
A Case for an Interleaving Constrained Shared-Memory
Multi-Processor

Jie Yu
University of Michigan, Ann Arbor

jieyu@umich.edu

Satish Narayanasamy
University of Michigan, Ann Arbor

nsatish@umich.edu

ABSTRACT

Shared-memory multi-threaded programming is inherently
more difficult than single-threaded programming. The main
source of complexity is that, the threads of an application
can interleave in so many different ways. To ensure correct-
ness, a programmer has to test all possible thread interleav-
ings, which, however, is impractical.

Many rare thread interleavings remain untested in pro-
duction systems, and they are the root cause for a majority
of concurrency bugs. We propose a shared-memory multi-
processor design that avoids untested interleavings to im-
prove the correctness of a multi-threaded program. Since
untested interleavings tend to occur infrequently at runtime,
the performance cost of avoiding them is not high.

We propose to encode the set of tested correct interleav-
ings in a program’s binary executable using Predecessor Set
(PSet) constraints. These constraints are efficiently enforced
at runtime using processor support, which ensures that the
runtime follows a tested interleaving. We analyze several
bugs in open source applications such as MySQL, Apache,
Mozilla, etc., and show that, by enforcing PSet constraints,
we can avoid not only data races and atomicity violations,
but also other forms of concurrency bugs.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance; D.2.5 [Software Engineering]:
Testing and Debugging

General Terms

Design, Reliability, Verification

Keywords

Multiprocessors, Parallel Programming, Concurrency Bugs,
Software Reliability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$5.00.

1. INTRODUCTION
Parallel programming has remained a very challenging

problem for the last several decades. In the explicit parallel
programming model, a programmer discovers parallelism in
the application, and explicitly specifies independent paral-
lel tasks. Explicit parallel programming is error-prone and
inherently harder than von Neumann style single-threaded
programming. To understand its underlying complexity,
consider the task of program verification. Verifying even a
single-threaded program is NP-complete (because of point-
ers, loops, etc.). However, this problem can be decomposed
into a set of contracts (e.g.: loop-invariants, pre-conditions
and post-conditions for functions) that are verifiable in poly-
nomial time for a single-threaded program. Traditionally,
these contracts are what the programmers manually try to
understand, test and verify to ensure correctness. However,
in a shared-memory multi-threaded program, the problem of
verifying even these contracts is NP-complete [19]. The rea-
son is that, in a shared-memory multi-threaded program, the
memory operations executed by a thread’s function or loop
could interleave with the memory operations executed by all
the other threads in so many different orders. As a result,
the number of legal states to verify at each program state-
ment increases exponentially, making the task of verifying
even simple contracts for functions and loops NP-complete.

A programmer could use synchronization operations such
as semaphores, locks, condition variables, transactions, etc.,
to reduce the number of legal thread interleavings. A stronger
memory consistency model would also reduce the number of
legal thread interleavings. Even so, the interleaving space of
most multi-threaded programs is so large that, a program-
mer cannot practically test all the legal interleavings of a
program. Thus, one of the fundamental problems with the
shared-memory multi-threaded programming model is that,
it exposes too many legal interleavings to the parallel run-
time system, which makes it difficult for programmers to
guarantee correctness.

Even in a well tested production code, a programmer
would have tested most of the frequently occurring interleav-
ings, but many of the infrequently occurring interleavings
would remain untested. These rare untested interleavings
are the root cause of a majority of concurrency bugs in the
production code.

This paper proposes to constrain a shared-memory multi-
processor system, such that it avoids the untested thread
interleavings during a production run. This improves cor-
rectness, because a tested interleaving is more likely to be
correct than an untested interleaving. Also, the untested in-

325

terleavings tend to occur infrequently during an execution,
because otherwise they would have been tested in a high
quality production code. Therefore, constraining a parallel
runtime system to avoid the rare untested interleavings does
not degrade performance significantly.

Two key solutions are discussed in this paper. One, we
propose to encode the set of tested correct interleavings in
a program’s binary executable using Predecessor Set (PSet)
constraints. Two, we discuss processor support for efficiently
enforcing the PSet interleaving constraints in order to avoid
untested interleavings during a production run.

The first challenge is to develop a method for encoding
the set of all tested thread interleavings in a program’s ex-
ecutable using ISA extensions. We define a thread inter-
leaving of an execution to be the order between the memory
operations executed by all the threads. A thread interleav-
ing is therefore unique to an execution of a program for
a particular input. The challenge is to derive interleaving
constraints from each tested interleaving. These interleav-
ing constraints should be generic enough for different pro-
gram inputs, so that enforcing them does not result in too
many unnecessary constraint violations during the produc-
tion runs. At the same time, the interleaving constraints
should also be able to capture the set of tested interleav-
ings, so that by enforcing them, we can avoid a majority of
concurrency bugs due to the untested interleavings.

This paper presents an interleaving constraint called the
Predecessor Set (PSet) constraint, which meets the above
two requirements. Every memory instruction in the pro-
gram’s binary has a PSet constraint defined for it. The PSet
constraint for an instruction I specifies the set of all valid
remote memory operations over which I can be immediately
dependent upon. Intuitively, PSet constraints captures the
tested interleavings between two dependent memory instruc-
tions. If a memory operation I was never immediately de-
pendent upon another remote memory operation P in any
of the test runs, then that dependency is avoided during the
production runs. We show that by enforcing PSet interleav-
ing constraints, we can effectively avoid not only bugs due
to data races and atomicity violations, but also other forms
of concurrency bugs that cannot be found using the existing
dynamic bug detection tools.

The second challenge is to efficiently enforce PSet con-
straints during production runs in order to avoid untested
interleavings. We discuss extensions to a shared-memory
multi-processor design, which efficiently detects PSet con-
straint violations and avoids them. Without processor sup-
port, we find that the performance overhead for enforcing
the PSet constraints is very high, which would render the
proposed interleaving constrained execution model to be im-
practical.

Our interleaving constrained processor detects PSet vio-
lations by keeping track of the last accessor information for
every memory word and piggy-backing the coherence mes-
sages with that additional information. The processor re-
covers from a PSet constraint violation by either stalling
the violating thread until the constraint is satisfied, or by
re-executing the program from an earlier checkpoint with
an alternative thread interleaving. The violated constraint
is logged and sent back to the developer. The developer
can then test the violated interleaving seen in the produc-
tion run. If it is indeed a correct interleaving, then a binary
patch to relax the relevant PSet constraint could be released.

We discuss a software tool built using Pin [13], which we
use to profile applications during the test runs and derive the
PSet constraints. It is also used to detect and avoid the PSet
constraint violations during real executions. This tool is
used to analyze the effectiveness of the proposed mechanism
in avoiding several bugs in the open source programs such as
MySQL, Mozilla, Apache, etc. We also analyze the accuracy
and performance of our tool using Splash [24] and Parsec [2]
benchmark suits.

This paper makes the following contributions:

• It is impractical for a programmer to test all the legal
interleavings in a multi-threaded program. Untested
interleavings are the root cause for a majority of con-
currency bugs. Therefore, to improve correctness, this
paper makes a case for a mechanism that constrains a
production run to follow a tested interleaving.

