
Energy-Performance Tradeoffs in Processor Architecture
and Circuit Design: A Marginal Cost Analysis

Omid Azizi∗ Aqeel Mahesri† Benjamin C. Lee∗ Sanjay J. Patel‡ Mark Horowitz∗

∗Dept of Electrical Engineering †NVIDIA Corporation ‡Dept of Electrical and Computer Engineering
Stanford University Santa Clara, CA University of Illinois at Urbana-Champaign

Stanford, CA amahesri@nvidia.com Urbana, IL
{oazizi,bcclee,horowitz}@stanford.edu sjp@illinois.edu

ABSTRACT
Power consumption has become a major constraint in the de-
sign of processors today. To optimize a processor for energy-
efficiency requires an examination of energy-performance trade-
offs in all aspects of the processor design space, including
both architectural and circuit design choices. In this pa-
per, we apply an integrated architecture-circuit optimiza-
tion framework to map out energy-performance trade-offs of
several different high-level processor architectures. We show
how the joint architecture-circuit space provides a trade-off
range of approximately 6.5x in performance for 4x energy,
and we identify the optimal architectures for different design
objectives. We then show that many of the designs in this
space come at very high marginal costs. Our results show
that, for a large range of design objectives, voltage scaling
is effective in efficiently trading off performance and energy,
and that the choice of optimal architecture and circuits does
not change much during voltage scaling. Finally, we show
that with only two designs—a dual-issue in-order design and
a dual-issue out-of-order design, both properly optimized—
a large part of the energy-performance trade-off space can
be covered within 3% of the optimal energy-efficiency.

Categories and Subject Descriptors
C.4 [Performance of Systems]: design studies, modeling
techniques; C.1.0 [Processor Architectures]: General

General Terms
Design, Performance

Keywords
Microarchitecture, Energy efficiency, Design trade-offs, Op-
timization, Design space exploration, Co-optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

1. INTRODUCTION
Technology scaling has historically been a driving force

behind microprocessor performance. As the semiconductor
industry has scaled into very small feature sizes, however,
the need to control leakage current has prevented further
threshold and supply voltage scaling. This break from Den-
nard scaling [7] has led to rapid increases in power density,
and power consumption is now a primary constraint in all
microprocessor design [14]. Not only does power dissipation
impact battery-life in embedded devices, it also constrains
achievable performance in server architectures.

To optimize a microprocessor for energy-efficiency, a de-
signer must consider the cost-benefit trade-offs of all design
options, choosing those features and parameter values that
offer the best return in terms of performance per unit en-
ergy. While this strategy is straightforward in theory, in
practice, it has been difficult to automate since the space of
processor design options is often extremely large, and one
needs to consider trade-offs in the architecture, the circuit
design and potentially the technology.

Fortunately, previous research has already created many
of the pieces needed to create such an optimization frame-
work. Recent advances in microarchitectural design space
modeling through statistical sampling and regression tech-
niques have opened the door to large-scale architectural de-
sign space exploration and evaluation [18, 15]. At the circuit
level, there also exist numerous tools that can characterize
energy-delay trade-offs for a given circuit [22, 6]. Moreover,
work over the past few decades has created extremely effi-
cient methods to find the optimal solutions to problems with
convex optimization objective functions [3]. We leverage
these prior works to characterize a joint circuit-architecture
design space; by creating architectural models and circuit
trade-off characterizations that have log-convex1 forms, we
use geometric program solvers to optimize our model over
this joint design space to map out the overall energy perfor-
mance trade-off space. We have found that joint architecture
and circuit optimization can save between 15% to 150% of
the required energy, depending on the design objectives.

In this paper, we use this framework to explore a broad
space of designs ranging from a simple single-issue in-order
design to an aggressive quad-issue out-of-order machine. The
results of the optimization determine the choice of underly-

1log-convex functions are convex after applying log trans-
formation.

26

ing microarchitectural parameters, circuit implementations,
and operating voltage. Our results show that, without volt-
age scaling, the architectural and circuit trade-offs yielded a
performance range that was modest: the resulting optimal
energy-performance curves tend to have rapidly changing
marginal energy costs. Enhancing architecture design pa-
rameters to improve performance quickly requires large in-
creases in energy. Conversely, trying to save energy quickly
leads to rapid losses in performance. Voltage scaling has
more slowly diminishing marginal costs and we find, with
voltage scaling, a small subspace of architectures and cir-
cuits are efficient for a broad range of performance and en-
ergy targets.

2. OPTIMIZATION FRAMEWORK
To evaluate energy-performance trade-offs in the proces-

sor design space, we use a circuit-aware architecture opti-
mization framework. In this approach, we first create ar-
chitectural models using design space sampling and statis-
tical inference, capturing a large multi-dimensional space
of microarchitectural parameters. Next, we characterize the
energy-delay trade-offs of each of the underlying circuit blocks
that are found in processor designs, which we store in a cir-
cuit library. The architecture and circuit spaces are then
joined together to form an integrated design space model.
In this joint model, the architectural models are made aware
of the energy-delay trade-offs of the underlying circuits, and
any constraints that these circuits may place on the archi-
tecture are also enforced. This joint architecture-circuit de-
sign space is finally sent to an optimization/exploration en-
gine, which, given an optimization objective and resource
budgets, searches the space to find the most efficient de-
sign configuration. Figure 1 shows an overview of this co-
optimization framework.

The combination of these techniques creates a framework
that is both powerful and general. It is powerful since it en-
ables a rigorous study of marginal performance benefits and
energy costs of any design decision; with this framework we
can identify the parameter values that yield the most energy
efficient design for a performance target, or the highest pos-
sible performance design for a given energy target. It is gen-
eral because we can construct architectural models for any
system simply by extracting simulation samples from the de-
signer’s simulator of choice, and we can include circuit trade-
offs from a broad range of tools. In this framework, building
the architectural models and circuit libraries are generally
one-time costs, unless new architectures or circuits are being
explored. The design space exploration engine, because it
uses a convex optimizer, can produce optimized designs in
under 30 seconds.

In the following subsections, we provide a brief discussion
of each component of this optimization framework. For a
more in-depth examination of this framework, we refer the
reader to [1].

2.1 Architectural Modeling
At the architectural level, we require models that predict

how the architectural performance (CPI) of the overall sys-
tem changes as we change the underlying parameters. The
parameters at this level range from the choice of high-level
architecture to the tuning of microarchitectural knobs such
as cache sizes and functional unit latencies.

Traditionally, such modeling is done through simulation [2].

