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3.0 INTRODUCTION

As more and more signals in the real world are represented, stored, and transmitted
in digital formats, the importance of being able to process a signal digitally from its
inception to its final destination grows. The general theory of dlg1ta.l signal processing
has emerged in the past two decades and has grown to prominence in the engineering
community, as evidenced by the publication of several key texts and reprint col-
lections [1-9]. Almost all of the theory presented in those references deals with
processing signals at a fixed sampling rate. However, in the past few years, there has
been an increasing need for a deeper understanding of how to process digital signals
in systems that require more than one sampling rate. An entire subfield of digital signal
processing—multirate signal processing—has developed to meet this need [10].
This chapter presents the main ideas and concepts of multirate digital signal
processing, with particular emphasis on digital techniques for changing the sampling
rate of a signal. We begin our discussion with a thorough review of the Nyquist
sampling theorem and its interpretations in terms of modulated signals. We then show
how a continuous-time signal can be reconstructed from its digital samples. This
discussion leads naturally to the topic of sampling rate conversion, in which we show
_that such conversion is essentially a digital “resampling” of the signal at the required
rate. We show that we can readily implement such sampling rate conversion systems
by paying careful attention to the structure for computation, to the digital filters that
perform the antialiasing or anti-imaging functions, and to the use of cascade architec-
tures, when appropriate. Finally, we conclude by discussing several applications of
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124 Multirate Processing of Digital Signals Chap. 3

sampling rate conversion to illustrate the power of the multirate signal processing
techniques discussed in this chapter.

3.1 SAMPLING AND SIGNAL RECONSTRUCTION

3.1.1 The Sampling Theorem

Assume that we have a continuous-time signal x.(f), —o < r < =, for which we
would like to obtain a discrete-time representation x(n), —= < n < ». The signals
x(n) and x.(f) are related by sampling, that is,

20 =5 g | @3.1)

where g(n) is the “sampler” applied to x. (). The most w1dcly used sampler is the
uniform sampler, in which

= gq(n) = nT | (3.2)
where T is the sampling period, and the quantity
=1/T (3.3)

is the sampling rate. Figure 3.1 gives an ﬂlustratzon of uniform sampling. Part (a) of
the figure depicts a typical waveform of the continuous-time signal x, (¢). Parts (b) and
(c) show the resulting digital signals (called x(n)) for two different choices of sampling
period T The most important consideration in sampling is determination of the proper

x ()

(al

(c}

Figure 3.1 (a) Continuous-time signal and (b, ¢) two sampled versions of it.
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value of T. We will discuss this point later i in this secnon First, however we give a
few simple interpretations of sampling.

The simplest interpretation of sampling is as a modulation process, as shown in
" Fig. 3.2(a). The continuous-time signal x.(f) (Fig. 3.2b) is first multiplied (modulated)
by the sampling pulse train signal s.(#) (Fig. 3.2c), where s.(f) has the form

s®=3 (-7 (3.4)

f=—a

s it
: ¢ /L t=nT
x, (1) ;'\?_(/ :—oﬁ{——»— x(n)

x, ()

(b}

s (6}

O ——

-21 —F o7 ar aT 5T

x{n)

Figure 3.2 Periodic sampling of x.(f) via modulation to obtain x (n).
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and where &, (r) denotes an ideal unit impulse function. The resulting pulselike signal
is measured for values of ¢+ = nT via the switch, which closes for a brief instant once
every T seconds and then remains open the rest of the time. The resulting digital signal
x(n) is shown in Fig. 3.2(d) and has the form

x(w) = lim [ %0500 df = x(aT) (3.5)

The sampling network of Fig. 3.2(a) is often referred to as an analog-to-digital (A/D)
converter since an analog signal goes in and a digital signal comes out.

An alternative interpretation of sampling can be obtained by examining the
modulation system of Fig. 3.2 in the frequency domain. To do this we must rely on
Fourier transform theory and some elementary properties of such transforms. We
assume that x.(¢) has a Fourier transform

X.(Q) = f " x.(e ™ dr (3.6)
and s.(#), the sampling pulse train, has a Fourier transform
S.(Q) = r s(t) e dr (3.7)
Since s5.(1) is a periodic impulse train (Eq. 3.4), S.({2) has the form
ad 2m7€
S. () = =— e.EL"@ ) (ﬂ - T) (3.8)

i.e., a uniformly spaced 1mpulse train in frequency with period 0y = 2#/T = 2%F.
Since multiplication in the time domain is equivalent to convolution in the
frequency domain,

X.(Q) * 5.(Q) = [ sl a (3.9)

where * denotes linear convolution.

Figure 3.3 shows typical plots of X.(€1) (part a), S.(Q) (part b), and the
convolution X, (£2) * S.() (part c), where it is assumed that X, ({2) is bandlimited and
its highest frequency component, 27F,, is less than one-half of the sampling frequency
Qy = 2aF,. From Fig. 3.3 we see that the process of pulse amplitude modulation
(PAM) periodically repeats the spectrum X,({)) at harmonics of the samplmg fre-
quency, due to the convolution of X.({)) and S, ({2).

Because of the direct correspondence between the sequence x(n) and the pulse
amplitude modulated signal x.(f)s.(¢) (as seen in Eq. 3.5), it is clear that the informa-
tion content and the spectral interpretations of the two signals are synonymous. This
correspondence can be shown more formally by considering the (discrete-time) Fou-
rier transform of the sequence x(n), defined as

X(w) = 2 x(n)e Jen (3.10)

n=-o
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Figuré 3.3 Spectra of sighals obtaincd. from periodic sampling via modulatiqn.
- where @ = QT = Q/F,. Since x.(¢) and x(n) are related by Eq. (3.5), a relation can

be derived between X, ((1) and X (w) with the aid of Egs. (3.6) and (3.10) as follows.
The inverse Fourier transform of X, () gives x.() as

&@~—FX@MWQ (.11)
Evaluating Eq. (3:11) for ¢t = nT, we get
xw=mm=ﬁrxwmwn ' 3.12)

The sequence x(n) may also be obtained as the inverse (discrete-time) Fourier
transform of X (w):

x@=ﬁﬁﬁmMm (3.13)
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Thus, combining Egs. (3.12) and (3.13), we get
1 f " X dia = r X.(Q)e ™7 40y (3.14)
2 )en 27 )

By expressing the right-hand integral as a sum of integrals, each of width 27/T, we
can put Eq. (3.14) in the form

1 (= i 1 = [1 & ,
o f_” [X(w)]e/™ dw = = L [}-_ ‘zw X(Q + ggf)]em do  (3.15)

By equating terms within the brackets of Eq. (3.15), we get

l & 1 Z 1
X(w) T t;ﬂ X.(Q + €Qp) T ,:?:- X{T(m + 211.'8)] (3.16)

Equation (3.16) shows that the Fourier transform of the digital signal is the sum
of frequency-shifted and scaled versions of the Fourier transform of the continuous
signal.

We can now see quite clearly the effect of different choices of (r = 27/T on
the resulting Fourier transform of the digital signal. These possibilities are illustrated
in Fig. 3.4 Figure 3.4(a) shows the Fourier transform of the continuous signal and
Fig. 3.4(b) shows the resulting digital Fourier transform when Q) > 4xF,.. The
individual terms for € = O and € = =1 of Eq. (3.16) are shown in this figure. Figure
3.4(c) shows the resulting discrete-time Fourier transform when ) = 4#F.. In this
case the individual terms of Eq. (3.16) come right up to each other in frequency. This
case is referred to as critical sampling of the signal. Finally, Fig. 3.4(d) shows the
resulting discrete-time Fourier transform when ( < 47F,. In this case the individual
terms in Eq. (3.16) overlap in frequency, and the resulting digital frequency response,
in general, bears no simple, direct relationship to the continuous frequency response
of Fig. 3.4(a). In this case we say that the digital signal is an aliased representation
of the continuous signal. ' '

The implications of the three cases of sampling discussed above are summarized
in a simple and straightforward manner in the Nyquist sampling theorem:

If a continuous-time signal x. (¢) has a bandlimited Fourier transform X. ({2) that satisfies
the condition |X.(Q2)| = 0 for @ = 2nF,, then x.(r) can be uniquely reconstructed,
without error, from equally spaced samples x(n) = x.(nT), —® < n < «, if F, = 2F,,
where F, = 1/T.