• We encode the set of correct tested interleavings us-
ing an interleaving constraint called the Predecessor
Set (PSet). We show that, by enforcing the PSet
constraints during production runs, we can effectively
avoid data races, atomicity violations, and also other
forms of concurrency bugs that cannot be found by
existing dynamic analysis tools. This analysis is based
on 17 real bugs in open source applications such as
Apache, Mozilla, MySQL, etc.

• We present a shared-memory multi-processor design
that efficiently detects and avoids PSet constraint vio-
lations. It overcomes the violated PSet constraints ei-
ther by stalling the violating thread, or by re-executing
the program from an earlier checkpoint with an alter-
native interleaving. We show that the number of PSet
constraint violations in a bug free execution is very
less, and as a result, the performance cost of enforcing
the PSet constraints is negligible.

2. BACKGROUND AND PRIOR WORK
The premise of this paper is that it is impractical for pro-

grammers to ensure the correctness of all the legal interleav-
ings in a shared-memory multi-threaded program. Instead
of letting the runtime execute any of the legal interleavings,
including the untested interleavings, we propose to constrain
the runtime to follow a tested interleaving, whenever possi-
ble. We show that this interleaving constrained execution
model could improve the correctness of multi-threaded pro-
grams.

A key component of the proposed model is the method
to derive interleaving constraints from the test runs and en-
code those constraints in a program’s binary. The derived
interleaving constraints should be such that, when they are
enforced during a production run, it should result in an in-
terleaving that is similar to a tested interleaving. We discuss
Predecessor Set (PSet) constraints that meet this goal.

By enforcing the PSet constraints and thereby mimicking
a tested interleaving, we can avoid a majority of concurrency
bugs. Instead of using PSet constraints to avoid concurrency
bugs, one could enforce the invariants used in existing con-
currency bug detection tools such as data race detectors [21,
14] and/or atomicity violation detectors [25, 11, 12]. On de-
tecting a violation of these invariants, the runtime system
can recover from them using a checkpoint, rollback and re-
execution mechanism [17, 20].

326

Thread 1
 OpenInputStream()
 {
 PostEvent();
 ...

m_inputStream = ...

 }

Thread 2
 ProcessCurrentURL()
 {

 WaitEvent();
 ...
 if (m_inputStream) {
 AsyncRead(m_inputStream);

}

 }
nsSocketTransport.cpp nsImapProtocol.cpp

Correct Interleaving Incorrect Interleaving

W R
Figure 1: A data race bug in Mozilla (Bug #13 in
Table 1).

This section discusses the limitations of two invariants
(data races and atomicity violations) commonly used in dy-
namic concurrency bug detection tools, and illustrate why
they are not generic enough for avoiding a wide range of
concurrency bugs in a production system. A fundamental
difference between the PSet constraints and the existing in-
variants is that, the PSet constraints are designed to de-
tect the untested interleavings, whereas the existing invari-
ants are designed to detect interleaving patterns that have a
strong correlation with the mistakes that the programmers
frequently make in a multi-threaded program. In Section 5,
we compare the effectiveness of PSets with a happens-before
data race detector [14] and an atomicity violation detec-
tor [11] in avoiding concurrency bugs.

2.1 Data Race Detectors
A data race can be defined as a pair of memory accesses

to the same memory location, where at least one of the ac-
cesses is a write, and neither one happens-before the other.
Dynamic data race detectors can be classified into two ma-
jor categories: happens-before based and lockset based. A
happens-before data race detector [15] finds only the data
races that manifest in a given program execution. Lockset
based techniques [21] can predict data races that have not
manifested in a given program execution, but can report
false positives. If the goal is to avoid the concurrency bugs
in a production run, then a happens-before data race detec-
tor is a better candidate, as it finds only the true data races
that occur in a given program’s execution. A lockset-based
data race detector [21], on the other hand, will find data
races that do not occur in a program’s execution, which is
useful for detecting more bugs, but not so useful detecting
and avoiding bugs at runtime.

Figure 1 shows a data race bug in Mozilla. In this exam-
ple, the programmer intended to execute the write W before
the read R. This is likely to happen most of the time, in
which case, the read R would get the right value. How-
ever, this code lacks proper synchronization to guarantee
the required happens-before relation. As a result, in some
execution it is possible that R executes before W. This would
result in an incorrect execution, where an input to the pro-
gram would be left unprocessed. A happens-before based
data race detector can detect this incorrect interleaving. On
detecting a data race, the runtime can re-execute the pro-
gram with an altered interleaving using a checkpoint and
rollback mechanism. ReEnact [17] and Rx [20] used such an
approach.

However, not all data races are harmful data races [14].

Thread 1
 void LoadScript(nsSpt *aspt)
 {
 Lock(l);

gCurrentScript = aspt;
 LaunchLoad(aspt);
 Unlock(l);
 }

 void OnLoadComplete()
 {

 /* callback */
 Lock(l);
 gCurrentScript->compile();
 Unlock(l);

 }

Thread 2

Lock(l);
gCurrentScript = NULL;

 Unlock(l);

nsXULDocument.cpp

W 1
R 1 W 2

Incorrect
Interleaving

Figure 2: An atomicity violation bug in Mozilla [11]
(Bug #7 in Table 1).

R

W

R

W

W

R

R

W

W

W

R

W

R

R

R

W

R

R

R

R

W

W

W

W

Unserializable Interleaving

Serializable Interleaving

a b c d

e f g h

Figure 3: Unserializable and serializable memory in-
terleavings used in AVIO [11] to detect atomicity
violations.

Many of the data races in production systems are benign, as
programmers intentionally allow data races to optimize per-
formance. Programmer constructed synchronizations could
also result in benign data races. Benign data races also
tends to be frequent, as opposed to harmful data races [14].
Thus, triggering a rollback and recovery on every data race
violation might cause significant performance overhead. In
Section 3, we discuss how a mechanism based on PSet con-
straints correctly permits benign data races at runtime.

More importantly, a data race detector cannot detect a
number of concurrency bugs. A data race is really a heuris-
tic, which is used to detect a particular interleaving pattern
(concurrent memory accesses with no happens-before rela-
tion between them) that strongly correlates with the con-
currency bugs that programmers tend to make. Presence of
a happens-before relation between two concurrent memory
operations does not necessarily imply that the order between
the two memory accesses is correct. A good counter-example
is an atomicity violation bug shown in Figure 2. In this ex-
ample, W1 and R1 is expected to execute atomically. But,
W2 can get interleaved between the two, leading to an in-
correct execution. A data race detector cannot detect this
concurrency bug, because there is a happens-before relation
between all the accesses to the variable gCurrentScript.

2.2 Atomicity Violation Detectors
There have been work on detecting atomicity violations [25,

11, 5]. Most of the atomicity violation detectors rely on
programmers to specify the atomic regions through anno-
tations. Using these annotations, static analysis tools can

327

detect potential atomicity violations in a program [5]. Al-
ternatively, atomicity for the user specified atomic regions
can be ensured at runtime using transactional memory [7,
6]. However, programmers might incorrectly specify smaller
atomic regions, which could lead to concurrency bugs. Even
if a programmer manages to correctly enforce atomicity for
the required code regions, incorrect interleavings between
atomic regions could lead to incorrect executions. The PSet
constraints discussed in Section 3 avoids atomicity violations
without requiring programmer annotations, and also avoids
the incorrect interleavings between atomic regions, as the
PSet constraints are learned from the test runs.

