-
tive block [20]. It consists of a 5 KB local/global tournament
exit predictor that predicts the exit branch (one of up to eight)
from the block and a 5 KB multi-component target predictor
that predicts the target address of this exit. Figure 7 shows
the prediction breakdown for four different configurations:
(A) shows an Alpha 21264-like conventional tournament
branch predictor (10 KB) predicting TRIPS-compiled basic
blocks; (B) shows the TRIPS block predictor (10 KB) pre-
dicting basic blocks; (H) shows the TRIPS block predictor
(10 KB) predicting optimized TRIPS blocks, and (I) shows
a “lessons learned” block predictor (14 KB) that scales up
the target predictor component sizes to 9 KB. Each bar is
normalized to the total number of predictions made for ba-
sic blocks to measure accuracy and reductions in predictions

7

Correct predictions
Mispredictions

 0

 20

 40

 60

 80

 100

AIHBAIHBAIHBAIHBAIHBAIHBAIHBAIHBAIHBAIHBAIHBAIHBAIHBAIHBAIHBAIHBAIHBA IHB IHBAIHBA

N
or

m
al

iz
ed

 B
re

ak
do

w
n

of
 P

re
di

ct
io

ns

SPECFP

bz
ip2

cra
fty gc

c
gz

ip
mcf

pa
rse

r

pe
rlb

mk
tw

olf vp
r

am
mp

ap
plu ap

si art

eq
ua

ke
mes

a

mgr
id

sw
im

wup
wise

SPECIN
T

Average

Figure 7. Block-predictor mispredictions normalized to total predictions made for basic blocks.

due to TRIPS blocks. The average MPKI (Mispredictions
Per 1000 Instructions, omitting move and mispredicated in-
structions) observed for these four configurations on SPEC
INT are 14.9, 15.1, 8.6 and 7.3 respectively. SPEC FP appli-
cations have an MPKI of 1.6, 1.7, 1.5 and 1.3 respectively.

The accuracy of predicting predicated blocks is neither
strictly better nor strictly worse than that of predicting basic
blocks. Predication within TRIPS blocks may improve accu-
racy by removing hard-to-predict branches, but may also de-
grade accuracy by obscuring correlating branches in the his-
tory. Although the TRIPS predictor (H) has a higher mispre-
diction rate (18% higher) than a conventional predictor (A),
it has a lower MPKI because it makes fewer predictions—
59% fewer on SPEC INT and 35% fewer on SPEC FP. The
improved TRIPS predictor (I) reduces SPEC INT MPKI by
15.8% and SPEC FP MPKI by 14.2%. Lower prediction ac-
curacy has a significant effect on the instruction window uti-
lization and has a strong correlation with performance. How-
ever, more aggressive next-block predictors may still fall
short of modern branch prediction accuracies. Increasing the
size of the branch target buffer, call target buffer, and history
register does improve accuracy. Advanced multi-component
long-history predictors [10, 21] will likely also improve exit
and target accuracy and consequently performance.

5.2 Operand Network

The Operand Network (OPN) connects the TRIPS processor
tiles and transmits operands between execution tiles (ETs),
the register file (RTs), and the data cache (DTs) [8]. The
TRIPS scheduler optimizes instruction placement on the tile
topology to exploit concurrency and minimize the distance
between dependent instructions along the program’s critical
path. As a result, about half of operands are bypassed locally
within an ET. Of the traffic that must traverse the OPN, about
80% require one or two hops, resulting in an overall operand
hop count of 0.9. Ideally, all operand communication would
be bypassed locally (0 hops), but the inherent tradeoff be-
tween locality and concurrency combined with limited in-
struction storage per tile demands that many communicat-

ing instructions reside on different tiles. About 60% of the
OPN messages stems from ET–ET operand traffic, with the
remaining messages about evenly split between ET–DT and
ET–RT traffic. On the SPEC benchmarks two-thirds of the
ET–DT traffic and one half of the ET–RT traffic requires
three or more hops because the DTs and RTs lie along the
edge of the ET array. Simulations results show that conges-
tion contributes only a 12% performance overhead as the la-
tency due to hops count is more significant. These results in-
dicate opportunities for on-chip network design innovations
to improve performance of distributed architectures.