��������

Benchmark
App(s) 	�
���

�����
������������

Energy Budget

Optimized ������������

ADDER MULTIPLIER REG FILE I-CACHE

��������

������

	�
���

Circuit
Tradeoffs
Library

�����

�����������

������

������������

��������

�����������

Optimized
Micro-

Architecture

D

E

D

E

D

E

D

E
…

…

������������

� ����

�������Macro
Architecture

Figure 1: Overview of the optimization framework. Ar-
chitectural models are generated using sampling and fitting
methods. Energy-delay (E-D) trade-off curves are charac-
terized for each circuit. These design spaces are integrated,
and the design space exploration engine finds the optimized
design.

Long run times, however, make simulation intractable for
exploring large design spaces. To overcome this restriction,
recent works have proposed the use of statistical sampling
and inference to create fitted models from a relatively small
sample of design points [18, 15, 8]. In these approaches,
a small number of random design configurations (with ran-
domly selected design parameter values) are simulated in
the traditional manner; the simulation results are then used
to infer how the different design parameters interact and
affect overall performance. The inference process essen-
tially fits a model to the data through regressions. These
approaches produce predictive mathematical models which
can be quickly evaluated to estimate the performance in any
part of the captured space, and are powerful tools for design
space exploration. In previous works, Lee and Brooks used
cubic splines [18], whereas Ipek et al. used artificial neural
networks [15]; both were shown to produce good fits.

We use similar statistical techniques to create architec-
tural models in our framework. However, instead of the
previously suggested functional forms, we use posynomial
functions, which are mathematical functions consisting of
the sum of any number of positive monomial terms2 to pro-
duce the fits. Using posynomial functions offers the advan-
tage that, as log-convex functions, they can be optimized
very efficiently. The potential drawback is that posynomial
functions are less general than other forms such as cubic
splines, and can have difficulty capturing spaces with com-
plex behaviors involving hills and valleys. Fortunately, the
design knobs in the architectural performance space that we
are trying to capture usually have a monotonic, diminish-
ing returns profile: for example, reducing a unit’s latency
or increasing a cache size in the simulator typically only im-
proves performance. It is not expected that turning such
knobs would produce hills, valleys or plateaus which would
otherwise cause problems. We have compared our fits to cu-
bic spline fits and found them to be of comparable accuracy,
thus suggesting that the use of posynomial functions is not
generally a restricting factor in the models we produce.

When using a fitting approach to performance modeling,
there are still limitations of how much of the design space we
can effectively capture. The use of a smooth function such
as a posynomial lends itself well to capturing the tunable pa-
rameters in the design space. Thus, parameters such as la-

2A monomial is a product of powers of variables. For exam-
ple, kxaybzc is a monomial in the variables x, y and z with
k, a, b, and c as constants.

27

tencies of units and sizes of structures are often modeled well
through posynomial functions. On the other hand, discrete
changes to an architecture, such as in-order vs out-of-order
execution, or use of centralized vs distributed instruction
windows, are less natural to fit with continuous functions.
For these these latter design choices—which we refer to as
macro-architectural design choices—we generate individual
models that we optimize separately. Thus, the models we
generate predict CPI as a function of the latencies of units
and sizes of structures like caches, buffers and queues:

CPI = f(..., latencyi, ..., sizej , ...) (1)

Since each application behaves differently, we generate sep-
arate models for each benchmark using this approach. The
fitted models for each benchmark can then be composed to-
gether to produce an overall CPI for a suite of benchmarks.

The number of design space samples required to generate
a fit depends on the complexity of the system being modeled.
For example, we have found 200 samples often enough for
simple in-order processors, and 500 samples to be sufficient
for a complex superscalar out-of-order processor. We set
aside a fraction of these samples to perform validation. To
measure model error, we use the same metric as in [18]:
error = |predicted−actual|/actual. The average of median
errors over different benchmarks range from less than 1% to
6%; more complex macro-architectures such as out-of-order
processors tend to be harder to fit.

Figure 2 show three sample fits: a very accurate fit, a
typical fit, and a worse fit. Even in the worst case, which
is for a particular application running on a complex quad-
issue out-of-order processor, the median error is less than
10%. The CDFs of these three fits are also shown to give
the reader a sense of the distribution of errors in each of
these generated models.

2.2 Circuit Trade-offs Library
At the circuit/logic level, there is also a large space of de-

sign options. A given circuit can be implemented in various
ways that trade-off energy and delay. The design space at
this level includes the choice of circuit topology (e.g. ripple-
carry adders, carry-lookahead adders, etc.), logic synthesis
mappings, circuit styles (e.g. static, dynamic, etc.) and the
sizing of gates. Because the energy and delay characteristics
of these circuits can affect the energy and performance of
the higher-level system, we need to explore and characterize
this trade-off space for each circuit block.

There are many tools that can help explore the circuit
design space [6, 10, 22]. Given a circuit topology, many of
these tools can automatically generate energy-delay trade-
off curves. By trying different discrete circuit topologies
and circuit styles with these tools, one can create a large
trade-off space for a circuit [21]. Our optimization frame-
work is not dependent on the particular tool used to explore
the circuit design space; it only needs energy-delay points
for each circuit. These design points can be annotated so
that once a certain circuit energy-delay point is selected, we
can back-reference the annotation to determine the specific
circuit implementation.

Given a set of design points, our goal is to create a model
that predicts the energy cost of a unit per use. For purely
logic units, the trade-off is between energy and delay only.
For storage structures such as caches, buffers and queues,
the delay and energy also depend on their size. Thus, the

1.5 2 2.5 3 3.5 4 4.5 5
1.5

2

2.5

3

3.5

4

4.5

5

Actual

Pr
ed

ic
te

d

avg err = 0.011972 max err = 0.058451

(a)

0 1 2 3 4 5
0

1

2

3

4

5

Actual

Pr
ed

ic
te

d

avg err = 0.047662 max err = 0.19086

(b)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Actual

Pr
ed

ic
te

d
avg err = 0.10556 max err = 0.65865

(c)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Error

CD
F

Empirical CDF

(d)

Figure 2: Validation of three architectural models gener-
ated through posynomial design space fitting. (a)-(c) com-
pare model predictions to the results of the simulator. (a)
is a very accurate fit, (b) is a typical fit, and (c) is a worse
fit. (d) shows the cumulative distribution of errors for these
three models. Even in the worst case, the median error is
less than 10% for a performance range that spans 10x.

28

trade-off characterizations that we produce generally take
the form of:

Energy =f(Delay), for logic units (2)

Energy =f(Delay, Size), for memory structures (3)

Just as with the architectural models, we use posynomial
functions for f() to produce these characterizations.

We characterize circuits for unpipelined logic. We do this
intentionally because cycle time and pipeline depth are pa-
rameters in the optimization design space; we account for
the energy and delay overheads of inserting pipeline regis-
ters during design space integration.