The sampling theorem tells us that the digital signals of Fig. 3.4(b) and (c) are
suitable for exact reconstruction of the continuous-time signal from which they were
obtained; however, the aliased digital signal of Fig. 3.4(d) cannot be used to recon-
struct the continuous signal from which it was obtained.

There are several points worth noting about the sampling theorem and its prac-
tical implementation. The first point concerns the bandlimited requirement on x. (¢). In
practice there are no truly bandlimited signals for which | X,(Q)| = 0 for Q = 2=F.
Thus we substitute the more reasonable bandlimited criterion |X.(Q) | =< & for
) = 27F,, where 8 is some suitably small constant. For example, if the largest
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Figure 3.4 Spectral interpretations of the sampling theorem.

magnitude of X, ({1) is on the order of 1.0, values of & from 0.0001 (80 dB doewn) to
0.01 (40 dB down) are generally used.

A second point of note in the practical use of the sampling theorem is that, in
general, we are using a sampling rate F; as close to the critical rate 2F, as possible. In
this manner the computation of the digital signal processing is kept as small as
possible, consistent with the sampling requirements.

A final point about the sampling theorem concerns cases that violate the rule to
keep the sampling rate as low as possible. For digital processing systems with non-
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linearities it is often advisable to use sampling rates much greater than the minimum
possible. The reasons for this are related to the nonlinearities that cause the frequency
spectrum of the signal to be smeared across all frequencies. In a digital signal the
frequency range is inherently limited to the band | f| = F.. Thus the higher the
sampling rate, the broader the range of frequencies in which to spread the energy of
the signal due to the nonlinearity. An example of this type of effect is given in [14],
which discusses a digital simulation of an ordinary telephone line. For this system a
- sampling rate of five times the minimum rate was used.

3.1.2 Signal Reconstruction from Samples

The sampling theorem gives us the set of necessary and sufficient conditions for being
able to reconstruct a continuous-time signal from its samples. To actually do the
reconstruction we have to use a system, called a digital-to-analog (D/A) converter, to
transform x(n) back to the sampled signal x.(¢)s.(¢) and then pass the sampled signal
through an ideal lowpass filter & (¢) to recover x.(¢). This sequence of operations is
depicted in Fig. 3.5.

t=nT
x.(t)s 1t x{n) x (t)s.(2)
x At ‘{Q——— D/A Aplt)f——— x_l1)
Ideal Ideal
digital-to-analog lowpass
5, (1) converter - filter

Figure 3.5 Sampling and reconstruction of a continuous-time signal.

To implement this process, an ideal digital-to-analog converter is required to get
x.(0)sc(¢) from x(n). Assuming that we do not worry about the reliability of such an
ideal converter, the reconstruction formula for x.(#) is

x() = Jm y x(Dsc(Dh(t ~ 7) dr | (3.17)
and applying Egs. (3.4) and (3.5) gives
% =S x(hl - nT) (3.18)

If we use the reconstruction method, the relationship between the reconstructed
signal x.(¢) and the set of samples x(n) is given by the convolutional formula

z() = > x(@)h( — nT) (3.19)

Rn=—o

The ideal lowpass filter k;(¢) has the frequency-domain characteristics

|H(Q)| = {}, ?a£| @ ,Lf __’_’F;;T’”/ J (3.20)
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. giving the ideal impulse response

_ sin(wt/T) o -y
| f;,:(r) =T <t < | - (3.21)
Combining Egs. (3.19)-(3.21) gives the ideal reconstruction formula
| s sin[#(¢ — nT)]/T |
x..j(f) = “_2_0 x(n)[ o = nDV/T ] | (3.22)

Figure 3.6 illustrates the application of the reconstruction formula of Eq. (3.22). At
each instant no the digital sample x(n,) weights the ideal lowpass filter response. All
such terms are then summed to give x,(1).

x(m)

--—‘h-l-__-‘-

~ -
rd <
\“\
,r <
) - = n

x(ng) * Aylt =g TY

Figure 3.6 Ilustration of a bandlimited reconstruction from shifted and scaled
lowpass filter responses.

Unfortunately, the reconstruction formula of Eq. (3.22) cannot be implemented
because the ideal lowpass filter is unrealizable. As such, in practical systems, the ideal
lowpass filter is replaced with a real desampling filter giving a reasonable approxi-
mation to the desired response.

3.2 SAMPLING RATE CONVERSION

Once we have a signal in digital form, it is convenient to be able to process it digitally
until it reaches its final destination and must ultimately be converted back to analog
(continuous-time) form. When the sampling rate required in the digital processing
remains constant, there is no problem in handling the digital signal. However, in many
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practical systems, the sampling rates at different points in the system are different.
Hence we must be able to change freely the sampling rate of a digital signal for
maximum signal processing efficiency.

There is one very simple and straightforward approach to changing the sampling
rate of a digital signal. This approach, called the analog approach, merely reconstructs
the continuous-time signal from the original set of samples and then resamples the
signal at the new rate (assuming no additional antialiasing lowpass filtering is
required). Thus, usmg Eq. (3.19), if the original sampling penod is T and if the new
sampling period is T, we form

Y1) = % |imnr = S x(Why(mT’ - . (2

a=—co

If we restrict ourselves to practical lowpass filters (with a finite-duration impulse
response), then we can rewrite Eq. (3.23) to express y(m) as the finite summation
Ny : .
y(m) = 2 x(m)hy(mT' — nT) ' (3.24)
n=Ny

In theory the analog approach to sampling rate conversion works well. In
practice it suffers from one major problem, namely, that the ideal operations required
to reconstruct the continuous-time signal from the original samples and to resample
the signal at the new rate cannot be implemented exactly. When we resort to using
practical D/A and A/D converters, we find that the resulting signal has additive noise
(due to resampling), signal-dependent distortions (due to nonideal samplers), and
frequency distortions (due to nonideal frequency responses of the filters). Although
these real-world distortions can be minimized, they cannot be ehnunated using the
analog approach.

An alternative is the so-called direct digital approach to sarnplmg rate con-
version. The key to this approach is the realization that the processing of Eq. (3.24)
is all that is required to change the sampling rate of the signal. Hence, if the com-
putations of Eq. (3.24) could be directly implemented, that is, without going through
D/A or A/D conversion, in theory a distortion-free sampling rate conversion could be
achieved. We now show how this is achieved in practice. Before presenting the
general equations for the digital approach to sampling rate conversion, we first discuss
three special cases that essentially provide a complete understanding of the nature of
the digital approach:

1. Decimation (sampling rate decrease) by an integer factor M
2. Interpolation (sampling rate increase) by an integer factor L
3. Sampling rate conversion by a ratio of integer factors M/L

3.2.1 Decimation by an Integer Factor M

Consider the process of reducing the sampling rate (decimation) of x(n) by an integer
factor M. If we denote the sampling period and rate of x(n) by T and K, = 1/T and
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the sampling period and rate of the decimated signal y(n) by ' and F| = 1/T’, then
we have

F* e F

| s = g

Assume that x(n) represents a fullband signal, i.e., its spectrum is nonzero for all

frequencies in the range | f | < F,/2, except possibly at an isolated set of points. Based

on the analog interpretation of sampling, we see that to lower the sampling rate and

to avoid aliasing at this lower rate, it is necessary to filter the signal x(n) with a digital
lowpass filter that approximates the ideal characteristic
lo| < 37

L. M (3.26)
otherwise

(3.25)