SVD [25] and AVIO [11, 9] propose heuristics to automat-
ically infer atomic regions and detect atomicity violations
using dynamic analysis. AVIO [11, 9] is related work to our
work in that the atomicity constraints in AVIO are learned
by profiling program executions, similar to how we derive
PSet constraints. Here we describe AVIO in more detail.
We also provide detailed results comparing PSet constraints
to AVIO in Section 5.

AVIO [11] infers atomicity invariants from the training
runs. An atomicity invariant consists of a pair static mem-
ory instructions. When a thread executes the two memory
operations of an invariant pair, they cannot interleave with
an unserializable memory operation accessing the same lo-
cation in a different thread. Figure 3 shows the serializable
and unserializable interleavings.

The atomicity violation bug shown in Figure 2, which we
discussed earlier, can be detected by AVIO. This is because,
in all the correct training runs, W1 and R1 would have ex-
ecuted atomically. In any other execution, when AVIO is
turned on, if W2 is interleaved between the invariant pair,
then a violation would be detected. Thus, AVIO is simple,
and is also effective in detecting a number atomicity viola-
tions.

However, AVIO cannot detect all of the atomic violations.
Let us consider a bug in Mozilla shown in Figure 4. The
memory operations W1, R1, and W2 should all be executed
atomically. Otherwise, the function HandleEvent executed
in the second thread would return without processing an
event. AVIO cannot detect this bug, because R2 can validly
interleave between W1-R1 and R1-W2 without violating any
AVIO invariant, because both of them are serializable inter-
leavings. Section 3 describes how bugs like the one shown
in Figure 4 are detected and avoided using the PSet con-
straints. In fact, the proposed PSet constraints are a super-
set of the constraints specified by the AVIO invariants. Also,
unlike AVIO [11], the goal of this paper is not only to detect
concurrency bugs during testing, but also to avoid them in
production systems.

2.3 Motivation for PSet Constraints
ReEnact [17] and Rx [20] detect data races at runtime and

avoid them using a checkpoint, rollback, and re-execution
mechanism. Atom-Aid [12] is an architectural mechanism
that arbitrarily groups instructions together to create atomic
blocks, and thereby probabilistically reduces the chances for
an atomicity violation during production runs. All these
mechanisms target a sub-class of concurrency bugs. In con-
trast, a PSet constraint based mechanism can avoid data
races, atomicity violations, and also other forms of concur-
rency bugs. Figure 5 shows a bug that is neither a data
race nor an atomicity violation. The function Notify() in

Thread 1
 nsFileTransport::Process()
 {
 ...

mStatus =
 mOutputStream->WriteFrom();

 if(mStatus == STREAM_WOULD_BLOCK)
 {

mStatus = NS_OK;
 return;
 }
 ...
 }

Thread 2
 HandleEvent()
 {

 if(mStatus != NS_OK)
 return; // ignore event

 }

nsFileTransport.cpp

W 1R 1W 2 R 2
Incorrect

Interleaving

Figure 4: An atomicity violation bug in Mozilla,
which will not raise an AVIO [11] invariant viola-
tion. (Bug #10 in Table 1).

Thread 1
 TimerThread::Shutdown()
 {

...
Lock(l);
mProcessing = TRUE;
if(mWaiting)
 Notify(cond,l);
Unlock(l);
...

mThread->Join();
return NS_OK;

 }

Thread 2
 TimerThread::Run()
 {

 Lock(l);
 mProcessing = TRUE;
 while(mProcessing){
 ...

mWaiting = TRUE;
 Wait(cond,l);
 mWaiting = FALSE;

 }
 Unlock(l);

 }

Correct
Interleaving

Incorrect
Interleaving

TimerThread.cpp

 Wait(cond, l) {
 Unlock(l);
 do_wait(cond);
 Lock(l);
 }

R W
Figure 5: Order violation bug in Mozilla, which is
neither a data race nor an atomicity violation. (Bug
#15 in Table 1).

Thread1 should be invoked only after Thread2 executes the
Wait() function. Otherwise, Thread2 would block forever.
Lu et al. [10] analyzed several concurrency bugs, and they
also note that there are number of bugs that are neither
data races nor atomicity violations. The proposed PSet con-
straints can detect and avoid these bugs as well. Also, avoid-
ing untested interleavings using PSet constraints provides a
useful guarantee to the programmer that only the tested
interleavings between the memory operations would be exe-
cuted at runtime. Such an approach could help improve the
testing methodology for the multi-threaded programs.

2.4 Deterministic Multi-threading
Deterministic Multi-Processor (DMP) [4] and Kendo [16]

are two recent developments. They constrain the thread
interleavings to provide a guarantee that any execution of
a multi-threaded program would yield the same output as
long as the input remains the same. In other words, they
guarantee a deterministic order of all memory accesses for
a given program input. This could help programmers in
reproducing bugs. However, for a given input, the system
chooses the deterministic order based on arbitrary program
events (for example, number of retired stores). As a re-
sult, the chosen deterministic order is not going to be more
correct than a random order chosen by the current systems.
Therefore, a programmer would still have to test all legal in-

328

R1

R2

W1

R3

W2

R4

W3

T1 T2 T3

PSet(W1) = {}

PSet(W2) = {R2, R4}

PSet(W3) = {W2}

PSet(R1) = {W1}

PSet(R2) = {}

PSet(R3) = {}

PSet(R4) = {W1}

Figure 6: PSet constraints for an interleaving.

terleavings. This is a fundamental problem with the shared-
memory multi-threaded programming model, which we seek
to address in this paper.

3. ENCODING AND ENFORCING TESTED

INTERLEAVINGS
This section discusses the Predecessor Set interleaving

constraints. They are derived from correct test runs, and
are encoded in the program binary. We then discuss the ef-
fectiveness of PSets in avoiding concurrency bugs using the
examples discussed in Section 2. We also discuss methods
to detect and avoid PSet constraint violations during pro-
duction runs. Finally, we discuss the limitations of the PSet
constraints.

3.1 Predecessor Sets (PSets)
In this paper, we take the first step towards constraining a

shared-memory multi-processor system to follow the tested
interleavings. We focus on constraining just the interleav-
ing between two dependent memory operations using the
Predecessor Set constraints. We show that even with this
simplification, the PSet constraints are powerful enough to
avoid most of the data race bugs, atomicity violation bugs,
and also other concurrency bugs.

A Predecessor Set (PSet) is defined for each static mem-
ory operation. The PSet for a memory instruction specifies
the set of all memory operations over which it can be imme-
diately dependent upon. We consider true (read-after-write)
as well as false (write-after-write and write-after-read) de-
pendencies. We consider all thread local memory depen-
dencies (where the two dependent memory operations were
executed in the same thread) to be valid during production
runs. Therefore, a PSet constraint specifies only the set of
valid remote dependencies for an instruction.

A static memory operation M contains another static mem-
ory operation P in its PSet only if the following conditions
are satisfied. Either P or M should be a write. Also, there
should be at least one dynamic instance in any of the tested
correct interleavings, such that (a) P and M were executed
in two different threads (say, T1 and T2), (b) M was imme-
diately dependent on P in that interleaving, and (c) neither
T1 nor T2 executed a read or a write (to the same memory
location as M) that interleaved between P and M. During a
production run, the runtime system detects a violation while
executing a memory operation M, if M is memory-dependent
on a remote memory operation P, but P is not in the PSet
of M.