2.3 Design Space Integration
To build the full system model, we need to integrate the

architectural and circuit design spaces. This requires making
the appropriate links between circuit delays and the pipeline
latencies, and then computing the total energy cost from
the underlying circuits. For example, one issue with archi-
tectural models is that a pipe stage can contain arbitrary
amounts of logic. In our integrated model, we make the ar-
chitectural model aware of the real delays of logic units. We
link the physical delays, Di, of units in the circuit library
to the cycle-based latency, Ni, in the architectural model
through the cycle time Tcyc. The number of pipe stages in
a unit is, therefore, the delay of the underlying circuit di-
vided by the clock period Tcyc (i.e. cutting the logic into
stages). Adding delay overheads for pipeline registers, we
get following relationship

Ni = Di/(Tcyc − Tff). (4)

where Tff includes register setup, clock-to-q times and clock
skew overheads.

The optimization framework treats the cycle time, Tcyc, as
a design space variable (along with Di and Ni), so it can also
explore different pipeline depths for a unit by changing Tcyc

while holding Di constant. There is, of course, an energy
cost associated with deeper pipelines that comes with an
increased number of pipeline registers. This is accounted
for in the energy models below.

There may also be certain units that cannot be pipelined.
Control units such as the next-PC logic, a processor’s in-
struction scheduler or stall logic may need to compute once
a cycle. This is an important consideration as it can place
constraints on the cycle time, affecting total performance.
In such cases, our framework allows us to specify that these
critical logic units cannot be pipelined, accounting for the
effects of such circuits on system performance.

We model total energy per instruction (EPI) as the sum of
three components: energy spent in logic blocks, in pipeline
registers, and in the the clock network. For the logic compo-
nent, total energy depends on the average energy consumed
per use of each circuit, Ei, times its activity rate αi:

EPIlogic =
X

i

(αi × Ei) (5)

The energy cost Ei links directly to the circuit trade-offs.
Thus, choosing to use faster circuits will naturally cause an
increase in total logic energy.

The energy spent in the registers and the clock network
both depend on the number of pipeline registers. We ap-
proximate the number of pipeline registers in each unit, Ri,
as a function of the number stages, Ni, and the average

logic width, Wi. Then, total register energy is the average
energy cost of a single register, Eff , times the total number
of pipeline registers in that unit, Ri, times the unit’s activity
factor, αi. Total clock energy is the total number of registers
times the average clock energy, Effclk, times the cycles per
instruction, CPI, to convert it to a per instruction basis.

Ri = (Ni)
η × Wi (6)

EPIregs =
X

i

(αi × Ri × Eff) (7)

EPIclk =
X

i

(Ri) × Effclk × CPI (8)

Here, the parameter η allows for modeling super-linear pipeline
register growth, and can be unique for each architectural
block. Eff and Effclk are extracted from real designs. Us-
ing these models means that increasing pipeline depth will
improve performance, but at an increased energy because of
a larger Ri.

For most units, the activity factor αi, which represents
the number of times a unit is used per instruction, can be
extracted from the application instruction mix and is con-
stant. With caches, however, the number of times a higher
level memory is accessed depends on the miss rate of the
cache below it. Thus, we also characterize the miss rate as a
function of cache size and use this data in the optimization
framework to account for the activity factors of higher level
memories as lower level caches change.

3. EXPERIMENTAL METHODOLOGY
We use the optimization framework of Section 2 to ex-

plore energy-performance trade-offs in the processor design
space. For this study, we examine six different processor ar-
chitectures: single-issue, dual-issue and quad-issue designs
with both in-order and out-of-order execution. This cov-
ers a large range of the traditional architecture space, from
a simple lower-energy, low-performance single-issue in-order
processor to an aggressive higher-energy, high-performance
quad-issue out-of-order processor. We note that this set of
architectures builds in scope on those examined by previous
works [19, 15, 8], all of which looked at superscalar, out-of-
order designs only.

For each of these high-level architectures, there are also
many tunable microarchitectural parameters that trade-off
energy and performance. Table 1 lists these parameters for
the design space we explore. This microarchitectural space
includes billions of possible design configurations, without
even taking into account the circuit design space we explore.

We use a large 8MB L2 cache with a fixed access time in
this study. Because the clock cycle time of the core is an
optimization parameter, the relative access latency in cycles
can still vary, and so the L2 access latency is included in the
design space. The DRAM latency is likewise included in the
design space because the core frequency can change. The
large L2 cache was used because it reduces costly accesses
(both energy and delay-wise) to the main memory and lets
us focus on the energy-efficiency of the processing core.

We use a YAGS branch predictor [9] in all architectures
except the single-issue in-order design, where we use simple
2-bit counters instead. We tried both predictors on all archi-
tectures. From an energy-performance perspective, the per-
formance return of the YAGS predictor was usually worth
the small increase in total energy. We found the 2-bit coun-

29

Table 1: Micro-architectural design space parameters.
Parameter Range

Branch predictor 0-1024 entries
BTB size 0-1024 entries

I-cache (2-way) size 2-32KB
D-cache (4-way) size 4-64KB

Fetch latency 1-3 cycles
Decode/Reg File/Rename lat. 1-3 cycles

Retire latency 1-3 cycles
Integer ALU latency 1-4 cycles

FP ALU latency 3-12 cycles
L1 D-cache latency 1-3 cycles

ROB size 4-32 entries
IW (centralized) size 2-32 entries

LSQ size 1-16 entries
L2 cache latency 8-64 cycles
DRAM latency 50-200 cycles

Cycle Time unrestricted
Supply Voltage 0.7-1.4 V

ters were still useful for very low energy budgets, so we use
this simpler predictor for the single-issue in-order design.
The lower CPI of these simple designs also means that more
aggressive predictors are not as important.

As benchmark suites, we use a subset of SPEC CPU bench-
marks. We simulate 500 randomly generated design config-
urations per benchmark, from which we then generate our
architectural models through statistical inference. We set
aside a percentage of these these samples for validating our
models. Median fitting errors are listed in Table 2; on aver-
age, our models have errors of 6.0% or less.

To create the circuit energy-delay characterizations for our
circuit libraries, we use a mixed approach. For logic units
and small memory structures (queues, register files, etc.),
we build Verilog implementations, and use Synopsys Design
Compiler to synthesize each of these blocks. The synthesis is
based on a CMOS 90nm technology standard cell library. By
sweeping the timing constraint on these blocks, Design Com-
piler produces different logic topologies, synthesis mappings
and gate sizings that trade-off energy and delay. Designs
with tighter delay constraints use more aggressive mappings
and larger gates, resulting in higher energy per use.

For larger memories such as the memory caches and the
BTB, we use CACTI 6.0 [20] to characterize the energy-
delay trade-off space. CACTI searches the space of possible
SRAM memory organizations to evaluate access time and
power characteristics of design points. We use CACTI to
extract all energy-delay points in this search space, which
we then use to construct energy-delay trade-off models.