5.3 ILP Evaluation

TRIPS executes up to 16 instructions per cycle, but can only
sustain that rate under ideal conditions: 8 blocks full of exe-
cuted instructions, perfect next-block prediction, and no in-
struction stalls due to long-latency instructions. Actual IPC
is limited to 1/8 of the block size because of block fetch la-
tency. Since the average block size of our hand-optimized
benchmarks is 80 instructions, we could achieve at most an
average IPC of 10 on them. Figure 8 shows the sustained IPC
that TRIPS achieves across the benchmarks. While some ap-
plications are intrinsically serial (e.g., routelookup traverses
a tree data structure serially for an IPC near 1), others reach
6 to 10 IPC, showing that the processor exploits more ILP
in these programs. The hand optimized codes have an IPC
25% greater on average than their compiled counterparts,
mostly due to executing fewer more densely packed blocks.
The SPEC benchmarks have lower IPCs, both because they
have smaller average block sizes and more flushes due to
branch mispredictions and i-cache misses.

To understand the theoretical ILP capability of EDGE ar-
chitectures, we conducted a limit study using an idealized
EDGE machine with perfect prediction, perfect predication,
perfect caches, infinite execution resources, and a zero-cycle
delay between tiles. Like TRIPS, we use a 1K window size
and limit dispatch and fetch to one new block every eight
cycles. Figure 9 shows that on average this ideal machine
only outperforms the prototype by roughly a factor of 2.5,

8

 Fetched Not Executed
 Executed Not Used

 Useful
 Moves

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCHCCCCCC

IP
C

bz
ip2

cra
ftygc

c
gz

ip
mcf

pe
rl
tw

olfvp
r

ap
pluap

si art

eq
ua

ke
mes

a

EEM
BC

SPECIN
T

SPECFP
a2

tim
e

rsp
ee

d
os

pf

ro
ute

loo
ku

p

au
toc

or

co
nv

en
fb

ita
l fft

80
2.1

1a

8b
10

b

fm
rad

io ct
co

nv

matr
ix

va
dd

HHHHHHHHHHHHHHH

mgr
id
sw

im

wup
wise

Geometric MeanGeo
metr

ic

M
ea

n

Figure 8. Instructions per clock (IPC) on compiled (C) and hand-optimized (H) benchmarks.

 Ideal Machine − Dispatch Cost 0

 Hardware
 Ideal Machine

 0

 10

 20

 30

 40

 50

CCCCCCCCCCHCCCCCCCCCCCCCCC H C H

a2
tim

e

rsp
ee

d

H

os
pf

ro
ute

loo
ku

p

H H

au
toc

or

co
nv

en

H H

fb
ita

l
fft

H H

80
2.1

1a

H

8b
10

b

H

fm
rad

io

H

ct
co

nv

H

matr
ix

H H

va
dd

bz
ip2

C C C

cra
fty gc

c

C

gz
ip

mcf

C

pe
rlb

mk

C C

tw
olf

C
vp

r

C
ap

plu ap
si art

eq
ua

ke
mes

a

mgr
id

sw
im

wup
wise

EEM
BC

SPECIN
T

SPECFP

IP
C

27
63 72 38

33

29
49 36

507
6

20

111

61

630

147

24 104 43

179

Geo
metr

ic

M
ea

n

Geometric Mean
Figure 9. IPC for TRIPS and benefits for two idealized EDGE designs.