Figure 6 shows a tested interleaving, and the resultant
PSets. Assume that all the memory operations shown in the

figure are to the same memory location, and each of them
is a different static memory operation. Reads are labeled
with the prefix R and writes are labeled with the prefix W.
The PSet for W2 contains two reads due to two write-after-
read dependencies. Note that the PSet for R2 is empty even
though it is immediately dependent on the remote memory
operation W1, because R1 interleaves between W1 and R2 (refer
condition (c) listed above). In this tested interleaving, the
values read by R1 and R2 would be the same. An empty
PSet for R2 ensures that the value read by R1 and R2 are the
same even in the production runs. Including W1 in the PSet
of R2 would not guarantee this property during production
runs.

3.2 Effectiveness of PSets in Avoiding Concur-
rency Bugs

Using the examples discussed in Section 2, we now de-
scribe how enforcing the PSet constraints avoids harmful
data race bugs (while still allowing benign data races for
performance), atomicity violations and other forms of con-
currency bugs.

3.2.1 Enforcing PSet Constraints Avoids Data Races

Figure 1 shows a data race bug in Mozilla. In this exam-
ple, the variable m_inputStream points to a heap location
that is dynamically allocated on receiving an input. During
the correct test runs, the only valid interleaving between W

and R is W → R. Therefore, the PSet for R contains W, and
the PSet for W is a null set. For this data race bug to mani-
fest in a production run, R should precede W. However, such
an interleaving would result in at least one PSet constraint
violation. The predecessor for W in an incorrect interleaving
would be R. Since R is not in the PSet for W, a PSet constraint
violation would be detected.

We discussed about benign data races [14] in Section 2.
A benign data race could occur frequently in a program’s
execution. Therefore, if we use a data race detector to avoid
data races at runtime, we might hurt performance. However,
a PSet constraint based mechanism does not have this issue,
as PSets can capture the fact that a benign data race inter-
leaving is a correct interleaving, provided that interleaving
is seen in a correct test run.

3.2.2 Enforcing PSet Constraints Avoids Atomicity
Violations

Figure 2 shows an atomicity violation bug in Mozilla. The
memory operations W1-R1 are expected to execute atomi-
cally. W2 would never be immediately dependent on W1 in
any of the correct test runs. Therefore, the PSet for W2

would not contain W1. In an incorrect execution, the atom-
icity property of W1-R1 could be violated by an interleaving
W2. However, this would cause a PSet constraint violation
at W2, as the PSet of W2 would not contain W1.

For this example, we would detect a PSet the violation at
W2, whereas AVIO can only detect the violation later at R1.
A PSet constraint violation can be detected at least as early
as an AVIO constraint violation, as the PSet constraints are
a super-set of the AVIO constraints.

Figure 4 shows an atomicity violation bug that AVIO [11]
cannot detect. The programmer expects that the operations
W1-R1-W2 be executed atomically. Therefore, the PSet for R2
learned from all the correct test runs would not contain W1.
When the required atomicity property for the operations W1-

329

Instruction P Size PInst1 PInst2

Predecessor Address (4 bytes)

PInst3

PSet Size (1 byte)

PSet Type (2 bits)

00 - Not Tested

01 - Null Pset

10 - PSet Size = 1

11 - PSet Size > 1

Lib ID Rel Addr

4 bits 28 bits

Figure 7: Format for encoding an instruction’s PSet.

R1-W2 is violated by R2 in a production run, a PSet violation
would be detected at R2.

3.2.3 Enforcing PSet Constraints Avoids Order Vio-
lations

Figure 5 shows a concurrency bug in Mozilla that neither
a data race detector nor an atomicity violation detector can
detect. We described this bug in Section 2.3. The PSet for W
learned from the correct test interleavings would not contain
R. In an incorrect interleaving during a production run, R

would be W’s predecessor, and therefore a PSet constraint
violation would be detected at W.

3.3 Deriving and Encoding PSets Constraints
The predecessor sets are constructed from the test runs

using a profiling tool that we built using Pin [13]. The pro-
grammer has to ensure that the test run is correct. This
could be done by verifying the program output and by check-
ing the test run using dynamic bug detection tools.

Figure 7 shows the format of an instruction with its PSet
information for a 32-bit ISA. The field P-Type has two bits.
If the P-Type value for an instruction is three, then the
next field specifies the number of instructions in the PSet
for that instruction. Each of the remaining fields specify
an instruction in the PSet. An instruction is represented
using a concatenated value of the identifier for its library
and its relative offset that refers to the instruction’s location
in the library. This is necessary to support programs with
dynamically loaded libraries.

The worst case space complexity for the PSets of a pro-
gram is O(N2), where N is the number of static memory
instructions in the program. The reason is that, each static
instruction can have at most N elements in its PSet. How-
ever, in Section 5 we show that, on average, about 95% of
static instructions have a PSet of size zero, as a huge pro-
portion of memory operations are thread local accesses. For
such instructions, there is no additional space overhead.

Programmers commonly use a testing metric called ba-
sic block coverage. It measures the percentage of static
instructions that were executed in at least one test run.
Even for high quality production code, basic block cover-
age is typically less than 100%. For instructions that were
never tested even once, we could assume that its PSet is a
null-set. This could ensure a high degree of fault tolerance.
Alternatively, one could choose not to enforce PSet con-
straints for such untested instructions to reduce the number
of false constraint violations during production runs. How-
ever, untested instructions are also likely to occur rarely,
because otherwise it would have been tested in a well tested
program. Therefore, assuming null PSets for untested in-
structions in a well tested program would not result in sig-
nificant number of false constraint violations.

3.4 Detecting and Enforcing PSet Constraints
We now discuss methods to detect and avoid PSet con-

straint violations. Using these methods we ensure that most
of the untested interleavings are avoided during production
runs. An architectural support for detecting and avoiding
PSet constraint violations is discussed in Section 4).

During a production run, whenever a memory operation
is immediately dependent on a remote memory operation,
the runtime system checks to see if the remote memory op-
eration is in the predecessor set of the current memory op-
eration. If not, a PSet violation is detected.

To repair the violation, we evaluate two approaches. In
one approach, the violating memory operation is stalled un-
til the violation gets resolved. When the violating thread is
stalled, other threads continue to make progress. If another
thread executes a memory operation to the same memory lo-
cation as the violating memory operation, the violated PSet
constraint is checked again. If the check succeeds, the stalled
thread continues its execution.

A repair mechanism based on stalling the violating threads
is easier to support and is also performance efficient. How-
ever, not all PSet constraint violations can be avoided us-
ing this mechanism. Because, for a constraint to get re-
solved, another thread should be able to make progress so
that it eventually accesses the same memory location as the
stalled memory operation. But, it is possible that the other
thread needs a lock before it can access that memory loca-
tion, and that lock might be currently held by the stalled
thread. Thus, stalling the violating thread might not resolve
the violation. Consider another example where a violating
memory operation’s PSet is a null-set. In this case, any
remote memory dependency would cause a violation, and
therefore waiting for the other threads to execute a different
memory operation is never going to resolve the violation.
To ensure forward progress while using a stalling mecha-
nism, we use a time-out scheme, where the stalled thread
is released to continue its execution (or the second recov-
ery scheme is triggered, if available) when the stall time has
reached a particular threshold.