We use this approach to characterize the energy-delay
trade-offs for all the major blocks in the processor: the
ALUs, the caches, the reorder buffer, the instruction win-
dow, etc. While we have taken care to include all major
components in a processor, there are often numerous smaller
units and state registers that are present in commercial de-
signs that we are not including. Moreover, while character-
izing energy-delay trade-offs for individual circuit blocks is
straightforward, accounting for the communication and con-
trol in a processor is more difficult, and is often done with
empirical data. We have created first-order models of these
effects, but we expect others, with more data to draw on,
to improve our models in the future. While the detailed
results will change as the underlying models improve, we
believe that the general trends and conclusions in our study
will still hold true.

200 400 600 800 1000 1200 1400 1600 1800 2000
50

100

150

200

250

300

350

Performance (MIPS)

En
er

gy
 (p

J
pe

r i
ns

tru
ct

io
n)

in−order, 1−issue
in−order, 2−issue
in−order, 4−issue
out−of−order, 1−issue
out−of−order, 2−issue
out−of−order, 4−issue

in−order, 2−issue

in−order
4−issue

ooo
4−issue

in−order, 1−issue
D1

D2

D3

ooo
2−issue

D4

Figure 3: Overall energy-performance trade-offs of our six
macro-architectures for a 90nm CMOS technology, produced
by jointly optimizing microarchitectural and circuit param-
eters. As the performance is pushed, the optimal choice of
macro-architecture changes to progressively more aggressive
machines. Design details for the circled design points are
shown in Table 3.

4. DESIGN SPACE OPTIMIZATION
We apply the optimization framework to each of our high-

level architectures. The resulting energy-performance trade-
offs for these architectures are shown in Figure 3. These
Pareto-optimal curves show the entire range of trade-offs. As
performance is pushed, each architecture uses more aggres-
sive structures and circuits, causing the energy consumed
per instruction to increase. Given an energy budget or per-
formance target, a designer can use these curves to identify
the most appropriate design.

We note that these Pareto-optimal trade-off curves be-
tween performance and energy are more general than com-
monly used metrics like ED or ED2. EDn metrics es-
sentially set an exchange ratio between energy and perfor-
mance, with higher powers of n favoring more performance;
in this sense, they can be somewhat arbitrary. Graphi-
cally, EDn metrics define a set of iso-cost contours in the
energy-performance space. For example, in a log/log energy-
performance plot ED would correspond to slope 1 lines, and
ED2 would correspond to slope 2 lines. Minimizing for ei-
ther metric would produce the point on the Pareto-optimal
curve where its slope matches the slope of the chosen met-
ric. Thus, optimizing for EDn with a particular value of
n would correspond to a particular point on the Pareto-
optimal curve. Since one generally wants to design for a spe-
cific performance target or energy budget, neither of these
points is necessarily the desired answer. Representing the
results as a trade-off curve between energy per operation
and performance provides a more complete picture of the
design space to designers.

The overall trade-off space spans approximately 6.5x in
performance—from about 300 MIPS to 1950 MIPS—and 4x
in energy—from about 80 pJ/op to 320 pJ/op. The vari-
ous architectures contribute different segments to the over-
all energy-efficient frontier. As one would expect, the single-

30

Table 2: Errors of architectural models generated through statistical inference.
1-issue 2-issue 4-issue 1-issue 2-issue 4-issue
in-order in-order in-order out-of-order out-of-order out-of-order

bzip2 0.0049 0.0055 0.0041 0.0376 0.0443 0.0466
crafty 0.0618 0.0670 0.0825 0.0656 0.0774 0.0777
eon 0.0393 0.0925 0.0794 0.0637 0.0750 0.0727
gap 0.0110 0.0113 0.0130 0.0458 0.0501 0.0477
gcc 0.0445 0.0231 0.0658 0.0493 0.0630 0.0554
gzip 0.0125 0.0124 0.0625 0.0348 0.0410 0.0424
mcf 0.0233 0.0569 0.0578 0.0583 0.0642 0.0899

parser 0.0063 0.0139 0.0087 0.0341 0.0413 0.0380
perlbmk 0.0337 0.0207 0.0362 0.0562 0.0738 0.0598

twolf 0.0236 0.0340 0.0314 0.0408 0.0597 0.0527
average 0.0261 0.0337 0.0442 0.0486 0.0590 0.0583

Table 3: Design Configuration Details For Selected Design Points.
D1 D2 D3 D4

In-order vs out-of-order in-order in-order out-of-order out-of-order
Issue width 1-issue 2-issue 2-issue 4-issue
Cycle time (FO4) 27.5 16.9 17.2 16.3
Branch pred size (entries) 264 600 1024 870
BTB size (entries) 64 90 554 1024
I-cache size (KB) 21 32 32 32
D-cache size (KB) 8 11 14 42
Fetch latency 1.0 1.6 2.2 2.1
Decode/Rename latency 1.0 1.7 2.4 3.0
Retire latency N/A N/A 2.0 2.2
Integer ALU latency 1.0 1.0 1.0 1.0
FP ALU latency 3.0 4.0 3.9 4.1
L1 D-cache latency 1.0 1.1 1.1 1.1
ROB size N/A N/A 22 32
IW size N/A N/A 11 9
LSQ size N/A N/A 16 16

issue in-order architecture is appropriate for very low energy
design points, while the quad-issue out-of-order is only ap-
propriate at very high performance points. In between these
two extremes, we find that the dual-issue in-order and out-
of-order processors are efficient for large parts of the design
space. Thus, the order in which high-level architectural fea-
tures should be considered from a basic single-issue design
is, first, superscalar issue, and then, if more performance
is still needed, out-of-order processing. From the perspec-
tive of marginal energy per unit performance, the move to a
superscalar design is cheaper than investing in out-of-order
processing. The quad-issue in-order design is only efficient
for a small performance range, not being as energy-efficient
as the dual-issue in-order design at lower energy points, and
being outmatched at high performance points by the dual-
issue out-of-order design. The single-issue out-of-order de-
sign is never efficient and does not contribute to the overall
efficient frontier. This architecture represents a design that
is out of balance. Being able to issue only a single instruction
becomes a bottleneck to the out-of-order processor, resulting
in wasted effort.