Hy{a) = {:)

The sampling rate reduction is then achieved by forming the sequence y (m) by saving
only every Mth sample of the filtered output. This process is illustrated in Fig. 3.7(a).
If we denote the actual lowpass filter impulse response as i(n), then we have

wn) = > h(x(n — k) - (3.27)
k== :
where w (n) is the filtered output as seen in Fig. 3.7(a). The final output, y(m), is then
obtained as

y(m) = w(Mm) (3.28)

as denoted by the operation of the second box in Fig. 3.7(a). The use of a down arrow
followed by an integer is called a sampling rate compressor and corresponds to the
resampling operation of Eq. (3.28). L

Figure 3.7(b) shows typical spectra (magnitude of the discrete Fourier
transforms) of the signals x(r), h(n), w(n), and y(m) for an M-to-1 reduction in
sampling rate. Note that the frequencies w = 2nfT and @’ = 2#f'T’ are normalized
with respect to the sampling frequencies F, and F. '

When Egs. (3.27) and (3.28) are combined, the relation between y (m) and x(n)
is of the form

yom) = S hRxMm — B (3.29)

k=—x

or, by a change of variables, it becomes

ym) =3 h(Mm — n)x(n) .(3.30)

It is valuable to derive the relationship between the z-transforms of y (m) and x(n)

50 as to be able to study the nature of the errors in y (m) caused by a practical (nonideal)
lowpass filter. To obtain this relationship, we define the signal

i) = {w(u), n=0,*M, +2M, . . .

0, ~ otherwise . (3-31)
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Figure 3.7 Block diagram and typical spectra for decimation by an mteger fac-
tor M.

i.e., w'(n) = w(n) at the sampling instants of y(m) but is zero otherwme A con-
venient and useful representation of w'(n) is then

w'(n) = w(n)[ﬁ ‘S‘__‘ e}ﬂﬁm’bﬂ], —w<p <o (3.32)

£=0
where the term in brackets corresponds to a discrete Fourier series representation of
a periodic impulse train with a period of M samples. (This pulse train is the digital
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equivalent of the analog pulse amplitude modulated sampling function of Section 3.1.)
Thus we have

y(m) = w'(Mm) = w(Mm) (3.33)
We now write the z-transform of y(m) as
Y@= 3 ymem= 3 wMms™ (3.34)

and since w'(n) is zero, except at integer multiples of M, Eq. (3.34) becomes (after
some simple manipulations)

® 1 M-l ' '
Y@ = 3 wlme =S WM gy (3.35)
m=—= © =0
Since '
W(z) = H(2)X(2) (3.36)
we can express Y(z) as _
M-1 25 :
¥Q) =1 S H(e M gy (et (3.37)
=0 _ '
Evaluating ¥ (z) on the unit circle, z = ¢/, leads to
M=1 i o fe e
Y() =13 H(o' - 200/M)X (@' — 2r0)/M)  (3.38)
t=0

Equation (3.38) expresses the Fourier transform of the output signal y (m) in terms of
the transform of the aliased components of the filtered input signal x(n). By writing
. out the individual terms, we get

V() = 22[H (' /MK (/M) + H(w' = 2m/MX(@' ~ 22)/M) + - - -]
' ' (3.39)

The purpose of the lowpass filter, H (w), is to filter x(n) sufficiently so that its spectral
components above the frequency w = w/M are negligible (see Fig. 3.7). Thus it
serves as an antialiasing filter. If the lowpass filter sufficiently removes all energy of
x(n) above the frequency w = w/M (i.e., terms of Eq. 3.38 with € # 0) and if the
filter H(w) closely approximates the ideal response of Eq. (3.26), then Eq. (3.39)
becomes

Y(m)='ﬁX(w'/M), (W] £ ar  (3.40)

i.e., the desired resampled signal. -

One of the most interesting properties of the decimation system can be seen by
comparing Eq. (3.38) and Eq. (3.16). Both equations express the frequency-domain
content of the digital signal in terms of sums of shifted components of the frequency
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contents of the input signal to the system. Hence the decimation system is truly a
digital resampling of a signal with potential aliasing components. Much as with the
sampling theorem, we must keep the level of the digital aliasing components low by
applying a properly designed digital antialiasing lowpass filter.

3.2.2 Interpolation by an Integer Factor L

Consider the process of increasing the sampling rate (interpolation) of x(n) by an
integer factor L. If we again denote the sampling period and rate of x(n) by T and
F, = 1/T, and the sampling period and rate of the interpolated signal y(n) by T' and
F! = 1/T’, then we have

T'" 1 F

T L F; (.41)
This process of increasing the sampling rate (interpolation) of a signal x(n) by the
integer factor L implies that we must interpolate L — 1 new sample values between
each pair of sample values of x(n). The process is similar to that of digital-to-analog
conversion in which all continuous-time values of a signal x.(f) must be interpolated
from its sequence x(n). (In this case only specific values must be determined.)

Figure 3.8 illustrates an example of interpolation by a factor L = 3. The input

signal x(n) is “filled in” with L ~ 1 zero-valued samples between each pair of samples
of x(n), giving the signal

wli) = {.;'(m/L), m=0, =L, 2L, . :

otherwise (3.42)

This process is the digital equivalent to the digital-to-PAM conversion process dis-
cussed in Section 3.1.2, and it is illustrated by the first box in the block diagram of
Fig. 3.8(a). As with the resampling operation, the block diagram symbol of an up
arrow with an integer corresponds to increasing the sampling rate as given by Eq.
(3.42), and it will be referred to as a sampling rate expander. The resulting signal w (n)
has the z-transform :

o

W) = > wmz™m (3.43a)
= i x(m)z™mt (3.43b)
= X(z") - (3.43¢)

Evaluating W (z) on the unit circle, z = ¢/, gives the result
W(w') = X(w'L) (3.44)

which is the Fourier transform of the signal w(m) expressed in terms of the spectrum
of the input signal x(n) (where @' = 27fT' and w = 27fT).

As illustrated by the spectral interpretation in Fig. 3.8(c), the spectrum of w(m)
contains not only the baseband frequencies of interest (i.e., —#/L to =/L) but also
images of the baseband centered at harmonics of the original sampling frequency
+27/L, *4w/L, . . . . To recover the baseband signal of interest and eliminate the
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Figure 3.8 Block diagram and typical waveforms and spectrn for interpolation by

{d}

an integer factor L.

unwanted image components, it is necessary to filter the signal w(m) with a digital
lowpass (anti-imaging) filter that approximates. the ideal characteristic
s = ° o] < 27ET s
! 0, otherwise '
It will be shown that to ensure that the amplitude of y(m) is correct, the gain of the

filter, G, must be L in the passband.
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Letting H (') denote the frequency response of an actual filter that approximates
the characteristic in Eq. (3.45), we see that

Y(w') = H(0")X('L) (3.46)
and within the approximation of Eq. (3.45),
{GX(@'L), lo'|< X

L (3.47)
, otherwise

Y(w') =

It is easy to see why we need a gain of G in H;(w"), whereas for the decimation
filter a gain of 1 is adequate. For the “ideal” sampling system (with no aliasing error)
we have seen from Eq. (3.16) that we desire

X(w) =_1;xc(§'—;)

For the “ideal” decimator, we have shown in Eq. (3.40) that

Yo'} = %X(w'/M)
_ (e
= MTX(MT)

1 w’
T.r‘xc(r )

Thus the necessary scaling is taken care of directly in the decimation process, and a
filter gain of 1 is suitable. For the “ideal” interpolator, however, we have

Y(e') = GX(o'L)

G w'L
= ?X=(T)

- 2e)<(7)

Clearly, a gain G = L is required to meet the conditions of Eq. (3.16).
If h(m) denotes the unit sample response of H (w'), then from Fig. 3.8, y(m) can
- be expressed as

ym) = S him — Bw(®)  (3.48)

k=—x

Combining Egs. (3.42) and (3.48) leads to the time-domain input-to-output relation
of the interpolator

y(m)

S, h(m — x(/L),  k/L an integer
= —co

S h(m — rDx()

r=—x

(3.49)
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An alternative formulation of this equation can be obtained by introducing the change
of variables

r= IEJ -n (3.50)
where [u] denotes the integer less than or equal to u. Then by noting that
m|F]e= @ RCEN

where ((m)), denotes m modulo L.