indicating only moderate room for improvement due to low
inherent application ILP, dispatch cost, and limited window
size. Simulating this ideal machine with a zero-cycle dis-
patch cost increases the IPC on average by a factor of four.
However, eliminating only the dispatch delay on TRIPS im-
proves performance by only 10%, which indicates that dis-
patch is not the primary bottleneck on the hardware. We an-
notate the top of the SPEC bars with the IPC for the ideal
machine with a 128K instruction window and a dispatch cost
of zero cycles. The SPEC benchmarks have a wide range
of available ILP, with most benchmarks around 50 IPC but
some FP benchmarks having IPCs in the hundreds. The sim-
ple benchmarks have a similar range of IPCs. Several, such
as 802.11a and 8b10b, are inherently serial and do not ex-
ceed 15. Others, such as vadd and fmradio, are quite con-
current with IPCs of 1000 and 500 respectively on the ideal
machine with a 128K window, but are resource limited on
the hardware. This study reveals that the amount of ILP cur-
rently available to TRIPS is limited and that larger window
machines have the potential to further exploit ILP.

6. TRIPS versus Commercial Platforms
This section compares TRIPS to conventional processors us-
ing cycle counts from performance counters, which normal-
izes for different clock rates. We use hand-optimized bench-

marks for TRIPS to show the potential of the system and
compiled benchmarks to show the current state of the TRIPS
compiler. We compare to the GNU C compiler (gcc) and the
native Intel compiler (icc) on the reference machines to iden-
tify the effect of platform-specific optimizations. The quality
of scalar optimization in gcc is more similar to the TRIPS
compiler, since the TRIPS compiler is an academic research
compiler. Consequently, we normalized performance to the
Core 2 using the gcc compiler.

Simple Benchmarks: The left side of Figure 10 shows
relative performance (computed as a ratio of cycles executed
relative to the Core 2 using gcc) for TRIPS hand-optimized
code, TRIPS compiled code, icc-compiled code for the Intel
Core 2, and gcc-compiled code for the Intel Core 2, Pentium
4, and Pentium III. The TRIPS compiler achieves equivalent
performance to the Core 2 on average, with better perfor-
mance on nine benchmarks and worse performance on six.
Benchmarks with smaller speedups (rspeed) employ sequen-
tial algorithms that do not benefit from increased execution
bandwidth or deep speculation. The benchmarks that show
the largest speedups (matrix and 8b10b) typically have sub-
stantial parallelism exposed by the large window on TRIPS.
The TRIPS hand-optimized code always outperforms the
Core 2, with an average 2.9x cycle count reduction.

9

 Pentium 3
 Pentium4

 TRIPS Hand
 TRIPS Compiler
 Core2−icc

 0
 1
 2
 3
 4
 5
 6
 7
 8

Sp
ee

du
p

(c
yc

le
s)

SPECFP

SPECIN
T

wup
wise

sw
im

mgr
id

mes
a

eq
ua

keartap
si

ap
plu

am
mp

vp
r

tw
olf

pe
rlb

mk
bz

ip2
pa

rse
r

mcfgz
ipgc

c

cra
fty

EEM
BC

a2
tim

e

rsp
ee

d
os

pf

ro
ute

loo
ku

p

au
toc

or

co
nv

en
fb

ita
l fft

80
2.1

1a

8b
10

b

fm
rad

io
co

nv ct

matr
ix

va
dd

Geometric MeanGeo
metr

ic

M
ea

n

Figure 10. Speedup of TRIPS relative to the Core 2 on simple, EEMBC, and SPEC benchmarks.

The performance differences between TRIPS compiled
and hand-optimized code are primarily due to more aggres-
sive block formation, unrolling, and scalar replacement. For
example, 8b10b benefits from unrolling the innermost loop
of the kernel to create a full 128-instruction block and from
register allocating a small lookup table. In fmradio, the hand-
optimized code fuses loops that operate on the same vector,
and uses profile information to exclude infrequently taken
paths through the kernel.