We can also examine how the various underlying param-
eters are changing throughout the design space. In Ta-
ble 3, we examine these parameters for design points D1
through D4 as marked on Figure 3. Not surprisingly, as
we push for more performance, the frequency and structure
sizes generally increase, while latencies generally decrease.
Some of the latencies show fractional values which would
need to be snapped to discrete values, although techniques
such as time borrowing and register retiming can also be
used to work with the results. We highlight a few points
from these results. First, both the I-cache and D-cache tend
to stay away from small sizes, even when targeting lower-
performance points. Across the design points, the D-cache
reaches a minimum of 8KB even though a 4KB cache is

available, and the I-cache never goes below 20KB. Although
a smaller cache is less expensive to access, a larger cache po-
tentially saves energy by reducing the number of misses that
incur a more expensive access to higher level caches. Thus,
for lower power design points, the optimizer determines that
the marginal savings it can achieve by reducing misses out-
weighs the access cost of the larger caches, ultimately finding
the right balance and settling on the chosen values. In these
results, the I-cache tends to have larger sizes than the D-
cache; the I-cache has higher hit rates which means that the
marginal cost of increasing its size (per unit performance of-
fered) is lower. Generally, these results show the importance
of caches in energy-efficient designs as a way to both save
energy and increase performance.

Secondly, we note that the instruction window (IW) is
relatively small compared to the maximum available IW of
size 32. In this case, a larger IW increases the complexity
(and delay) of the instruction dispatch logic. Since, in this
machine, the dispatch logic must execute every cycle, the
delay of the dispatch circuitry can adversely affect the clock
frequency. The optimizer realizes this trade-off and finds the
right balance between architectural performance through a
higher CPI and pipeline performance through a higher cycle
time. Moving from design point D3 to D4, the instruction
window size backs off to accommodate frequency scaling.
We see a similar effect in the branch predictor size, another
structure that needs to execute once per cycle.

Finally, we note that the delays of units such as the in-
teger ALU and the D-cache are critical to resolving data
dependencies. It is usually worth the energy cost to ensure
these units fit into one clock cycle, so the optimizer always
ensures that this is the case. Of course, this is not a sur-
prising fact, and is confirmed by current design practices.
It is important to note, however, that the delays of these
units are changing with the cycle time, so it is not the case

31

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Performance loss

En
er

gy
 o

ve
rh

ea
d

max
min

Figure 4: Plot showing inefficiency caused by using fixed
circuit data. Fixed circuit libraries both reduce the achievable
peak performance and require more energy than a jointly op-
timized design. Each fixed library is placed along the x-axis
by the performance loss of its fastest solution, so a circuit
library at 1% off the minimum delay is located at near 0
performance loss and circuits at 50% off from the minimum
delay cause the overall system to slow down 37%. For each
library we then find the energy overheads compared to the
jointly optimized design. The dotted line is the max overhead
throughout the architectural design space, while the solid line
is the min overhead. No fixed circuits provide good perfor-
mance with low energy overhead.

that the same implementations are being used throughout
the design space. Machines with more aggressive cycle times
use faster, higher energy versions of these circuits, whereas
the lower power design points use lower-energy circuit im-
plementations.

4.1 Circuit Trade-offs
The circuit-aware approach that we use integrates delay

and energy information into the optimization, exposing dif-
ferent energy-delay design points to the design space explo-
ration. This improves upon most architectural design space
tools and studies which typically use fixed energy costs for
each circuit (e.g. Wattch [5], others [26, 17]).

This additional fidelity allows us to trade-off the energy
and delay within a circuit to find the optimal circuit oper-
ating point. As a result, the optimizer can choose to slow
down a circuit to save energy when it does not need to run
as fast, or it can allocate more energy to a circuit to speed
it up if it finds that circuit to be critical to the system per-
formance. This is an important consideration in the opti-
mization space, especially when we consider that different
circuits will be optimal at different performance targets.

To evaluate the advantage of exposing the circuit trade-
off space, we compare our approach to a fixed energy cost
approach. We restrict our circuit libraries to single energy-
delay points, sweeping the fixed points to be at 1, 5, 10,
15, 20, 25 and 50% of the minimum delay. For each of
these ‘fixed’ circuit libraries, we then run a complete archi-
tectural optimization, and compare the energy required to
the energy consumed in the joint circuit/architecture opti-
mization. Figure 4 shows the resulting inefficiency of using
these “fixed” circuit points.

The results show that running all the circuits at near
maximum speeds (left-most point, circuits at 1% of their

0 500 1000 1500 2000 2500
100

150

200

250

300

350

400

Performance (MIPS)

En
er

gy
 (p

J
pe

r i
ns

tru
ct

io
n)

static design
partially dynamic design
dual−rail domino,
skew−tolerant design

Figure 5: Trade-offs of dynamic circuits. A partially dy-
namic design (with a dynamic ALU and issue logic) in-
creases maximum performance by enabling shorter cycle
times. A fully dynamic, skew-tolerant design offers even
greater performance by removing clocking overheads. Both
designs, however, come at significant energy costs which
place them on a steep part of the trade-off curve.

min delay) allows the machine to run at near-peak perfor-
mance, but comes with significant energy overheads of 130%
or more. These large overheads are the result of uniformly
running all circuits very fast. Only performance critical
units should run at their maximum speed; other units should
be slowed down to save energy. If, on the other hand, slower
circuits (right-most points) are used in an effort to reduce en-
ergy, energy overheads reduce to about 15%, but maximum
performance is sacrificed. There is no single circuit design
point that can be optimal at both the high performance and
low energy points. Circuit energy-delay trade-offs need to
be included to yield accurate optimization results.

4.2 Dynamic Circuits
Using our optimization framework, we can also explore

the effect of using different circuit styles. Our base circuit
libraries use static CMOS energy-delay trade-offs which in-
clude the space of gate sizings and logic synthesis mappings.
Dynamic circuits, however, were once commonly used in
high-performance processors and can be significantly faster
that static CMOS circuits. However, because of their clock
power, dynamic circuits also come at a significant energy
cost.

To characterize the performance gains and energy over-
heads of using dynamic circuits, we compare a dynamic dual-
rail domino adder to a static implementation using a circuit
optimization tool [21]; these results indicate that the dual-
rail domino circuit achieves 0.67x the delay at 4x the energy.
Since we do not have a complete dynamic circuit library, we
use this adder scaling data as a proxy for all circuits (except
memories3) to generate dynamic circuit trade-offs.

We examine two dynamic designs using these new libraries.
In the first, we use dynamic circuits for certain performance-
critical components, speeding up the integer ALU and the
out-of-order issue logic. While the ALU does not strictly
stand in the way of the cycle time—the ALU is pipelinable—
the performance loss of pipelining the ALU due to data de-

3Most memories already use some dynamic circuits inter-
nally, so we do not change their performance in this experi-
ment.

32

pendency stalls means it is usually not an energy-efficient
design choice. The optimizer generally prefers a 1-cycle ALU
with a longer cycle time over a higher frequency design with
a multi-cycle ALU. In the case of the issue logic, it cannot
be pipelined in our design, and actually limits the use of
shorter cycles times.