- e <K

= 3 haL + ((m))i)x([EJ -n)

-Equation (3.52) expresses the output y(m) in terms of the input x(n) and the filter
coefficients h(m). : A

(3.52)

3.2.3 Sampling Rate Conversion by a Rational Factor M/L

In Sections 3.2.1 and 3.2.2 we have considered the cases of decimation by an integer
factor M and interpolation by an integer factor L. In this section we consider the
general case of conversion by the ratio

et A A GO T

This conversion can be achieved by a cascade of the two processes of integer con-
versions above by first increasing the sampling rate by L and then decreasing it by M.
Figure 3.9(a) illustrates this process. It is important to recognize that the interpolation
by L must precede the decimation process by M so that the width of the baseband of
the intermediate signal s (k) is greater than or equal to the width of the basebands of
x(n) or y{m).
: It can be seen from Fig. 3.9(a) that the two filters (k) and h,(k) are operating
in cascade at the same sampling rate LF,. Thus a more efficient implementation of the
overall process can be achieved if the filters are combined into one composite lowpass
filter, as shown in Fig. 3.9(b). Since this digital filter, k(k), must serve the purposes
of both the decimation and interpolation operations described in the preceding two
sections, it is clear from Egs. (3.26) and (3.45) that it must approximate the ideal
digital lowpass characteristic
L, |o"|=min|F < |
Hi(w" = { 1= min | 7. (3.54)

0, otherwise
where

" = 2ufT" = wag (3.55)
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Interpolation by L Decimation by M
o e - e o o e e o e m
| | 1 1
I I s{k} : I
x{m) -——_:p.-. 1‘ L 31 hylk) : : = hylk) — #M -—-:—h- yim)
1 I | 1
I | | |
e e - i g ey .l
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wik) v(k)
- LM’ —— y(m)
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F FI=LF, Fr F = (LIMF,

{b}

Figure 3.9 (a) Cascade of an integer interpolator and an integer decimator for
achieving sampling rate changes by rational fractions; (b) a more efficient imple-
mentation of this process.

That is, the ideal cutoff frequency must be the minimum of the two cutoff frequency
requirements for the decimator and interpolator, and the sampling rate of the filters is
R o . . - :

The time-domain input-to-output relation for the general conversion circuit of
Fig. 3.9(b) can be derived by considering the integer interpolation and decimation
relations derived in Sections 3.2.1 and 3.2.2; that is, from Eq. (3.49) it can be seen
that v(k) can be expressed as

o) = > hk —rL)x(r) . (3.56)
and from Eq. (3.28) y(m) can be expressed in terms of v (k) as
y(m) = v(Mm) _ (3.57)
Combining Egs. (3.56) and (3.57) gives the desired result '
y(m) = 2 h(Mm — rL)x(r) (3.58)
Alternatively, by making the change of variables
-
r= [ 2 J n (3.59)

and using the relation

. [—JL = (mi)), (3.60)
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- o232

3 i+ ((mM))L]x([%J - )

Similarly, by considering the transform relationships of the individual integer
decimation and interpolation systems, the output spectrum Y (@) can be determined
in terms of the input spectrum X (w) and the frequency response of the filter H(w").
From Eq. (3.46) we see that V(") can be expressed in terms of X (w) and H(w") as

V(w") = H(w")X(w"L) (3.62)
and from Eq. (3.35) Y(w') can be expressed in terms of V(w") as _

(e,

r@) =35 3 V(@' = 270/M)

we get

(3.61)

Il

1<

=™ 2 H((w" — wa)/M)X((m'L == Zfrf)/M) (3.63)

When H (w") closely approximates the ideal charactensnc of Eq (3 54), we see that
this expression reduces to

- L ) P e M
V(w') ~ {ﬁX(w L{M), for |'| = mm[-zr, T L] (.64
0, otherwise .

3.2.4 General Form of Digital Sampling Rate Conversion

It is possible to generalize the discussion of Sections 3.2.1-3.2.3 so as to give a
canonic form of a digital system for sampling rate conversion. The form of this
canonic system is illustrated in Fig. 3.10, in which an input signal x(n), sampled at
rate F, = 1/T, is sent to a linear, time-varying, digital system with impulse response
&= (n) to give the output signal y (m), with new sampling rate F, = 1/T". If we assume

Direct
x(n) ——>— digital-digital —— y{m)
canversion

(a)

xtnl— g, (0 |f—ayim Figure 3.10 (a) Direct digital
conversion of x(n) to y(m) and (b) a
time-varying filter interpretation of the
{b) process.
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that the ratio of sampling periods of y(m) and x(n) can be expressed as the rational
fraction

¥ R

= M
T F L

(3.65)

with M and L integers, then the digital system response g, (n) becomes the response
at output sample time m to an input at sample time |[mM /LJ — n, where [u] again
denotes the integer less than or equal to u.

Since the system is linear, each output sample y(m) can be expressed as a linear
combination of input samples. A general form [10] for this expression is

ym = 3 gm(n)i([%J . ) (3.66)
where g.(n) is periodic in m with period L, i.e.,
gm(n) = guin(m), r=20, £1, *2, . .. - (3.67)

Thus the system gn(n) belongs to the class of linear, periodically time-varying sys-
tems.

Consider now several specific cases of sampling rate conversion systems. First
consider the trivial case T’ = T or L = M = 1, in which case Eq. (3.66) reduces to
the simple time-invariant digital convolution equation, i.e.,

ym) = 3 g(nx(m — n) (3.68)

since the period of ga(n) is 1 and the integer part of m — n is the same as m — n.

Next consider the case of sampling rate reduction (decimation) by an integer
factor M. In this case we get

yom) = S gulnx(mM — n) - (3.69)

where g, (n) = g(n) = h(n) for all m and n, with /(n) the lowpass filter impulse

‘response of the system of Fig. 3.7. Although g, (n) is not a function of m for this case,

it can readily be shown that the overall system of Eq. (3.69) is not time-invariant [ 10].

: Next consider the case of sampling rate increase (interpolation) by an integer
factor L. By comparing Eqs. (3.66) and (3.52), we see that the form of g, (n) is

gm(n) = h[nL + ((m)).], for all m and n (3.70)

and also that g,,(n) is periodic in m with period L.
Finally, if we consider the general case of sampling rate conversion by the
rational fraction M/L, then from Eq. (3.61) we get the result
gm(n) = A[nL + ((mM)).], forall mand n (3.71) -

where (k) is the time-invariant unit sample response of the lowpass filter at the
sampling rate LF,.
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3.3 PRACTICAL STRUCTURES FOR DECIMATORS
AND INTERPOLATORS i

It is easy to understand the need for studying structures for realizing sampling rate
conversion systems by examining the simple block diagram of Fig. 3.9(b), which can
be used to convert the sampling rate of a signal by a factor L/M. As discussed in
Section 3.2, the theoretical model for this system first increases the signal sampling
rate by a factor L (by filling in L — 1 zero-valued samples between each pair of

- samples of x(n) to give the signal w(k)), then filters w (k) (to eliminate the images of
X(w)) by a standard linear, time-invariant, lowpass filter £ (k) to give v(k), and then
compresses the sampling rate of v (k) by a factor M (by retaining | of each M samples
of v(k)). A direct implementation of this system is grossly inefficient since the lowpass
filter A (k) is operating at the high sampling rate on a signal for which L — 1 out of
each L input values are zero, and the values of the filtered output are required only
once each M samples. For this example, we can directly apply this knowledge in
implementing the system of Fig. 3.9(b) in a more efficient manner, as will be dis-
cussed in this section. P s