To show the ability of the TRIPS architecture to exploit a
large number of functional units, we compare a TRIPS hand-
optimized and hand-scheduled matrix multiply [4] to the
state-of-the-art hand-optimized assembly versions of Goto-
BLAS Streaming Matrix Multiply Libraries on Intel plat-
forms [7]. We use the best published results from library im-
plementations for conventional platforms (not the results in
Figure 10). The performance across platforms, measured in
terms of FLOPS Per Cycle (FPC), ranges from 1.87 FPC
on the Pentium 4 to 3.58 FPC on the Core 2 using SSE.
The TRIPS version achieves 5.20 FPC without the benefit
of SSE, which is 40% better than the best Core 2 result.

SPEC CPU2000: The right side of Figure 10 compares
performance on SPEC2000 using reference data sets. TRIPS
performance is much lower on the SPEC benchmarks than
on the simple benchmarks. While floating-point perfor-
mance is nearly on par with Core 2-gcc (Core 2-icc achieves
a 1.9x speedup over TRIPS), integer performance is less than
half that of the Core 2. Table 3 shows several events that
have a significant effect on performance: conditional branch
mispredictions, call-return mispredictions, I-cache misses,
and load flushes for TRIPS, normalized to events per 1000
useful TRIPS instructions. Also shown are the branch mis-
predictions and I-cache misses for the Core 2, normalized to
the same 1000 TRIPS instruction-baseline to ease cross-ISA
comparison. The rightmost column shows the average useful
TRIPS instructions in the window, from Figure 6.

Several of the SPECINT benchmarks have frequent I-
cache misses, such as crafty, gcc, perlbmk, and twolf. These
benchmarks are known to stress the instruction cache, and
the block-based ISA exacerbates the miss rate because of
TRIPS code expansion and the compiler’s inability to fill

Per 1000 useful instructions
Core 2 TRIPS TRIPS Core 2 TRIPS TRIPS Average

cond. br. cond. br. call/ret I-cache I-cache load useful insts
misses misses misses misses misses flushes in flight

bzip2 1.3 1.6 0.0 0.0 0.0 0.09 342.5
crafty 4.5 3.0 0.5 1.7 17.2 0.35 151.8
gcc 7.4 7.0 1.8 3.1 18.5 0.52 73.0
gzip 4.8 4.3 0.0 0.0 0.0 0.04 206.1
mcf 14.0 6.3 0.0 0.0 0.0 0.13 373.6
parser 2.0 3.2 0.1 0.0 0.6 0.04 —
perlbmk 2.5 0.4 8.3 0.0 13.0 0.19 106.9
twolf 8.5 4.8 0.1 0.0 8.2 0.36 275.2
vpr 0.5 1.4 0.5 0.0 3.2 0.40 221.8

ammp 0.2 1.5 0.1 0.0 1.0 0.05 —
applu 0.0 0.7 0.0 0.0 0.0 0.01 496.6
apsi 0.0 2.4 0.0 0.0 0.0 0.11 249.7
art 0.4 0.0 0.0 0.0 0.0 0.01 692.2
equake 0.2 0.6 0.0 0.0 0.9 0.08 337.9
mesa 1.4 1.6 0.0 0.0 3.5 0.04 199.4
mgrid 0.0 0.1 0.0 0.0 0.0 0.00 519.8
swim 0.0 1.0 0.0 0.0 0.0 0.00 416.1
wupwise 0.0 0.7 0.5 0.0 0.8 0.04 496.9

Table 3. Performance counter statistics for SPEC.

the fixed-size 128-instruction blocks. Perlbmk also has an
unusually high number of call/return mispredictions, due
to an insufficiently tuned call and branch target buffer in
TRIPS. All of these factors reduce the utilization of the
instruction window; for example, gcc has an average of only
73 useful instructions in flight, out of a possible 121 based on
the average block size. While the TRIPS call/return flushes
and I-cache misses cause serious performance losses, branch
mispredictions are competitive with the Core 2 and load
dependence violations are infrequent. Benchmarks that have
the most useful instructions in the window compare best
to Core 2, such as art and mgrid. These benchmarks are
known to contain parallelism, and show good performance
with little compiler or microarchitectural tuning.