We also evaluate another recovery mechanism to avoid
PSet constraint violations. It is based on a checkpoint and
rollback mechanism. On detecting a violation, the pro-
gram is re-executed from an earlier checkpoint. During re-
execution, the thread schedule is perturbed to induce an
alternative interleaving. Since, the constraint violations are
likely to be rare events, it is unlikely that the same violation
would be encountered again during re-execution.

Not all PSet constraint violations can be avoided by just
perturbing the thread schedule. It is possible that the only
legal interleaving for an input is one that is untested. Such
violations would cause repeated rollbacks to the same check-
point. To ensure forward progress, the maximum number of
rollbacks to a checkpoint is set to a threshold. When the
number of rollbacks to a checkpoint has reached the thresh-
old, that checkpoint is discarded, and another checkpoint is
taken at the point where a PSet violation is detected. The
system then logs the violation and continues with the exe-
cution. This ensures forward progress. The log is sent back
to the developer to test the untested interleaving and deter-
mine if it is a cause of a bug or not. If it is not a bug, then
the relevant PSet is updated in order to allow the newly
tested interleaving at runtime.

330

3.5 Limitations
The PSet constraints described in this paper does not ac-

count for the interleavings between two or more memory
operations accessing different memory locations. As a re-
sult, it may not be able to avoid certain bugs due to multi-
variable atomicity violations. Another limitation of PSets is
that they are context insensitive. Additional context such
as the calling stack could help avoid more untested inter-
leavings. In future, we plan to extend the PSet interleaving
constraints so that we can avoid most of the untested in-
terleavings. However, our analysis in Section 5 shows that
the PSets constraints discussed in this paper are powerful
enough to avoid 15 out of 17 concurrency bugs that we an-
alyzed.

4. ARCHITECTURAL SUPPORT
We implemented a profiler that learns PSets from the test

runs using Pin [13]. We also implemented a runtime monitor
to detect PSet constraint violations and avoid concurrency
bugs using Pin [13]. The runtime overhead for this run-
time monitor is about 100x for server applications such as
MySQL and Apache, but it is over 200x for memory inten-
sive applications like Splash [24] and Parsec [2]. Therefore,
to constrain the interleavings at runtime using PSet con-
straints, adequate processor support is a must.

We discuss architectural support for detecting PSet con-
straint violations in this section. In addition, we also need
checkpoint support for rollback and re-execution. This is a
well researched problem. A copy-on-write mechanism can
be supported in the operating system [20] or in the pro-
cessor [22, 18]. During re-execution, we induce a different
thread interleaving. The execution cannot be rolled back
past a committed system state. But as we show in Section 5,
the rollback window length required to avoid a majority of
concurrency bugs is small.

We now discuss architectural support for detecting PSet
constraint violations. The instruction set architecture (ISA)
needs to be extended to let the developers specify the PSet
constraints. Section 3 discussed an instruction encoding for
specifying the PSet constraint for an instruction. A proces-
sor needs to execute a check for a memory operation, if it
has a PSet constraint specified in the instruction code.

4.1 Tracking Last Writer and Last Reader(s)
To execute the checks, the processor needs to keep track

of either the last writer or the set of last readers for every
memory location. We propose to extend the caches to keep
track of this additional meta-data for every memory loca-
tion. When a cache block is evicted, the information is lost.
But as described in Section 3, most of the concurrency bugs
are tightly interleaved. Therefore, the loss in information
due to a cache eviction is not significant.

The coherence reply messages (write-update replies and
acknowledgments for invalidations) are piggy-backed with
the meta-data corresponding to the cache block. The pro-
cessor core receiving the reply, stores the received informa-
tion in its private cache along with the information that the
last reader or the writer information belongs to a different
thread.

4.2 Checking PSet Constraints
We propose to use DISE [3] for efficiently executing the

PSet check for every memory operation that has a PSet con-
straint. A check needs to be executed for a memory opera-
tion, only if the last reader(s)/writer to the memory location
accessed by the current instruction belongs to a different
thread. Thus, in the common case, no check needs to be
executed for a memory operation. Also, for a majority of
instructions, the PSet is a null-set (including all thread lo-
cal accesses). We show that less than 5% of static memory
operations have a PSet size greater than one, and therefore
the check for a memory operation could be very efficient.
If a check is executed for a memory operation, it checks if
the last writer or the last set of readers is a member of the
current memory operation’s PSet.

5. RESULTS
We discuss several results in this section. First, we dis-

cuss the bug avoidance capability of an interleaving con-
strained shared-memory multi-processor that enforces the
PSet constraints. We analyze its capability in detecting and
avoiding 17 concurrency bugs (16 real bugs and 1 injected
bug) in several multi-threaded applications such as Mozilla,
MySQL, Apache, etc. We also analyze if these bugs can be
detected by a happens-before based data race detector [8]
and AVIO [11]. Second, we analyze the number of tests it
takes to learn the PSet constraints adequately, and compare
it with another test based AVIO bug detection tool [11].
Third, we discuss the number of PSet constraint violations
in real executions (using input different from the ones used
for training), and the overhead in resolving the PSet con-
straint violations using stalling and rollback mechanisms.
Finally, we analyze the size of PSets and the memory space
overhead to express PSet constraints in the binary and to
keep track of them during production runs. These results
are based on our PSet constraint tool implemented using
Pin [13].

5.1 Bug Avoidance Capability
We analyze 17 bugs in the following multi-threaded pro-

grams: Pbzip2, Aget, Pfscan, Apache, MySQL, Mozilla and
OpenLDAP. These bugs are listed in Table 1. Our PSet
based detection tool was able to detect four real bugs (Bug
#1, Bug #2, Bug #4 and Bug #5) and one injected bug (Bug
#3) during a real program execution (the PSet constraints
for these programs were derived from the correct test runs,
which are described in Section 5.2.1). For the rest of the
bugs, we analyzed their extracted versions, as these bugs
manifest only under a very specific interleaving that is very
difficult to reproduce and analyze. The proposed PSet con-
straint based detection tool detected all the bugs, except
the last two bugs listed in Table 1. One bug (Bug #16) is
related to an incorrect interleaving between memory opera-
tions accessing different locations. The other one (Bug #17)
is a deadlock bug. In order to detect this bug, the PSet con-
straint needs to be context sensitive. AVIO [11] can detect
6 atomicity violation bugs, but cannot detect one atomicity
violation bug (Bug #10), which we discussed in Section 3. A
happens-before data race detector can detect all the bugs,
except five data race free bugs (Bug #3, Bug #7, Bug #15,
Bug #16 and Bug #17).

Our PSet based tool detected Bug #3 and Bug #15, which

331

Bug # Program D.R.D AVIO PSET Category Description

1 Pbzip2 Yes No Yes
Other Concur-
rency Bugs

An order violation between the main thread and the consumer threads. The
consumer threads are expected to terminate before the main thread release
the mutex fifo->mut. However, when this order is not enforced, it will lead
to a segmentation fault.

2 Aget Yes Yes Yes Atom. Vio.

A data race on the variable bwritten. The bug occurs when users issue
ctrl+c from the console. Since the signal handler accesses the variable bwrit-
ten without holding the mutex lock, it is likely that the downloaded file and
the log file are inconsistent.