3.3.1 Signal Flow Graphs

To precisely define the sets of operations necessary to implement these digital sys-
tems, we will strongly rely on the concepts of signal flow graph representation [10].
Signal flow graphs provide a graphical representation of the explicit set of equations
* that are used to implement such systems. Furthermore, manipulating the flow graphs
in a pictorial way is equivalent to manipulating the mathematical equations.
Figure 3.11 illustrates an example of a signal flow graph of a direct-form finite
impulse response (FIR) digital filter. The input branch applies the external signal x(n)
to the network, and the output of the network y(n) is identified as one of the node

nput A{0) Output
x(n) > > > yin)
A
Ty
hi1)
- F 3
z-! v
h{2)
- \
P
h{3)
F A

z"{ AN = 1) Figure 3.11 Direct-form structure for
an FIR digital filter.
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values. Branches define the signal operations in the structure such as delays, gains,
and sampling rate expanders and compressors. Nodes define the connection points and
summing points. The signal entering a branch is taken as the signal associated with
the input node value of the branch. The node value of a branch is the sum of all branch
signals entering the node.

From the signal flow graph in Fig. 3.11 we can 1mmacl1axcly wnte down the
network equation as

y(n) = x(n)h(0) + x(n - Dr() + .-+ x(n - N+ l)h(N -1

An important concept in the manipulation of signal flow graphs is the principle of
commutation of branch operations. Two branch operations commute if the order of
their cascade operation can be interchanged without affecting the’ mput—to—output
response of the cascaded system. Thus interchanging commutable branches in a
network is one way of modlfymg the network without affecting the dcsued input-to-
output network response. This operation will be used cxtenswely in constructing
efficient structures for decimation and interpolation, as we will sée shortly

Another important network concept on which we rely heavily is that of trans-
position and duality [10]. Basically, a dual system is one that performs a com-
plementary operation to that of an original system; and it can be constructed from the
original system through the process of transposition. We have already seen an example.
of dual systems, namely, the mteger decimator and mterpolator (Fig. 3. 7a and Fig.
3.8a) for the case M = L.

Basically the transposition operation is one in which the direction of all branches
in the network are reversed and the roles of the input and output of the network are
interchanged. Furthermore, all branch operations are replaced by their transpose
operations. In the case of linear time-invariant branch operations, such as gains and
delays, these branch operations remain unchanged. Thus, for example, the transpose
of the direct-form structure of Fig. 3.11 is the transposed direct-form structure shown
in Fig. 3.12. Also it can be shown that for the case of linear time-invariant systems

Qutput hlo) Input
yin) = - = x(n)
214
h{1) y
z7TA
hi2) 4
z'A
h(3) A

z-‘{ AN = 1) Figure 3.12 Transposed direct-form
- FIR filter structure.
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the input-to-output system response of a system and its dual are identical (e.g., itcan
be verified that the metworks of Fig. 3.11 and Fig. 3.12 have identical system
functions). - it
For the time-varying systems this is not necessarily the case. For example, the
transpose of a sampling rate compressor is a sampling rate expander, and the transpose
of a sampling rate expander is a sampling rate compressor, as shown in Fig. 3.13.
Clearly these systems do not have the same system response. ° '
"Transpose i o

| #M' —»—0}(—-_-\-4— f,u __-.‘3'

{a)

T e f{_ —»—/ \.—1— #L
Figure 3.13 Transpositions of a

(b} iz sampling rate compressor and expander.

By extending the concepts of transposition rigorously, we can also show that the
transposition of a network that performs a sampling rate conversion by the factor L/M
is a network that performs a sampling rate conversion by the factor M/L. This is
illustrated in Fig. 3.14. : = :

Transpose '

o— nin e Lu Lol “ed s s tu |—o

(a)

Transpose

#M —i—f‘-\o-q— }L —eo-1 hin) f,u

L ]

f L @ hin)

(bl
Figure 3.14 Transpositions of a decimator and a generalized L/M sampling rate changer.

3.3.2 Direct-Form FIR Structures for Integer Changes
in Sampling Rates

Consider the model of an M-to-1 decimator as shown in Fig. 3.15(a). According to
this model the filter / (r) operates at the high sampling rate F,, and M — 1 out of every
M output samples of the filters are discarded by the M-to-1 sampling rate compressor.
In particular, if we assume that the filter 4(n) is an N-point FIR filter realized with a
direct-form structure, the network of Fig. 3.15(b) resuits. The multiplications by 4(0),
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. h(1), ..., h(N = 1) and the associated summations in this network must be per-
formed at the rate F,.
A more efficient realization of the above structure can be achieved by noting that
the branch operations of sampling rate compression and gain can be commuted. By
 performing a series of commutative operations on the network, we obtain the modified
network of Fig. 3.15(c). The multiplications and additions associated with the
coefficients £(0) to k(N — 1) now occur at the low sampling rate F,/M and therefore
the total computation rate in the system has been reduced by a factor M. For every M
samples of x(n) that are shifted into the structure (the cascade of delays), one output

x(n) hin) P *M —— y{m)
F, F, FIM
{a)
hol
x{n) o 2= - *M ——— y{m)
ey o )
M1
'y A
h2)
zy r

(b)
hio)
x(n) o lM o = y(m)
Fal | A
hi1)
i
vy 4
hi(2}.
Pl

F \F,IM Figure 3.15 Generation of an efficient
direct-form structure of an M-to-1
{c) decimator.



Sec. 3.3 Practical Structures for Decimators and Interpolators 147

sample y(m) is computed. Thus the structure of Fig. 3.15(c) is seen to be a direct
realization of Eq. (3.29). .

An efficient structure for the 1-to-L integer interpolator, using an FIR filter, can
be derived in a similar manner. We begin with the cascade model for the interpolator
shown in Fig. 3.16(a). In this case however, if &(m) is realized with the direct-form
structure of Fig. 3.11 we are faced with the problem of commuting the 1-to-L sampling
rate expander with a series of unit delays. One way around this problem is to realize
h(m) with the transposed direct-form FIR structure as shown in Fig. 3.12. The
sampling rate expander can then be commuted into the network as shown by the series

xln) ——a—— T L > _h(m) . —— y{m)
F, LE;. LF,
(a)
h{0)
x{n)—= TL 3 e = y{m)
P
I | Az LF.
Fi L § h(‘l 1
A 1
hi2)

(b)
h{0)
x{n) = f L I = y{m]
Y A z=t
A(1) 1
-~ /& -
Y Az!
h(2)
= L o=
Y f
1-1
AN =1} T i
F, F, LF, Figure 3.16 Steps in the generation of

an efficient structure of a 1-to-L
{c) interpolator.
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of operations in Fig. 3.16. Since the coefficients h(0), A(1), . . . , A(N¥ — 1) in Fig.
3.16(c) are now commuted to the low sampling rate side of the network, this structure
requires a factor of L times less computation than the structure in Fig. 3.16(b).

An alternative way of deriving the structure of Fig. 3.16(c) is by a direct
transposition of the network of Fig. 3.15(c) (letting L = M). This is a direct con-
sequence of the fact that decimators and interpolators are duals. A further property of
transposition is that for the resulting network, neither the number of multipliers nor

. the rate at which these multipliers operate will change [15]. Thus if we are given a
_ network that is minimized with respect to its multiplication rate, then its transpose will
also be minimized with respect to its multiplication rate.

3.3.3 Polyphase FIR Structures for Integer Declmators
and Interpolators

A second gemeral class of structures of interest in multirate digital systems is
the polyphase networks. We will find it convenient to first derive this structure for
the L-to-1 interpolator and then obtain the structure for the decimator by trans-
posing the interpolator structure.