7. Lessons Learned
The prototyping effort’s goals were twofold: to determine
the viability of EDGE technology and to learn the right (and
wrong) ways to build an EDGE machine. This design and
evaluation effort taught us the following lessons about how
to build this class of architectures.

EDGE ISA: Prototyping has demonstrated that EDGE
ISAs can support large-window, out-of-order execution with
less complexity than an equivalent superscalar processor.

10

However, the TRIPS ISA had several significant weak-
nesses. Most serious was the limited fanout of the move
instructions, which results in far too many overhead instruc-
tions for high-fanout operations. The ISA needs support for
limited broadcasts of high-fanout operands. In addition, the
binary overhead of the TRIPS ISA is too large. The 128-
byte block header, with the read and write instructions, adds
too much per-block overhead. Future EDGE ISAs should
shrink the block header to no more than 32 bytes and sup-
port variable-sized blocks in the L1 I-cache to reduce the
NOP bloat, despite the increase in hardware complexity.

Compilation: The TRIPS compiler can generate correct
code with reasonable quality for the TRIPS ISA, despite the
new burdens the ISA places on the compiler. We believe
that an industrial production compiler could achieve code
quality similar to our hand-optimized results because the
most effective hand-optimizations are largely mechanical.
Because of the challenges presented by block constraints,
we moved structural optimizations, such as loop unrolling
and hyperblock formation, to the back end after code genera-
tion. A remaining challenge is how best to form large blocks
in control-intensive code. For example, frequent function
calls that end blocks too early cannot be solved by inlining
without substantial re-engineering to move this optimization
from its traditional position in the front end to the back end.
Another opportunity is to allocate more variables in reg-
isters, which requires better alias analysis of pointer data
structures; the best hand-generated code replaced store-load
pairs with intra-block temporary communications, produc-
ing tighter code and higher performance.

Microarchitecture: A microarchitecture with distributed
protocols is feasible; the fully functional silicon indicates
that the tiled nature of the architecture aided in both de-
sign and validation productivity. Another positive result is
that the design eliminates distributed block control protocols
(fetch, dispatch, commit, and flush) from the critical path.
However, a number of artifacts in the microarchitecture re-
sulted in significant performance losses. Most important was
traffic on the operand network, which averaged just under
one hop per operand. This communication resulted in both
OPN contention and communication cycles on the critical
path. Follow-on microarchitectures must map instructions,
in coordination with the compiler, so that most instruction-
to-instruction communication occurs on the same tile. The
second most important lesson was that performance losses
due to the evaluation of predicate arcs was occasionally
high, since arcs that could have been predicted as branches
are deferred until execution. Future EDGE microarchitec-
tures must support predicate prediction to evaluate the most
predictable predicate arcs earlier in the pipeline. Third, the
primary memory system must be distributed among all of
the execution tiles; the cache and register bandwidth along
one edge of the execution array was insufficient for many
bandwidth-intensive codes.

8. Conclusions
At its inception, the TRIPS design and prototyping ef-
fort addressed three questions: (1) whether a distributed,
tiled, EDGE-based processor was feasible, (2) whether
EDGE ISAs form a manageable compiler target, and (3)
whether an EDGE-based processor can support improved
general-purpose, single-threaded performance. This evalua-
tion shows that the TRIPS ISA and microarchitecture are in
fact feasible to build, resulting in a tiled design that exploits
out-of-order execution over a window of many hundreds
of instructions. Despite the inter-tile routing latencies, the
combination of the large window, dynamic issue, and highly
concurrent memory system permits TRIPS to sustain up to
10 IPC, showing an average three-fold cycle count speedup
over a Core 2 processor, if hand-optimized kernels are used.