3 Pfscan No No Yes
Other Concur-
rency Bugs

An injected bug. A counter, which specifies the number of remaining
threads, is used by the main thread to wait until all the child threads finish
execution. The main thread should initialize the counter before any child
thread finishes execution. Otherwise, the main thread will deadlock.

4 Apache Yes Yes Yes Atom. Vio.
A bug in Apache-2.0.48 that results in incorrect logs. Multiple threads
call ap_buffered_log_writer() and change the buffer entry length simulta-
neously, corrupting the log file.

5 MySQL Yes Yes Yes Atom. Vio.
A security bug in MySQL-4.0.12. If a database update occurs when an old
bin log is closed and the new bin log is not yet opened, this update will not
be recorded, leading to a serious security problem.

6 MySQL Yes No Yes
Other Concur-
rency Bugs

A bug usually occurs when MySQL starts. Due to unintentional interleav-
ing, an uninitialized value is read by a thread, resulting in all data nodes
becoming a master node.

7 Mozilla No Yes Yes Atom. Vio.
An atomicity violation bug in Mozilla [11]. While one thread loads a script
and compiles it, the other thread nullify the script. This leads to a program
crash. This bug is free of data race.

8 Mozilla Yes Yes Yes Atom. Vio.

An atomicity violation bug in nsZipArchive.cpp. Two different threads call
SeekToItem() simultaneously, leading to one piece of code, which is supposed
to be executed only once, get executed twice. One thread then will read
garbage data.

9 Mozilla Yes Yes Yes Atom. Vio.
A bug in nsNSSComponent.cpp. While closing Mozilla, two threads check and
free simultaneously. If two threads interleave incorrectly, a lock will get
freed twice, thus cause a crash.

10 Mozilla Yes No Yes Atom. Vio.

A race between nsFileTransport.cpp and nsAsyncStreamListener.cpp. There
is one temporary state which should be invisible to other threads. Due
to bad interleaving, this temporary state can be read by another thread,
leading to a deadlock.

11 Mozilla Yes No Yes
Other Concur-
rency Bugs

An order violation in nsthread.cpp [10]. It is possible that a thread reads a
location that is not initialized yet. This will cause Mozilla to crash.

12 Mozilla Yes No Yes
Other Concur-
rency Bugs

A race between macio.c and macthr.c [10]. A callback function is expected
to be invoked after a thread writes to a variable, but it is not synchronized
properly. This bug will cause a deadlock.

13 Mozilla Yes No Yes
Other Concur-
rency Bugs

An order violation in nsImapProtocol.cpp. An event will be ignored when
certain interleaving occurs. This will cause Mozilla to hang.

14 Mozilla Yes No Yes
Other Concur-
rency Bugs

An order violation in nsHttpdConnection.cpp. OnHeadersAvailable() is ex-
pected to be called after AsyncWrite() returns, but not enforced. It will
crash Mozilla.

15 Mozilla No No Yes
Other Concur-
rency Bugs

A bug in TimerThread.cpp. It happens when Shutdown() is executed prior to
Run(). In that case, the exit event is missed and leads to a freezing state.

16 Mozilla No No No
Multi-var.
Atom. Vio.

An atomicity violation that involves multiple variables [10]. An inconsistent
state is observed by a remote thread, causing corrupted memory.

17 OpenLDAP No No No Deadlock

A deadlock bug in back-bdb/cache.c (also reported in [23]). bdb_cache_add()
is called by two threads. One thread holds the lock lru_mutex and try to
acquire the lock c_rwlock, while the other thread holds the lock c_rwlock
and try to acquire the lock lru_mutex, leading to a deadlock.

Table 1: Bug descriptions.

True Constraint Violations False Constraint Violations
Bug # Program Type Stall Rollback

Static Dynamic Static Dynamic
Rollback Window Size

1 Pbzip2 Real Yes Yes 1 1 3 3 0
2 Aget Real No Yes 1 1 2 2 11
3 Pfscan Injected No Yes 1 1 0 0 51
4 Apache Real No Yes 2 20 1 1 358
5 MySQL Real Yes Yes 1 7 3 6 0

6 MySQL Extract No Yes 1 1 0 0 4760
7 Mozilla Extract No Yes 1 1 3 3 1664
8 Mozilla Extract No Yes 2 2 1 1 1224
9 Mozilla Extract No Yes 1 1 0 0 1210
10 Mozilla Extract Yes Yes 1 1 0 0 0
11 Mozilla Extract Yes Yes 1 1 0 0 0
12 Mozilla Extract Yes Yes 1 1 0 0 0
13 Mozilla Extract No Yes 1 1 0 0 821
14 Mozilla Extract Yes Yes 1 1 0 0 0
15 Mozilla Extract No Yes 2 2 1 1 1674

Table 2: Avoiding bugs using PSet constraints. True constraint violations are related to the bug.

332

neither the data race detector nor AVIO [11] could detect.
Thus, PSet constraint based concurrency bug detector is ef-
fective in detecting all the concurrency bugs that traditional
tools find, and also has the potential to detect other memory
ordering related concurrency bugs.

We now analyze the bug avoidance capability of the pro-
posed constrained shared-memory multi-processor runtime
system. Table 2 shows all the 15 bugs that were detected
by the PSet violation detector. Six bugs were avoided us-
ing the stalling mechanism that we described in Section 3.4,
and the rest of the bugs require support for a rollback and
re-execution mechanism. Table 2 also lists the number of
static and dynamic PSet constraint violations detected by
our tool. The constraint violations are classified into true
and false constraints. The true constraint violations are re-
lated to the bug. The false constraint violations are due to
insufficient training during testing. The performance impact
due to false constraint violations is discussed in Section 5.3.
Table 2 also lists the number of instructions that need to
be rolled back to avoid the bugs that we analyzed. As ex-
pected, the required rollback window size is small. This is
because, most of the concurrency bugs are due to tempo-
rally tight interleaving between the memory operations. A
rollback window of size zero means that the bug was avoided
by just stalling the violating thread.

5.2 Learning PSet Constraints
For the runtime system to be efficient, PSet constraints

should be complete enough to allow valid frequent inter-
leavings between memory operations at runtime. In this sec-
tion we discuss how soon the number of new PSets learned
reaches a saturation point, and compare it with another pro-
filing based bug detection tool called AVIO [11].