In Section 3.2 it was shown that a general form for the input-to-output time-
domain relationship for the 1-to-L interpolator is

ym) = 3 g,..(n)x(t%J - n) (3.72)

where

gm(n) = h(nL + ((m)).) for all m and n (3.73)
is a periodically time-varying filter with period L. Thus to generate each output sample -
y(m),m=0,1,2,...,L — 1, adifferent set of coefficients g,(n) is used. After

L outputs are generated, the coefficient pattern repeats; thus y(L) is generated using
the same set of coefficients go(n) as y(0), y(L + 1) uses the same set of coefficients
g1(n) as y(1), and so on.

Similarly the term |[m/L| in Eq. (3.72) increases by 1 for every L samples of
y(m). Thus for output samples y(L), y(L + 1), . . . ,y(2L — 1) the coefficients g, (n)
are multiplied by samples x(1 — ). In general, for output samples y(rL), y(rL. + 1),

., y(rL + L — 1), the coefficients g,(n) are multiplied by samples x(r — n).
Thus we see that x(n) is updated at the low sampling rate F,, whereas y(m) is evaluated
at the high sampling rate LF,.

An lmplemcntatmn of the 1-to-L mtcrpolator based on the computation of Eq.
(3.72) is shown in Fig. 3.17(a). The way in which this structure operates is as follows.
The partitioned subsets go(n), g1(n), . . . , g-1(n), of A(m) can be identified with L
separate linear time-invariant filters that operate at the low sampling rate F,. To make
this subtle notational distinction between the time-varying coefficients and the time-
invariant filters, we will refer to the time-invariant filters respectively as po(n), pi(n),

. » Pr-1(n). Thus

p,(n) = g,(n), forp=0,1,2,...,L—1landall n (3.74)
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Figure 3.17 Polyphase structures for a
(b} 1-to-L interpolator.

These filters p,(n) will be referred to as the poiyphase filters. Furthermore, by com-
bining Egs. (3.73) and (3.74) we see that

po(m) = h(nL + p), forp=0,1,2,...,L—landalln  (3.75)

For each new input samplé x (n), there are L output samples (see Fig. 3.17). The
output from the upper path y,(m) has nonzero values form = nL, n = 0, =1, %2,
, which correspond to system outputs y(nl), n = 0, =1, . The output from
thenextpamyl(m)lsnonzemform—nL+ 1,n =20, +l,_2 . because of the
delay of one sample at the high sampling rate. Thus y,(m) corresponds to the inter-
polation output samples y(nL + 1), n = 0, =1, . . . . In general, the output of the
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pth path, y,(m) corresponds to the interpolation output samples y(nL + p), n = 0,
+1, . ... For each input sample x(n), each of the L branches of the polyphase
network contributes one nonzero output that corresponds to one of the L outputs of the
network. In the polyphase interpolation network of Fig. 3.17(a), the filtering is
performed at the low sampling rate, and thus it is an efficient structure. A simple
manipulation of the structure of Fig. 3.17(a) leads to the equwalent network of Fig.
3.17(b), in which all the delays are single sample delays.

The individual polyphase filters p,(n), p = 0, 1, 2, ,L — 1have a number
of interesting properties. This is a consequence of the fact that the impulse responses
pelm), p=0,1, 2, , L — 1, correspond to decimated versions of the impulse
response of the prototypc ﬁlter h (m) (decimated by a factor of L according to Eq. 3.73
or 3.75). Figure 3.18 illustrates this for the case L = 3 and for an FIR filter & (m) with
N = 9 taps. Part (a) shows the samples of & (m) for h(m) symmetric about m = 4.
Thus /4 (m) has a flat delay of 4 samples. The filter po(n) has three samples correspond-
ing to h(O) h(3), h(6) = h(2). Smce the point of symmetry of the envelope of po(n)
is n = %, it has a flat delay of § samples. Similarly, p,(n) has samples k(1), h(4),
h(7) = h(1), and because its zero reference (n = 0) is offset by ; sample (with respect
to m = 0) it has a flat delay of 1 sample. Thus different fractional sample delays and
consequently different phase shifts are associated with the different filters p,(n), as
seen in Fig. 3.18(b). These delays are compensated for by the delays that occur at the
high sampling rate LF in the network (see Fig. 3.17)..The fact that different phases
are associated with different paths of the network is, of course, the reason for the term
polyphase network.

A second property of the polyphase filters is shown in Fig. 3.19. The frequency
response of the prototype filter h(m) approximates the ideal lowpass characteristic
H;(w) shown in Fig. 3.19(a). Since the polyphase filters p,(n) are decimated versions
of h(m) (decimated by L), the frequency response 0 < w = 7/L of H;(w) scales to
the range 0 < w' =< = for P,;(@") as seen in Fig. 3.19, where P, ;(w") is the ideal
characteristic that the polyphase filter p,(n) approximates. Thus the polyphase filters
approximate allpass functions and each value of p, p =0, 1,2,...,L — 1, corre-
sponds to a different phase shift.

The polyphase filters can be realized in a variety of ways. If the prototype filter
h(m) is an FIR filter of length N, then the filters p, (n) will be FIR filters of length N/L.
In this case it is often convenient to choose N to be a multiple of L so that all of the
polyphase filters are of equal length. These filters may be realized by any of the
conventional methods for implementing FIR filters such as the direct-form structure
or the methods based on fast convolution [10]. If a direct-form FIR structure is used
for the polyphase filters, the polyphase structure of Fig. 3.17 will require the same
multiplication rate as the direct-form interpolator structure of Fig. 3.16.

By transposing the structure of the polyphase 1-to-L interpolator of Fig. 3.17(b),
we get the polyphase M-to-1 decimator structure of Fig. 3.20, where L is replaced by
M. Again the filtering operations of the polyphase filters occur at the low sampling rate
side of the network, and they can be implemented by any of the conventional struc-
tures discussed above.

In the preceding discussion for the 1-to-L interpolator, we have identified the
coefficients of the polyphase filters p,(n) with the coefficient sets g, (n) of the time-
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varying filter model. In the case of the M-to-1 decimator, however, this identification
cannot be made directly. According to the time-varying filter model, discussed in
Section 3.2, the coefficients g, (n) for the M-to-1 decimator are

g=(n) = g(n) = h(n), for all n and m (3.76)

Alternatively, according to the transpose network of Fig. 3.20, the coefficients of the
M-to-1 polyphase decimator are

po(n) = h(nM + p), forp=0,1,2,... ,M—1,and all n 3.77)
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. where p denotes the pth polyphase filter. Thus the polyphase filters p,(n) for the
M-to-1 decimator are equal to the time-varying coefficients &n(n) of the transpose
(interpolator) of this decimator.

From a practical point of view it is often convenient to implement the polyphase
structures in terms of a2 commutator model. By careful examination of the interpolator
structure of Fig. 3.17 we can see that the outputs of each of the polyphase branches
contributes samples of y(m) for different time slots. Thus the 1-to-L sampling rate
expander and delays can be replaced by a commutator, as shown in Fig. 3.21. The
commutator rotates in a counterclockwise direction starting with the zeroth-polyphase
branch at time m = 0.

yoln)

x(n) 3= Poln)

piln) ————sg

yim)
paln) p——ag -

o Y -4 (n)
,,L_,;,,;“‘/

Fs I_ = Fs ! I"Fs

Figure 3.21 Counterclockwise commutator model for a I-to-L interpolator.

A similar commutator model can be developed for the M-to-1 polyphase deci-
mator by starting with the structure of Fig. 3.20 and replacing the delays and M-to-1
.sampling rate compressors with a commutator. This leads to the structure of Fig. 3.22.
Again the commutator rotates in a counterclockwise direction starting with the zeroth-
polyphase branch at time m = 0.