However, the compiled cycle counts on major bench-
marks, such as SPECINT and SPECFP, are not competi-
tive with industrial designs, despite the greater computa-
tional resources present in TRIPS. On compiled SPEC2000
benchmarks, measuring cycle counts, the TRIPS proto-
type achieves 60% of the performance of a Core 2 run-
ning SPEC2000 compiled at full optimization with gcc.
Despite the fact that the TRIPS design was built by fewer
than twenty people in an academic environment, this level
of performance does not support the hypothesis that EDGE
processors could outperform leading industrial designs on
large, complex applications. Even doubling the TRIPS per-
formance would likely result in speedups too small to justify
a switch to a new class of ISAs. These limitations are due
partially to inefficiencies in the ISA and microarchitecture,
but may also result from mismatches between certain pro-
gram features and EDGE ISAs. For example, benchmarks
with many indirect jumps, or unusually complex call graphs
with many small functions, are difficult to compile into large
blocks without a debilitating increase in binary size.

Nevertheless, the TRIPS prototype was a first-generation
design, being compared to an extremely mature model, and
there is much low-hanging fruit remaining in EDGE de-
signs. The prototyping effort taught several lessons that re-
sult in significant improvements in both power and per-
formance. Future EDGE designs should have support for
variable-sized blocks, multicast of operands, predicate pre-
diction, a more distributed/scalable memory system, smaller
block headers, and less distributed mappings of instructions
to tiles [19]. Also, since not all codes have high concurrency,
future EDGE-based microarchitectures must allow adaptive
granularity, providing efficient small configurations when
larger configurations provide little performance benefit [12].
We project that these improvements will enable EDGE de-
signs to outperform high-end commodity systems on com-
plex integer codes, but not by enough to justify deployment
in full-power desktop systems. In the five-to-ten watt space,
however, the performance and potential energy efficiency of
EDGE designs may be sufficiently large to justify adoption

11

in mobile systems or data centers, where high performance
at low power is essential.

Acknowledgments
This research is supported by a Defense Advanced Research
Projects Agency contract F33615-01-C-4106 and by NSF
CISE Research Infrastructure grant EIA-0303609.

References
[1] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,

A. G. Saidi, and S. K. Reinhardt. The M5 Simulator:
Modeling Networked Systems. In IEEE Micro, pages 52–
60, July/August 2006.

[2] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K.
John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald,
W. Yoder, and the TRIPS Team. Scaling to the End of Silicon
with EDGE Architectures. IEEE Computer, 37(7):44–55, July
2004.

[3] K. Coons, X. Chen, S. Kushwaha, D. Burger, and K. McKin-
ley. A Spatial Path Scheduling Algorithm for EDGE Architec-
tures. In International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
129–140, October 2006.

[4] J. Diamond, B. Robatmili, S. W. Keckler, K. Goto, D. Burger,
and R. van de Geijn. High Performance Dense Linear
Algebra on Spatially Partitioned Processors. In Symposium
on Principles and Practice of Parallel Programming, pages
63–72, February 2008.

[5] http://www.eembc.org.

[6] M. Gebhart et al. An Evaluation of the TRIPS Computer
Systems (Extended Technical Report). Technical Report TR-
08-31, Department of Computer Sciences, The University of
Texas at Austin, December 2008.

[7] K. Goto and R. A. van de Geijn. Anatomy of High-
Performance Matrix Multiplication. ACM Transactions on
Mathematical Software, 34(12):4–29, May 2008.

[8] P. Gratz, K. Sankaralingam, H. Hanson, P. Shivakumar,
R. McDonald, S. W. Keckler, and D. Burger. Implementation
and Evaluation of a Dynamically Routed Processor Operand
Network. In International Symposium on Networks-on-Chip,
pages 7–17, May 2007.

[9] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore
Era. IEEE Computer, 41(7):33–38, July 2008.