5.2.1 Testing Methodology

PSet constraints used in Section 5.1 were learned from
the correct test runs. Here we describe the input we used to
test our multi-threaded programs and learn the PSet con-
straints. These input are different from the ones used for
the bug avoidance (Section 5.3) and the false positive anal-
ysis (Section 5.3). Pbzip2 is a parallel implementation of
Bzip2, which does file compression and file decompression.
We compressed a random file in each test run. Aget is a
download accelerator that spawns multiple threads to down-
load different chunks of a file in parallel. For each test run,
we downloaded a random file from the Internet. Pfscan is a
multi-threaded file scanner, which combines the functional-
ity of find, xargs and fgrep. We searched a random string
from a randomly chosen file or directory in each test run. We
also evaluated two server applications, Apache and MySQL.
For Apache, each test run consists of issuing a session of
requests to a set of static web pages using httperf. For
MySQL, each test run consists of running the regression test
suite that is available for public. In parallel with the regres-
sion test suite, we also continuously run the OSDB (Open
Source Database Benchmark [1]) multi-user test to emulate
a concurrent workload. For these five programs, we used the
same version as the ones used for the bug avoidance analysis
(from Bug #1 to Bug #5), and the PSet constraints derived
in this section are used in the bug avoidance analysis. In
addition, we also evaluated six bug free applications, four
of them (FFT, LU, Radix, FMM) are from the Splash2 [24]
benchmark suite, and two of them (Blackscholes and Can-

Programs Stall Rollback
Cannot
Resolve

Total PSet
Constraint
Violations

Inst.
Count

pbzip2 1 5 0 6 1.3E+9
aget 0 0 0 0 1.1E+7
pfscan 1 2 0 3 7.4E+7
apache 1 4 0 5 2.8E+8
mysql 0 2 2 4 9.7E+8
fft 0 0 0 0 2.3E+8
fmm 1 0 0 1 1.6E+9
lu 0 1 0 1 1.6E+8
radix 0 0 0 0 6.4E+7
blackscholes 0 0 0 0 8.1E+8
canneal 1 0 0 1 7.0E+9

Table 3: PSet constraint violations in bug-free exe-
cutions.

neal) are from the Parsec [2] benchmark suite. For these
programs, we chose a random input parameter for each test
run.

5.2.2 Tests Required to Learn PSet Constraints

Figure 8 shows the number of new PSet pairs learned
in each test run. Each point along the x-axis represents
a unique test run, and the y-axis represents the number of
new PSet pairs derived from a particular test run. PSet
takes more test runs to stabilize than AVIO, because it cap-
tures more constraints than AVIO. These results show that
the tests used during the quality assurance process should
be adequate to learn the PSets.

5.3 PSet Constraint Violations in Bug Free Ex-
ecutions

We now discuss the number of false PSet constraint viola-
tions in bug free executions. We used the same set of bench-
marks that we used for the results in Section 5.2.2. The
input used to analyze the false PSet constraint violations
is different from the training input. For Pbzip2, we used a
different set of files as input. For Aget, some new files were
downloaded. For Pfscan, we searched some new strings from
different files and directories. For Apache, we used httperf

to issue concurrent requests to a set of static web pages
which are not used in the test runs. For MySQL, we used
the tool in OSDB to randomly generate a new database with
a size different from the one used for training, and ran the
OSDB multi-user test. For Splash2 and Parsec programs,
we randomly selected inputs and parameters not used in the
test runs.

Table 3 shows the static and dynamic number of PSet con-
straint violations, and also the total number of instructions
executed. All the data shown in the table are the cumulative
results of 10 runs, except for MySQL. For MySQL, we run
the OSDB multi-user benchmark once. The results show
that the number of false constraint violations are very few.
For example, for Pbzip2, we detected 6 constraint violations
while executing over 1.3 billion instructions. We avoided
one constraint violation by just stalling the violating thread.
The other five constraint violations needed rollback and re-
execution to resolve them. Even for a rollback window of
length 100,000 (which is more than sufficient for resolving
most of the concurrency bugs as discussed in Section 5.1),
five violations would result in additional 0.5 million instruc-
tions being executed at runtime. But this is a small fraction
(0.04%) when compared to 1.3 billion instructions executed

333

0

40

80

120

160

200

0 10 20 30 40

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

pbzip2 (PSet)

pbzip2 (AVIO)

0

50

100

150

200

250

300

0 20 40 60 80 100

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

aget (PSet)

aget (AVIO)

0

50

100

150

200

250

0 20 40 60 80 100 120

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

pfscan (PSet)

pfscan (AVIO)

1

10

100

1000

10000

0 100 200 300

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

apache (PSet)

apache (AVIO)

1

10

100

1000

10000

0 20 40 60 80 100 120

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

mysql (PSet)

mysql (AVIO)

0

40

80

120

160

0 10 20 30 40 50 60 70 80

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

fft (PSet)

fft (AVIO)

1

10

100

1000

10000

0 20 40 60 80 100 120 140 160

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

fmm (PSet)

fmm (AVIO)

0

50

100

150

200

250

0 10 20 30 40 50 60 70

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

lu (PSet)

lu (AVIO)

0

40

80

120

160

200

0 20 40 60 80 100

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

radix (PSet)

radix (AVIO)

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

blackscholes (PSet)

blackscholes (AVIO)

0

200

400

600

800

0 10 20 30 40 50 60 70 80

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

canneal (PSet)

canneal (AVIO)

Figure 8: Number of test runs required for learning PSets and AVIO invariants.

Programs App. Size App+Lib Size # PSet Pairs PSet Size Overhead w.r.t App. Overhead w.r.t App+Lib

pbzip2 39KB 3.70MB 201 0.84KB 2.16% 0.02%
aget 90KB 2.04MB 365 1.53KB 1.69% 0.08%

pfscan 17KB 2.08MB 295 1.25KB 7.34% 0.06%
apache 2435KB 8.60MB 4119 16.80KB 0.69% 0.20%
mysql 4284KB 8.19MB 6604 27.58KB 0.64% 0.34%

fft 24KB 2.59MB 158 0.67KB 2.74% 0.03%
fmm 73KB 2.64MB 1764 7.39KB 10.13% 0.28%
lu 24KB 2.59MB 244 1.03KB 4.31% 0.04%

radix 21KB 2.59MB 255 1.07KB 5.00% 0.04%
blackscholes 54KB 3.65MB 41 0.17KB 0.32% 0.00%

canneal 59KB 3.66MB 752 3.10KB 5.24% 0.08%

Table 4: Binary Size Increase

334

90% 92% 94% 96% 98% 100%

canneal

blackscholes

radix

lu

fmm

fft

mysql

apache

pfscan

aget

pbzip2

0

1

2 ~ 5

6 ~ 10

> 10

Figure 9: Proportion of static memory instructions
with a particular PSet size (normalized to the total
number of static memory instructions in the appli-
cation binary and libraries that were executed in at
least one test run).

by the original program. Thus, false constraint violations
are infrequent enough that they are likely to not impact
performance.

Detecting PSet invariant violations and maintaining check-
points can also degrade performance, but both of these costs
can be ameliorated using processor support (discussed in
Section 4).

We also noticed that there are two PSet constraint viola-
tions in MySQL that cannot be resolved by both stall and
rollback mechanisms, because there is no legal interleaving
that would not violate the PSet constraints. This is due to
insufficient testing. We found that these two violations are
from the function bmove512() (in bmove512.c). This func-
tion moves 512 bytes in the heap. To improve performance,
the programmer has manually unrolled a loop in the func-
tion 128 times resulting in 128 reads and 128 writes within
the loop. In a test run, only very few bytes are touched in
the heap before the function bmove512() gets executed. As
a result, in a test run, only a few memory instructions within
the loop have a predecessor memory operation. This makes
it difficult for us to learn all the legal interleavings involving
this function using our current testing methodology. How-
ever, if we can perform more complete industry-level testing,
such violations should also disappear.

When we detect a PSet violation that we cannot avoid, in
addition to logging it for post-mortem analysis, the corre-
sponding PSet is updated so that no future violations due to
the same interleaving would be detected. A PSet violation
that we manage to avoid are also logged for post-mortem
analysis, but the corresponding PSet is not updated so that
the system continues to avoid a potential bug related to the
PSet violation.