Dynamic logic has a second potential advantage. Since
every dynamic gate already has a clock, it is possible to
build an entire system without including any explicit flops or
latches. Furthermore, the overall design can be constructed
to be tolerant of skew on the clock lines [11, 24]. This type
of design essentially removes all clocking overheads that are
found in conventional designs. For this method to work,
all logic must be a monotonic function of its input (domino
logic), so this generally requires one to create dual-rail gates,
which compute both true and complement outputs from true
and complement inputs. Thus, for our second design, we
also explore the performance trade-offs of a complete dual-
rail design4.

Figure 5 shows the results of using these circuit styles on
our dual-issue out-of-order architecture. Also shown is the
original static version. As expected, both dynamic designs
push performance to new limits, but come with some added
energy overheads. The partially dynamic design provides
more performance because it can now achieve higher cycle
times. The faster issue logic now also allows for larger in-
struction windows of up to 20 entries; this in contrast to
the small 8 entry instruction windows we saw in the static
design. These performance benefits, of course, come at a
somewhat high energy cost: the transition from the static
design to the partially dynamic design comes at a marginal
cost of 2.3% in energy for 1% in performance. The fully dual-
rail, skew-tolerant design offers an even larger performance
gain; it virtually eliminates clocking overheads. However, it
comes with an even larger energy cost since the entire ma-
chine must be implemented in dynamic logic. This design
option represents a more expensive choice at about 2.7% in
energy for 1% in performance.

While neither of these options are cheap, a designer may
be willing to pay the cost if the added performance is truly
needed. As we will see in the next section, however, voltage
scaling can often offer better marginal costs and should be
considered first.

5. VOLTAGE AND MARGINAL COSTS
It is well-known that an important consideration in energy-

efficient design is the choice of operating voltage. Figure
6(a) shows the energy and delay scaling characteristics of
circuits as a function of voltage as obtained through SPICE
simulations. The energy curve follows an expected V dd2

profile; the delay shows an inverse relationship proportional
to 1

V dd3.325 + 1 (empirical fit). Composing these two rela-
tionships, we get the energy-delay scaling trade-offs of the
supply voltage parameter in Figure 6(b).

This data shows that, by itself, voltage tuning from 0.7V
to 1.4V provides a range of about 3x in performance and
4x in energy. More importantly, the profile of the energy-
performance curve is relatively shallow throughout this en-
tire range. This means that the marginal cost of increas-

4While the memories would need to be modified to work
in this system, the changes would be small and would not
cause major changes in memory power or delay.

0 500 1000 1500
20

40

60

80

100

120

140

160

180

Performance (MIPS)

En
er

gy
 (p

J
pe

r i
ns

tru
ct

io
n)

MC% = 0.19 MC%=0.73

MC%=1.3

MC%=2.1

MC%=4.2

MC%=16.1

Figure 7: Marginal costs of the joint architecture and cir-
cuit design space. In light are the energy-performance curves
of our six architectures. In dark is the overall, composite
energy-performance frontier. Data is normalized to 0.9V to
allow for comparison to the voltage marginal costs. Marginal
costs in the architecture/circuit space vary considerably more
than voltage marginal costs. For most practical design ob-
jectives the optimal architecture should be selected from the
narrow band of designs with a marginal cost of 0.80%-2.3%
to match voltage marginal costs.

ing performance through voltage scaling does not change
much as we continue to increase the voltage parameter. At
low voltages, the marginal cost is at about 0.80% in energy
for 1% in performance; at the high end, this marginal cost
reaches 2.3% in energy for 1% in performance.

We can contrast this marginal cost profile against the
marginal cost profile of achieving performance through cir-
cuits and architecture, shown in Figure 7. This space shows
a much larger range of marginal costs. At the low perfor-
mance points, the marginal costs are very cheap, while at
the high performance points, the marginal costs are very
expensive.

We recall that to optimize a design, the marginal costs of
all parameters should be equal. If this were not the case,
then an arbitrage opportunity would exist, and the more
expensive parameters could be exchanged for cheaper pa-
rameters: selling the expensive parameter would cause some
performance loss, but this performance could be recovered
at a lower cost through the cheaper parameter. Comparing
the marginal costs of voltage versus architectural parame-
ters, this suggests that, unless we are trying to achieve the
very extremes of performance or low power, the optimal set
of designs should lie in the range of marginal costs from
0.80% to 2.3% in order to match the marginal costs of volt-
age scaling. This results in a narrow band of architectural
and circuit designs being optimal when the voltage scaling
parameter is available.

Figure 8 shows the optimization results when the supply
voltage parameter is included in the design space. Confirm-
ing the marginal cost analysis, we see that a smaller set of
architectures cover a larger part of the energy-efficient fron-
tier. The dual-issue out-of-order processor is energy-efficient
for a large part of the design space. At low performance tar-
gets, the dual-issue in-order processor takes over, although
the dual-issue out-of-order processor is still not overly inef-
ficient. Only at the very extremes, when the voltage knob
becomes capped, do the single-issue in-order and quad-issue

33

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

0.5

1

1.5

2

2.5

3

Supply Voltage (V)

Sc
al

in
g

Fa
ct

or
 (n

or
m

al
iz

ed
 to

 0
.9

V)

Delay
Energy

(a)

0.5 1 1.5 2
0.5

1

1.5

2

2.5

3

Speedup Multiplier

En
er

gy
 M

ul
tip

lie
r

MC% = 1.36

MC% = 0.80

MC% = 2.3

(b)
Figure 6: Effect of voltage on delay and energy. (a) shows the delay and energy scaling as a function of supply voltage
(normalized to 0.9V). (b) shows the corresponding energy-performance trade-off curve. Percentage marginal costs (MC%) is
the percentage energy cost required to increase performance by 1%. For a wide range of energy and performance, marginal
costs do not change much, making voltage a powerful knob for energy-efficiency.

out-of-order designs play a role, and these represent designs
with very low and very high marginal costs respectively.

This result suggests that a small number of properly tuned
designs can cover most of the overall energy-performance
frontier at near optimal efficiencies simply by voltage and
frequency scaling. We pick one dual-issue in-order proces-
sor and one dual-issue out-of-order processor with fixed mi-
croarchitectural and circuit parameters, and evaluate these
fixed designs under voltage and frequency scaling. Figure
9 shows the energy overheads of scaling these fixed designs
as compared to the fully optimized designs which also tune
the architecture and circuits. Because design parameters
are fixed, we see some inefficiency; the lines deviate from
the normalized optimal value of 1. This result is expected
because the marginal costs of all parameters in the system
are no longer equal. Yet, we see the resulting inefficiency
is small—under 3%. Of course, this result requires that we
start with the right two designs in the architecture/circuit
space sweet spot. Thus, with two carefully selected designs
and voltage scaling, we can operate at near optimal energy-
efficiencies over a broad performance range.