3.3.4 FIR Structures with Time-Varying Coefficients
for Interpolation/Decimation by a Factor of L/M

In the previous two sections we have considered implementations of decimators and
interpolators using the direct-form and polyphase structures for the case of integer
changes in the sampling rate. We obtained efficient realizations of these structures by
commuting the filtering operations to occur at the low sampling rate. For the case of
a network that realizes a change in sampling rate by a factor of L/M, it is difficult to
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Figure 3.22 Counterclockwise commutator model for an M -to-1 decimator.

achieve such efficiencies. The difficulty is illustrated in Fig. 3.23. If we realize the
1-to-L interpolation part of the structure using the techniques described earlier, then
we are faced with the problem of commuting the M-to- 1 sampling rate compressor into
the resulting network (Fig. 3.23a). If we realize the decimator part of the structure
first, then the 1-to-L sampling rate expander must be commuted into the structure (Fig.
3.23b). In both cases difficulties arise and we are faced with a network that cannot be
implemented efficiently simply using the techniques of commutation and trans-
position.

Efficient structures exist for unplemenl:mg a sampling rate converter with a ratio
in sampling rates of L/M, and in this section we discuss one such class of FIR
structures with time-varying coefficients [10]. This structure can be derived from the
time-domain input-to-output relation of the network, as derived in Section 3.2, namely

y(m) = f} gm(&}x([%"J = ) N (3.78)
where "
8m(n) = h(nL + ((mM)).), forall mandall n (3.79)

and h(k) corresponds to the lowpass (or bandpass) FIR proiotype ilter. It will be
convenient for our discussion to assume that the length of the filter A (k) is a multiple
of L, i.e.,

N=0L (3.80)

where O is an integer. Then all of the coefficient sets g, (n),m=20,1,2,...,L—1
contain exactly Q coefficients. Furthermore, g, (n) is periodic in m with period L, i.e.,

gm(n) = gin‘l'rL(n)v £ = 0: Il’ 129 S [3-81)
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Figure 3.23 Possible realizations of an L/M sampling rate converter.
Therefore, Eq. (3.78) can be expressed as

yim) = 5 g 0s{| 2| - ) (.82

Equation (3.82) shows that the computation of an output sample y(m) is obtained as
a weighted sum of Q sequential samples of x(n) starting at the x(|mM /L) sample and
going backward in n sequentially. The weighting coefficients are periodically time-
varying, so the ((m)), coefficient set gm), (W), n = 0, 1,2, . . . , 0 — 1, is used for
the mth output sample. Figure 3.24 illustrates this timing relationship for the n = 0

yi{m) _
]
yim) X (I:ﬂ—}_—"ﬂ) 9iimny (O ; l l ‘ l Rate (‘% ) £
m
i ["—3-”1 ((m)), 6 1 2 3 4 s &
[} 0 o x(n)
1 0 1
2 1 2 [ ]
3 2 0
4 2 1 Rate F‘
5 3 2
. i v 0 1 2 3 4 "
(a) (b}

Figure 3.24 Timing reiationships between y(m) and x(n) for the case M = 2, L = 3,
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term in Eq. (3.82) and for the case M = 2 and L = 3. Figure 3.24(a) shows the index
values of y(m), x(ImM/L |), and gm,(0) form = 0, 1, 2, . . ., 6. Figure 3.24(b)
illustrates the relative timing positions of the signals y(m) and x(n) drawn on an
absolute time scale. By comparison of parts (a) and (b) we can see that the value
x([mM/L]) always represents the most recent available sample of x(n), i.e., y(0) and
y(1) are computed on the basis of x(0 — n). For y(2) the most recent available value
of x(n) is x(1), for y(3) it is x(2), and so on.

Based on Eq. (3.82) and the preceding description of how the input, output, and
coefficients enter into the computation, the structure of Fig. 3.25 is suggested for
realizing an L/M sampling rate converter. The structure consists of the following:

1. A QO sample “shift register” operating at the input sampling rate F,, which stores
sequential samples of the input signal _

2. A direct-form FIR structure with time-varying coefficients (gm), (n), n = 0, 1,
2, ..., Q — 1) that operates at the output sampling rate (L/M)F,

3. A series of digital “hold-and-sample” boxes that couple the two sampling rates.
The input side of the box “holds” the most recent input value until the next input
value comes along; the output side of the box “samples” the input values at times
n = mM/L. For times when mM/L is an integer (i.e., input and output sampling
times are the same), the input changes first and the output samples the changed

input.
Digital hold
and sampl
,.....:L ' g((mn, (©
(1)
T s — No- o X > yim}

ML

z'y z . e (1 4

mM y

: % (LTJ ‘)
a\:; = X b
M/L

'y e, (20}

‘| mM|
(5~
—o Mo =& X !

MIL

'Y Gimy 1@ -1V}

x(l:j—ﬂ -0 +1 )
-0 No—]
MiL
. (LIM) F,

Figure 3.25 Efficient structure for realizing an L/M sampling rate converter.
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It should be clear that the structure of Fig. 3.25 is an efficient one for imple-
menting an (L/M) sampling rate converter since the filtering operations are all per-
formed at the output sampling rate with the minimum required number of coefficients
used to generate each output. e CUS

Figure 3.26 shows a diagram of a program configuration to implement this
structure in a block-by-block manner. The program takes in a block of M samples of

-~ the input signal, denoted as x(n'), n" = 0,1,2, ..., M — 1, and computes a block
of L output samples y(m") m’ = 0, 1,2, .. ., L — 1. For each output sample time
m',m'=0,1,2,...,L -1, the Q samples from the state-variable buffer are

multiplied respectively with O coefficients from one of the coefficient sets g,.-(n') and
the products are accumulated to give the output y(m'). Each time the quantity
[m'M/L] increases by 1, one sample from the input buffer is shifted into the state-
variable buffer. (This information can be stored in a control array.) Thus after L output
values are computed, M input samples have been shifted into the state-variable buffer
and the process can be repeated for the next block of data. In the course of processing
~ one block of data (M input samples and L output samples), the state-variable buffer
is sequentially addressed L times and the coefficient storage buffer is sequentially
addressed once. A program that performs this computation can be found in [16].

. xia'). 1y i i Tylm')
Input buffer ' Output buffer
(M samples) | o I - (L samples)

a
- E

iy

@ —o—t—a— ... t~—0—]

R e
{Q samples} goln") a,(n") g 1A'

Coefficient storage
{L sets of Q samples each)

Figure 3.26 Block diagram of a program structure to implement the signal flow
graph of Fig. 3.25 in a block-by-block manner.

3.3.5 Comparison of Structures

In Section 3.3 so far, we have discussed three principal classes of FIR structures for
decimators and interpolators. In Section 3.5 we will discuss multistage cascades of
these structures and show how such cascading can lead to additional gains in com-
putational efficiency when conversion ratios are large. A natural question to ask at this
point is which of these methods is most efficient. The answer, unfortunately, is
nontrivial and is highly dependent on the application being considered. Some insight
and direction, however, can be provided by observing a few general properties of the
classes of structures discussed here.
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The direct-form structures have the advantage that they can be easily modified
to exploit symmetry in the system function to gain an additional reduction in com-
putation by a factor of approximately two. The polyphase structures have the advan-
tage that the filters p,(n) can be easily realized with efficient techniques such as the
fast convolution methods based on the FFT. As such, this structure has been found
useful for filter banks [10]. The structures with time-varying coefficients are particu-
larly useful when considering conversions by factors of L/M.

3.4 DESIGN OF FIR FILTERS FOR DECIMATION
'AND INTERPOLATION

In the previous discussion we have assumed that the filter 4 (k) approximates some
ideal lowpass (or bandpass) characteristic. Conscquently the effectiveness of these
systems is directly related to the type and quality of design of this d1g1tal filter. The
purpose of this section is to review digital filter design techniques that are especially
applicable to the design of the digital filter in sampling rate-changing systems.