5.4 Memory Space Overhead
We now discuss the memory space overhead in expressing

the PSet constraints in the binary and tracking them at run-
time. We use the same set of benchmarks that we described
in Section 5.2.2.

Figure 9 shows the distribution of the PSet sizes for several
programs that we analyzed. The x-axis is normalized to
the total number of memory instructions in the application
binary and the libraries that were executed at least once
in the test runs. Over 95% of the instructions have PSets
of size zero. These instructions either accessed only thread

local memory locations, or, they were never dependent on a
remote memory operation. Less than 2% of static memory
instructions have a PSet of size greater than two. This result
shows that the performance overhead in the executing the
PSet constraint checks should be very small.

Table 4 lists the sizes of the applications’ binaries and also
the sizes of the libraries they use. It also lists the number
of PSet pairs learned from the test runs. The percentage
of code size increase with respect to just the application
binary size is about 10% in the worst case. This is the code
size increase for an application. However, the PSet pairs
for an application also includes the static instructions from
the libraries. The increase in binary size with respect to
the total size of application and libraries is negligible. As
a result, at runtime, we expect that the increase in the size
of the instruction memory footprint to be also negligible.
The reason for this result is that, only a small fraction of
the instructions access shared-memory locations. And, only
the shared-memory instructions could have a PSet of size
greater than zero.

6. CONCLUSION
Testing and verifying a multi-threaded program is more

difficult than a single-threaded program, because the num-
ber of possible interleavings is exponential over the number
of memory operations executed by different threads. We
make a case for an interleaving constrained shared-memory
multi-processor which avoids untested interleavings.

This paper makes the first step towards designing an in-
terleaving constrained multi-processor. To detect untested
interleavings we need a set of invariants fundamentally dif-
ferent from the ones used to detect incorrect interleavings
such as a data race invariant or AVIO. We focused on con-
straining the runtime interleaving such that, no two remote
memory operations are allowed to depend on each other at
runtime, unless that dependency was observed in at least
one of the test runs. We built a software tool to detect PSet
constraints and enforce them, but as expected, it incurs sig-
nificant runtime slowdown. We proposed extensions to a
multi-processor design, which enables efficient detection of
PSet constraint violations. On detecting a violation, check-
point support is used for re-executing the program with an
alternative interleaving and resolve the PSet constraint vio-
lations.

We analyzed several bugs in real applications, and showed
that the proposed system can avoid not only data races and
atomicity violations, but also other unstructured memory
order related concurrency bugs. The number of false con-
straint violations in a well tested program is very small, and
as a result, the resulting performance overhead is also neg-
ligible.

Acknowledgments

We would like to thank the anonymous reviewers for provid-
ing valuable feedback on this paper.

7. REFERENCES
[1] The open source database benchmark.

http://osdb.sourceforge.net/.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
parsec benchmark suite: Characterization and
architectural implications. In Proceedings of the 17th

335

International Conference on Parallel Architectures and
Compilation Techniques, October 2008.

[3] M. Corliss, E. Lewis, and A. Roth. Dise: A
programmable macro engine for customizing
applications. In 30th Annual International Symposium
on Computer Architecture, San Diego, CA, June 2003.

[4] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. Dmp:
deterministic shared memory multiprocessing. In
ASPLOS ’09: Proceeding of the 14th international
conference on Architectural support for programming
languages and operating systems, pages 85–96, New
York, NY, USA, 2009. ACM.

[5] C. Flanagan and S. N. Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs. In
POPL ’04: Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 256–267, 2004.

[6] L. Hammond, B. D. Carlstrom, V. Wong,
B. Hertzberg, M. Chen, C. Kozyrakis, and
K. Olukotun. Programming with transactional
coherence and consistency (tcc). In ASPLOS-XI:
Proceedings of the 11th international conference on
Architectural support for programming languages and
operating systems, pages 1–13, New York, NY, USA,
2004. ACM Press.

[7] M. Herlihy, V. Luchangco, M. Moir, and W.N.Scherer.
Software transactional memory for dynamic-sized data
structures. In Twenty-Second ACM SIGACT-SIGOPS
Symposium on Princicples of Distributed Computing,
2003.

[8] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[9] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A.
Popa, and Y. Zhou. Muvi: Automatically inferring
multi-variable access correlations and detecting related
semantic and concurrency bugs. In Proceedings of the
21st ACM Symposium on Operating Systems
Principles (SOSP’07), 2007.

[10] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes — a comprehensive study on real world
concurrency bug characteristics. In 13th International
Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS’08),
2008.

[11] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting
atomicity violations via access interleaving invariants.
In ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming
languages and operating systems, pages 37–48, 2006.

[12] B. Lucia, J. Devietti, K. Strauss, and L. Ceze.
Atom-aid: Detecting and surviving atomicity
violations. In ISCA ’08: Proceedings of the 35th
International Symposium on Computer Architecture,
pages 277–288, Washington, DC, USA, 2008. IEEE
Computer Society.

[13] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In
Programming Language Design and Implementation,
Chicago, IL, June 2005.

[14] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards,
and B. Calder. Automatically classifying benign and
harmful data races using replay analysis. In ACM
SIGPLAN 2007 Conference on Programming Language
Design and Implementation (PLDI), June 2007.

[15] R. H. B. Netzer. Optimal tracing and replay for
debugging shared-memory parallel programs. In
Proceedings of the ACM/ONR Workshop on Parallel
and Distributed Debugging, pages 1–11, 1993.

[16] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo:
efficient deterministic multithreading in software. In
ASPLOS ’09: Proceeding of the 14th international
conference on Architectural support for programming
languages and operating systems, pages 97–108, New
York, NY, USA, 2009. ACM.

[17] M. Prvulovic and J. Torrelas. Reenact: Using
thread-level speculation mechanisms to debug data
races in multithreaded codes. In 30th Annual
International Symposium on Computer Architecture,
San Diego, CA, June 2003.

[18] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: Cost
effective architectural support for rollback recovery in
shared-memory multiprocessors. In Proceedings of the
29th Annual International Symposium on Computer
architecture, pages 111–122. IEEE Computer Society,
2002.

[19] S. Qadeer. Taming concurrency: A program
verification perspective. In Invited Lecture.
International Conference on Concurrency Theory
(CONCUR), Aug 2008.

[20] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx:
treating bugs as allergies—a safe method to survive
software failures. In SOSP ’05: Proceedings of the
twentieth ACM symposium on Operating systems
principles, pages 235–248, New York, NY, USA, 2005.
ACM.

[21] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

[22] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A.
Wood. Safetynet: Improving the availability of
shared-memory multiprocessors with global
checkpoint/recovery. In Proceedings of the 29th
Annual International Symposium on Computer
Architecture, pages 123–134, 2002.

[23] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. A.
Mahlke. Gadara: Dynamic deadlock avoidance for
multithreaded programs. In OSDI ’08: Proceedings of
the 8th USENIX Symposium on Operating Systems
Design and Implementation, December 2008.

[24] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The splash-2 programs: Characterization
and methodological considerations. In 22nd Annual
International Symposium on Computer Architecture,
pages 24–36, 1995.

[25] M. Xu, R. Bodik, and M. D. Hill. A serializability
violation detector for shared-memory server programs.
In ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation (PLDI), 2005.

336