6. DISCUSSION
Since power has been an issue for many years, there exist

a number of tools that help guide architects toward energy-
efficient designs. Simulation based tools such as Wattch [5]
and PowerTimer [4] have enabled power-performance stud-
ies, exploring various aspects of the power-performance space
in processor designs. For instance, using these or similar
tools people have evaluated power-performance trade-offs in
different areas of the design space such as pipeline depth [26,
12, 25]. Applying statistical inference techniques to these
tools, Lee and Brooks have evaluated power-performance
trade-offs in an even larger microarchitectural design space [19].
Others, like Karkhanis and Smith have used an analyti-
cal model to explore trade-offs in the architecture design
space [16]. There has even been some work trying to connect
circuit and architectural optimization using metrics such as
hardware intensity [27, 23].

We extend this prior work in two important ways. First,
we integrate circuit trade-offs into the architectural design
space analysis and show how it changes the optimization

0 500 1000 1500 2000
0

100

200

300

400

500

Performance (MIPS)

En
er

gy
 (p

J
pe

r i
ns

tru
ct

io
n)

in−order, 1−issue
in−order, 2−issue
in−order, 4−issue
out−of−order, 1−issue
out−of−order, 2−issue
out−of−order, 4−issue

in−order
2−issue

ooo
2−issue

(a)

0 200 400 600 800 1000 1200
20

40

60

80

100

120

Performance (MIPS)

En
er

gy
 (p

J
pe

r i
ns

tru
ct

io
n)

in−order, 1−issue
in−order, 2−issue
in−order, 4−issue
out−of−order, 1−issue
out−of−order, 2−issue
out−of−order, 4−issue

(b)
Figure 8: (a) Energy-performance trade-offs for the proces-
sor design space with voltage scaling. The dual-issue out-of-
order design now dominates an even larger part of the design
space; the dual-issue in-order design is optimal at low energy
points. (b) Same results zoomed in on low energy points.

34

0 500 1000 1500 2000
1

1.02

1.04

1.06

1.08

1.1

Performance (MIPS)

En
er

gy
 O

ve
rh

ea
d

Fixed 2−issue out−of−order design
Fixed 2−issue in−order design

Figure 9: By using two carefully selected designs—a fixed
dual-issue in-order design and a fixed dual-issue out-of-order
design—voltage scaling can be used to cover a large perfor-
mance range within 3% of the optimal energy-efficiency.

results. Second, by using posynomials to model the design
space, we can explore the space very quickly—finding an op-
timal design point in only about 30 seconds. This integration
allows us to better understand metrics like hardware inten-
sity (which is simply the relative marginal performance vs.
energy cost) and provides a practical framework to optimize
this joint design space. Our tool creates the Pareto-optimal
curve, which contains the best possible design points for dif-
ferent performance targets or energy budgets, and is not
dependent on EDn metrics.

Using this design framework, we extended the space of
prior statistical performance-energy modeling efforts to a
wide range of high-level architectures. While this paper has
presented the results of optimally tuned processors, the real
advantage of this type of design framework is the insight it
can give a designer. For example, we initially had each of
our macro-architectures fetch instructions according to the
width of the machine (e.g. one word for the single-issue ma-
chines, etc.). This led to wider machines being more energy
efficient than single issue machines even at low performance.
Clearly, because of high instruction locality, it makes sense
to have all macro-architectures fetch multiple instructions
at a time to amortize the cost of going to cache. We are
currently looking at our results to see what architectural
changes can lead to more efficient cores.

The results presented in this paper have also focused on
performance-energy trade-offs, and not considered area (die
cost) or what happens for threaded or data parallel applica-
tions. It is easy to include these effects using our framework.
For example, in the case of multi-core designs for highly par-
allel workloads, we need to change the performance objec-
tive. The number of cores that we can fit on a die is critical
to performance, and we must consider both the performance
and area of the cores. If we assume infinite parallelism, then
we want to optimize the product of the performance per core
and the number of cores that will fit in a given area. Thus
the performance metric is no longer processor performance,
but performance per mm2. Figure 10 shows optimization re-
sults under this new design objective. In this case, the area
overheads of implementing out-of-order processors outweigh
their performance benefit, and so the dual-issue in-order de-
sign is always optimal. To account for workloads with more
realistic amounts of parallelism, one just needs to change

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

Performance per mm2 (MIPS/mm2)

En
er

gy
 (p

J
pe

r i
ns

tru
ct

io
n)

in−order, 1−issue
in−order, 2−issue
in−order, 4−issue
out−of−order, 1−issue
out−of−order, 2−issue
out−of−order, 4−issue

Figure 10: Energy per op vs performance/mm2 for a highly
parallel workload. The area overheads of out-of-order pro-
cessing make it a less attractive option.

how the performance scales with the number of cores [13],
which will just change the performance/area function that
needs to be optimized. In analogous ways we can optimize
whole systems that contain SIMD units, external high-power
accelerators (i.e. GPUs) or other components that affect en-
ergy or performance.

7. CONCLUSION
We have created a general energy-performance optimiza-

tion tool that will be essential to create the energy efficient
designs that the future requires. By constructing a first or-
der circuit library for processors we have been able to rapidly
explore a very large processor design space, from a simple
single-issue processor, to a wide quad-issue out-of-order ma-
chine. While there is clearly more work that can be done
using this tool, our initial results have been quite interesting.
First, it shows that it is very easy to build a poor machine
which is far from the optimal frontier. In fact, hitting the
frontier will be very difficult unless you jointly optimize cir-
cuits and architecture. More surprising, however, was the
marginal cost profile of the optimized performance-energy
trade-off space without voltage scaling. While the trade-
off spanned a reasonably sized space of 6.5x in performance
and 4x in energy, the marginal costs throughout this range
were rapidly changing, with very expensive marginal costs
for the quad-issue out-of-order design and very low marginal
costs for the single-issue in-order design. Since voltage scal-
ing spanned about the same range with smaller changes in
marginal performance, we found voltage scaling to be a more
effective knob for efficiently trading off energy and perfor-
mance. With voltage, we found the dual-issue in-order and
out-of-order machines were optimal over a large part of the
design space. Moreover, by using two machines with the
right fixed set of microarchitectural/circuit parameters and
only voltage and frequency scaling, we showed that the loss
in efficiency compared to the overall optimal machine was
only 3%. Thus, by carefully optimizing the circuits and ar-
chitecture, one can build a machine that can use voltage
scaling to efficiently operate at a range performance targets.

In the end, the more important use of this tool will be
to generate information and provide insights for the design
of new methods that will further reduce the system power.
The results can be used to identify both performance and
energy limitations of the system, and can direct a designer

35

to focus their attention on these facets of the design. We
have already begun to use it in this way, and are starting to
apply it to other performance/energy constrained designs.