[10] D. Jiménez. Piecewise Linear Branch Prediction. In
International Symposium on Computer Architecture, pages
382–393, June 2005.

[11] C. Kim, D. Burger, and S. W. Keckler. An Adaptive Non-
Uniform Cache Structure for Wire-Dominated On-Chip
Caches. In International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
211–222, October 2002.

[12] C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganathan,
D. Gulati, S. W. Keckler, and D. Burger. Composable
Lightweight Processors. In International Symposium on
Microarchitecture, pages 281–294, December 2007.

[13] B. Maher, A. Smith, D. Burger, and K. S. McKinley. Merging
Head and Tail Duplication for Convergent Hyperblock
Formation. In International Symposium on Microarchitecture,
pages 65–76, December 2006.

[14] S. Melvin and Y. Patt. Enhancing Instruction Scheduling With
a Block-Structured ISA. International Journal on Parallel
Processing, 23(3):221–243, June 1995.

[15] A. Moshovos and G. S. Sohi. Speculative Memory Cloaking
and Bypassing. International Journal of Parallel Program-
ming, 27(6):427–456, December 1999.

[16] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keck-
ler. A Design Space Evaluation of Grid Processor Archi-
tectures. In International Symposium on Microarchitecture,
pages 40–51, December 2001.

[17] PAPI: Performance Application Programming Interface.
http://icl.cs.utk.edu/papi.

[18] R. M. Rabbah, I. Bratt, K. Asanovic, and A. Agarwal.
Versatility and VersaBench: A New Metric and a Benchmark
Suite for Flexible Architectures. Technical Report TM-646,
Laboratory for Computer Science, Massachusetts Institute of
Technology, June 2004.

[19] B. Robatmili, K. E. Coons, D. Burger, and K. S. McKinley.
Strategies for Mapping Data Flow Blocks to Distributed
Hardware. In International Symposium on Microarchitecture,
pages 23–34, November 2008.

[20] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan,
S. Drolia, M. S. Govindan, P. Gratz, D. Gulati, H. Hanson,
C. Kim, H. Liu, N. Ranganathan, S. Sethumadhavan, S. Sharif,
P. Shivakumar, S. W. Keckler, and D. Burger. Distributed Mi-
croarchitectural Protocols in the TRIPS Prototype Processor.
In International Symposium on Microarchitecture, pages 480–
491, December 2006.

[21] A. Seznec and P. Michaud. A Case for (Partially) TAgged
GEometric History Length Branch Prediction. Journal of
Instruction-Level Parallelism, Vol. 8, February 2006.

[22] T. Sherwood, E. Perelman, and B. Calder. Basic Block Dis-
tribution Analysis to Find Periodic Behavior and Simulation
Points in Applications. In International Conference on Par-
allel Architectures and Compilation Techniques, pages 3–14,
September 2001.

[23] A. Smith, J. Gibson, B. Maher, N. Nethercote, B. Yoder,
D. Burger, K. S. McKinley, and J. Burrill. Compiling for
EDGE Architectures. In International Symposium on Code
Generation and Optimization, pages 185–195, March 2006.

[24] A. Smith, R. Nagarajan, K. Sankaralingam, R. McDonald,
D. Burger, S. W. Keckler, and K. S. McKinley. Dataflow Pred-
ication. In International Symposium on Microarchitecture,
pages 89–102, December 2006.

[25] http://www.spec.org.

[26] B. Yoder, J. Burrill, R. McDonald, K. Bush, K. Coons,
M. Gebhart, M. Govindan, B. Maher, R. Nagarajan, B. Robat-
mili, K. Sankaralingam, S. Sharif, A. Smith, D. Burger, S. W.
Keckler, and K. S. McKinley. Software Infrastructure and
Tools for the TRIPS Prototype. In Workshop on Modeling,
Benchmarking and Simulation, June 2007.

12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

