Vector Quantization and Subband Coding

18-796 Multimedia Communications: Coding, Systems, and Networking

Prof. Tsuhan Chen
tsuhan@ece.cmu.edu

Vector Quantization
Vector Quantization (VQ)

- Each image block has \(N \) pels
- Consider each image block as an \(N \)-D vector \(\mathbf{x} \)

\[
R_1 \quad y_1 \quad R_3 \quad R_2
\]

- Quantization: \(\mathbf{x} \to y_k \) if \(\mathbf{x} \in R_k \)
- \(y_k \): codewords or code vectors
- The set of \(y_k \) is called a codebook

Rate and Distortion

- If the number of codewords is \(K \), then the number of bits required to send one vector is \(\log_2 K \)
- Rate \(R \)
 - \(R \) bits per pixel
 - \(NR \) bits for one vector, so \(\log_2 K = NR \), i.e., \(\log K = 2^{NR} \)
- Distortion \(D \)
 - Given the probability density function \(p(\mathbf{x}) \) and distortion measure \(d(\mathbf{x}, \mathbf{y}) \), the average distortion is

\[
D = \sum_{k=1}^{K} \int_{R_k} d(\mathbf{x}, y_k)p(\mathbf{x})d\mathbf{x}
\]
• Given y_k, R_k should be chosen such that

$$ R_k = \{ x : d(x, y_k) \leq d(x, y_j) \forall j \neq k \} $$

= the set of x for which y_k is the nearest point

• For L_2 norm, i.e.,

$$ d(x, y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - y_i)^2 $$

we get

$$ d(x, y_k) = \frac{1}{N} \sum_{i=1}^{N} (x_i - y_k)^2 $$

Convex Polytope
(Voroni Cell)

Q: How about L_1 or L_{∞}?

• Given R_k, y_k should be chosen such that

$$ \int_{R_k} d(x, y_k)p(x)dx \text{ is minimum} $$

• With L_2 norm, we get

$$ y_k = \text{centroid of } R_k = \int_{R_k} x p(x)dx $$

• In the discrete case, optimal y_k is the average of the vectors in R_k
Generalized Lloyd Algorithm
(LBG Algorithm, K-means Algorithm)

• Linde, Buzo, and Gray, 1980

• Given \(p(\mathbf{x}) \), or given a set of training vectors
 (1) Start with an initial set of \(\mathbf{y}_k \), i.e., initial codebook
 (2) With the current \(\mathbf{y}_k \), calculate the region \(R_k \)
 (3) Replace each \(\mathbf{y}_k \) with the centroid of \(R_k \)
 (4) If the overall distortion \(D \) is lower than a threshold, stop.
 Otherwise, go to (2)

• Only gives local optimum. Proper choice of initial codebook is important

• Choice of initial codebook
 – A representative subset of the training vectors
 – Scalar quantization in each dimension
 – Splitting…

• Nearest Neighbor (NN) algorithm [Equitz, 1984]
 – Start with the entire training set
 – Merge the two vectors that are closest into one vector equal to their mean
 – Repeat until the desired number of vectors is reached, or the distortion exceeds a certain threshold
Properties of VQ

- Codebook design is very complex
 - 4x4 blocks at 1 bpp: \(2^{16}\) codewords
 - 16 images of size 256x256: \(2^{16}\) training vectors (4x4 each)
 - Codebook size: \(2^{16} \times 4 \times 4 \times 8\) bits = 8.3 Mbits

- More useful for low bitrate
 - 4x4 blocks at 0.5 bpp: \(2^8 = 256\) codewords
 - One 256x256 image: 4096 training vectors
 - Codebook size: \(256 \times 4 \times 4 \times 8\) bits = 32.8 Kbits

- Simple decoder, complex encoder
 - Very good for image retrieval

- Poor performance on images not in the training set vs. overhead of sending the codebook
VQ Variants and Improvements

- Multistage VQ
- Product Codes
 - Send mean and variance separately
- Classified VQ
 - Edges, texture areas, flat areas
- Predictive VQ
- VQ for color images
 - Exploit correlation among color components, e.g. R,G,B
 - YUV components are practically uncorrelated

Subband Coding
Subband Coding

- Decompose the signal in the frequency domain
- Critical downsampling (maximal decimation) maintains the number of samples in the subbands
- Wavelet coding: Recursively apply subband decomposition to the low freq band
- 2-D: Separable filtering to get 4 bands: LL, LH, HL, HH

Subband Coding vs. Transform Coding

Polyphase Representation
• Perfect reconstruction (PR) is obtained when $R(z) = E^{-1}(z)$
• When $E(z)$ and $R(z)$ are constant matrices, subband coding degenerated to blocked-based operation, i.e., transform coding
• In particular, if $E(z)$ is a DCT matrix and $R(z)$ is IDCT, this becomes DCT coding
• Subband coding can be viewed as transform coding with overlapped blocks. So, it can exploit correlation of pixels at longer range
• Coding Artifacts:
 – Transform Coding: blocking
 – Subband Coding: ringing, contouring

Optimal Bit Allocation

• We can allocate different bit rates to the subbands based on their properties
• Assume that we apply scalar quantization with bitrate b_k to the subbands x_k, then the quantization error is

\[\sigma_{q_k}^2 = c \times 2^{-2b_k} \sigma_{x_k}^2 \]

• The overall quantization error is

\[\sigma_q^2 = \frac{1}{M} \sum_{k=1}^{M} \sigma_{q_k}^2 \]

• The overall bitrate is

\[b = \frac{1}{M} \sum_{k=1}^{M} b_k \]
\[\sigma_q^2 \geq \left(\prod_{k=1}^{M} \sigma_{q_k}^2 \right)^{\frac{1}{M}} \] (AM-GM inequality)

\[= c \left(\prod_{k=1}^{M} 2^{-2b_k} \sigma_{s_k}^2 \right)^{\frac{1}{M}} = c \left(2^{-2\sum b_k} \prod_{k=1}^{M} \sigma_{s_k}^2 \right)^{\frac{1}{M}} \]

\[= c \times 2^{-2b} \left(\prod_{k=1}^{M} \sigma_{s_k}^2 \right)^{\frac{1}{M}} \] (a constant for given signal and filter bank)

- Equality holds if and only if \(\sigma_{q_k}^2 = \sigma_q^2 \quad \forall k \)
- Optimal bit allocation \(b_k = \frac{1}{2} \log \frac{c \times \sigma_{s_k}^2}{\sigma_q^2} \)
- Gain \(\frac{1}{M} \sum_{k=1}^{M} \sigma_{s_k}^2 \left(\prod_{k=1}^{M} \sigma_{s_k}^2 \right)^{\frac{1}{M}} \geq 1 \) No gain if \(\sigma_{s_k}^2 \) are identical

Pyramid Coding

- Diagram showing the pyramid coding structure with levels and bit allocations.

18-796/Spring 1999/Chen
The “Pyramid”

- Consider the 2-D case

- Number of samples is 33% more

\[N + \frac{N}{4} + \frac{N}{16} + \cdots \approx \frac{4}{3} N \]

- Non-critical sampling
- PR is always possible
 - No matter how L and Int are designed
- Progressive transmission is possible
References

- **VQ**
- **Subband**
 - P.P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, 1993