8. ACKNOWLEDGMENTS
The authors would like to thank the Chip Generator group

at Stanford University for their support and feedback. This
work was funded in part by the FCRP Focus Center for
Circuit & System Solutions (C2S2), under contract 2003-
CT-888. This material is also based upon work supported
by the National Science Foundation under Grant #0937060
to the Computing Research Association for the CIFellows
Project.

9. REFERENCES
[1] O. Azizi, A. Mahesri, J. P. Stevenson, S. Patel, and

M. Horowitz. An integrated framework for joint design
space exploration of microarchitecture and circuits. In
DATE ’10: Proceedings of the conference on Design,
automation and test in Europe, pages 250–255, 2010.

[2] P. Bose and T. M. Conte. Performance analysis and
its impact on design. Computer, 31(5):41–49, 1998.

[3] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, March 2004.

[4] D. Brooks, P. Bose, V. Srinivasan, M. K. Gschwind,
P. G. Emma, and M. G. Rosenfield. New methodology
for early-stage, microarchitecture-level
power-performance analysis of microprocessors. IBM
J. Res. Dev., 47(5-6):653–670, 2003.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
framework for architectural-level power analysis and
optimizations. SIGARCH Comput. Archit. News,
28(2):83–94, 2000.

[6] A. R. Conn, I. M. Elfadel, J. W. W. Molzen, P. R.
O’Brien, P. N. Strenski, C. Visweswariah, and C. B.
Whan. Gradient-based optimization of custom circuits
using a static-timing formulation. In DAC ’99:
Proceedings of the 36th ACM/IEEE conference on
Design automation, pages 452–459, New York, NY,
USA, 1999. ACM.

[7] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous,
and A. LeBlanc. Design of ion-implanted mosfet’s with
very small physical dimensions. Solid-State Circuits,
IEEE Journal of, 9(5):256–268, Oct 1974.

[8] C. Dubach, T. Jones, and M. O’Boyle.
Microarchitectural design space exploration using an
architecture-centric approach. In MICRO ’07:
Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
262–271, Washington, DC, USA, 2007. IEEE
Computer Society.

[9] A. N. Eden and T. Mudge. The yags branch
prediction scheme. In MICRO 31: Proceedings of the
31st annual ACM/IEEE international symposium on
Microarchitecture, pages 69–77, Los Alamitos, CA,
USA, 1998. IEEE Computer Society Press.

[10] J. P. Fishburn and A. E. Dunlop. Tilos: A posynomial
programming approach to transistor sizing. In IEEE
Int. Conf. Computer-Aided Design, pages 326–328,
1985.

[11] D. Harris. Skew-tolerant circuit design. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
2001.

[12] A. Hartstein and T. R. Puzak. The optimum pipeline
depth considering both power and performance. ACM
Trans. Archit. Code Optim., 1(4):369–388, 2004.

[13] M. D. Hill and M. R. Marty. Amdahl’s law in the
multicore era. Computer, 41(7):33–38, 2008.

[14] M. Horowitz, E. Alon, D. Patil, S. Naffziger,
R. Kumar, and K. Bernstein. Scaling, power, and the
future of cmos. In Electron Devices Meeting, 2005.
IEDM Technical Digest. IEEE International, pages 7
pp.–15, Dec. 2005.

[15] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski,
and M. Schulz. Efficiently exploring architectural
design spaces via predictive modeling. SIGARCH
Comput. Archit. News, 34(5):195–206, 2006.

[16] T. S. Karkhanis and J. E. Smith. A first-order
superscalar processor model. SIGARCH Comput.
Archit. News, 32(2):338, 2004.

[17] T. S. Karkhanis and J. E. Smith. Automated design of
application specific superscalar processors: an
analytical approach. In ISCA ’07: Proceedings of the
34th annual international symposium on Computer
architecture, pages 402–411, New York, NY, USA,
2007. ACM.

[18] B. C. Lee and D. M. Brooks. Accurate and efficient
regression modeling for microarchitectural
performance and power prediction. SIGARCH
Comput. Archit. News, 34(5):185–194, 2006.

[19] B. C. Lee and D. M. Brooks. Illustrative design space
studies with microarchitectural regression models. In
Proceedings of the 13th International Symposium on
High Performance Computer Architecture, 2007.

[20] N. Muralimanohar, R. Balasubramonian, and
N. Jouppi. Optimizing NUCA Organizations and
Wiring Alternatives for Large Caches With CACTI
6.0. In Proceedings of the 40th Annual International
Symposium on Microarchitecture, December 2007.

[21] D. Patil, O. Azizi, M. Horowitz, R. Ho, and
R. Ananthraman. Robust energy-efficient adder
topologies. In ARITH ’07: Proceedings of the 18th
IEEE Symposium on Computer Arithmetic, pages
16–28, Washington, DC, USA, 2007. IEEE Computer
Society.

[22] D. Patil, S. J. Kim, and M. Horowitz. Joint supply,
threshold voltage and sizing optimization for design of
robust digital circuits. Technical report, Department
of Electrical Engineering, Stanford University.

[23] Z. J. Qi, M. Ziegler, S. V. Kosonocky, J. M. Rabaey,
and M. R. Stan. Multi-dimensional circuit and
micro-architecture level optimization. In ISQED ’07:
Proceedings of the 8th International Symposium on
Quality Electronic Design, pages 275–280,
Washington, DC, USA, 2007. IEEE Computer Society.

[24] J. Silberman, N. Aoki, D. Boerstler, J. Burns,
S. Dhong, A. Essbaum, U. Ghoshal, D. Heidel,
P. Hofstee, K. T. Lee, D. Meltzer, H. Ngo, K. Nowka,
S. Posluszny, O. Takahashi, I. Vo, and B. Zoric. A
1.0-ghz single-issue 64-bit powerpc integer processor.
Solid-State Circuits, IEEE Journal of,
33(11):1600–1608, Nov 1998.

[25] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose,
V. Zyuban, P. N. Strenski, and P. G. Emma.
Optimizing pipelines for power and performance. In
MICRO 35: Proceedings of the 35th annual
ACM/IEEE international symposium on
Microarchitecture, pages 333–344, Los Alamitos, CA,
USA, 2002. IEEE Computer Society Press.

[26] V. Zyuban, D. Brooks, V. Srinivasan, M. Gschwind,
P. Bose, P. Strenski, and P. Emma. Integrated
analysis of power and performance for pipelined
microprocessors. Computers, IEEE Transactions on,
53(8):1004–1016, Aug. 2004.

[27] V. Zyuban and P. Strenski. Unified methodology for
resolving power-performance tradeoffs at the
microarchitectural and circuit levels. In ISLPED ’02:
Proceedings of the 2002 international symposium on
Low power electronics and design, pages 166–171, New
York, NY, USA, 2002. ACM.

36