The filter design problem is essentially one of determining suitable values of k (k)
to meet given performance specifications on the filter. Such performance specifica-
tions can be made on the time response # (k) or the frequency response of the filter
H(w) defined as

H@ = 3 h®e™ = HE) - (3.83)

k===

Before proceeding to a discussion of filter design techniques for decimators and
interpolators, it is important to consider the ideal frequency domain and the time-
domain criteria that specify such designs. It is also important to consider, in more
detail, the representation of such filters in terms of a smgle prototype filter or as a set
of polyphasc filters. Although both representations are equivalent, it is sometimes
easier to view filter design criteria in terms of one representation or the other.

3.4.1 Relationship Between the Prototype Filter
and Its Polyphase Representation

As discussed in Section 3.3, the coefficients, or impulse responses, of the polyphase
filters correspond to sampled (and delayed) versions of the impulse response of the
prototype filter. For a l-to-L interpolator there are L polyphase filters and they are
defined as (see Fig. 3.18)

po(n) = h(p + nL), p=0,1,2,...,L—1,and.alln (3.84)

Similarly, for an M-to-1 decimator there are M polyphase filters in the polyphase
structure and they are defined as

ps(n) = h(p + nM), p=0,1,2,...,M—1,and all n (3.85)
Taken as a set, the samples p,(n) (p =0, 1, ..., L — 1, for an interpolator or
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p=0,1,...,M— 1, for a decimator) represent all of the samples of (k). Since
the development of the filter specifications is identical for both cases (1-to-L inter-
polators and M-to-1 decimators) we will consider only the case of interpolators. The
results for decimators can then simply be obtained by replacing L by M in the
appropriate equations.

The samples h (k) can be recovered from p,(n) by sampling rate expanding the
sequences p,(n) by a factor L. Each expanded set is then delayed by p samples and
the L sets are then summed to give (k) (the reverse operation to that of Fig. 3.18).
If we let p,(k) represent the sampling rate expanded set :

po(k/L), k=0, L, £2L; .. -
bok) = { otherwise ] (3 86)

then k(k) can be reconsu-ucted from p,(k) via the summanon .

h(k) = 2 b,k — p) _ (3.87)

-

The z-transform H (z) of the prototype ﬁlter can sumlarly be expressed in terms of the
z- transfonns of the polyphase filters P,(z). It can be shown that -

H(z) = 2 A ! (3.88)
p=0 :

- Finally, the z-transform P, (z) can be expressed in terms of H (z) accordmg to the
following derivation. If we dcﬁne a sampling function §,(k) such that .

1 d Lo E=p,p5L px2,. ..
B, (k) = {0, otherwise (3-89)
1 L=l _ ;
- Y, ehmon e (3.90)

£=0

 then the sampling rate expanded sequences p,(k) in Eq. (3. 86) can be expressed as

5,0 = 5 (R)h (k) = h( k) Z ot - (3.91)
The z-transform P,(z) can then be expressed in thte.i‘orm
P2 = i po(m)z™" = i Bo(p + nL)z™" (3.92)
and by the substitution of V;I-'i;;les k=p +":;°
P(2) = i Bo(k)z~®P/L (3.93)
Combmmg Egs. (3.91) and (3 93), w: g:.t |
P,,(z) L E 2 h(k)eﬂwf(k*m/f. ~{k=p)/L (3.94)

k= —= §=(
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Letting z = ¢/“ and rearranging terms gives

e JHw=27t)p/L z h ( k) e ~jl@—2mwE)k/L

k=—m

p

el H(w — 2w€)/L, p=0;1,2,...,L—1
(3.95)

Equation (3.95) shows the relauonshlps of the Fourier transforms of the polyphase
filters to the Fourier transform of the prototype filter. '

=13,
2

3.4.2 Ideal Frequency-Ddrhain Characteristics
for Interpolation and Decimation Filters

In the previous sections we have assumed that the filter h (k) approximates some ideal
lowpass (or bandpass) characteristic. We will elaborate on these “ideal” characteristics
. in somewhat more detail in the next two sections. In practice it is also necessary to
specify a performance criterion to measure (in a consistent manner) how closely an
actual filter design approximates this ideal characteristic. Since different design tech-
niques are often based on different criteria, we will consider these criteria as they
arise.
Recall from the discussion in Section 3.2 that the mterpolator filter h(k) must
approximate the ideal lowpass characteristic defined as

H-'(""') % {L, le'| < m/L

0, otherwise
where the subscript / refers to the “ideal” characteristic.

By combining Egs. (3.95) and (3.96) it is possible to derive the equivalent ideal
characteristics P, (w) that are implied in the polyphase filters. Note that the frequency
variable w' refers to h(m) whereas the frequency variable w = 'L refers to the
polyphase filters p,(n). Because of the constraint imposed by Eq. (3.96), only the
€ = 0 term in Eq. (3.95) is nonzero, and the equation simplifies to the form

(3.96)

Buul@) = 7 ¥ Hi(w/L)
(3.97)

=clwlt, p=0,1,2,...,L—-1

Equation (3.97) shows that the “ideal” polyphase filters P, (n) should approximate
allpass filters with linear phase shifts corresponding to fractional advances of p/L
samples (p=0,1,2, , L — 1) (ignoring any fixed delays that must be intro-
duced in practical 1mplementatlons of such filters).

In some cases it is known that the spectrum of x(n) does not occupy its full
bandwidth. This property can be used to advantage in the filter design, and we will
see examples of this in the next section on cascaded (multistage) implementations of
sampling rate changing systems. If we define w, as the highest frequency of interest
in X(w), i.e.,

|X(w)| < e, for # > |w| > o, (3.98)
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where e is a small quantity (relative to the peak of | X (w) ), as shown in Fig. 3.27 (for
L =5). In this case, the ideal interpolator filter has to remove only the (L — 1)
repetitions of the band of X (w) where | X (w)| > €. Thus in the frequency domain, the
ideal interpolator filter satisfies the constraints

B = k. 0s|o| = w/L ;
neJ . 0, (ZW—wc)/LE|w’[5(2ﬂ'r+wc)ﬂ,,r=l,2,...,L-—1
(3.99)

as illustrated in Fig. 3.27(c). The bands from 27nr + w.)/Lto[27(r + 1) — w, /L,
r=20,1,...,are “don’t care” (¢) bands in which the filter frequency response is
essentially unconstrained. (In practice, however, | H (@) | should not be very large in
these ¢ bands, e.g., not larger than L, to avoid amplification of any noise (or tails of
X (w)) that may exist in these bands.) We will see later how these ¢ bands can have
a significant effect on the filter design problem. Figure 3.27(d) shows the response of
the ideal polyphase filter that is converted from an all-pass to a lowpass filter with
cutoff frequency w.. Of course, the phase response of each polyphase filter is un-
altered by the “don’t care” bands. ' G pmemn e geE.

As discussed in Section 3.2 for a decimator, the filter H () should approximate
the ideal lowpass characteristic e

1, O0=o' =<u/M

Hiles) = {0, otherwise (3.100)

Alternatively, the polyphase filters should approximate the ideal all-pass charac-
teristics :

P(w) = ‘-‘—ll glur/M p=012 ..., M-1 (3.101)

If we are interested only in preventing aliasing in a band from 0 to w,., where
w. < w/M, and we are willing to tolerate aliased components for frequencies above
w,, then we again have a situation where “don’t care” bands are permitted in the filter
design. The “don’t care” regions are the same as those illustrated in Fig. 3.27(c) (with
L replaced by M). In fact, all of the frequency-domain constraints that apply to the
design of interpolation filters also apply to the design of decimation filters, a con-
sequence of the property that they are transpose systems.

3.4.3 Time-Domain Properties of Ideal Interpolation
and Decimation Filters

If we view the interpolation filter design problem in the time-domain, we obtain an
alternative picture of the “ideal” interpolation filter. By taking the inverse transform
of the ideal filter characteristic defined by Eq. (3.96) we get the well-known sin(x)/x
characteristic :

sin(wk/L)

(k) = kD)

F=0,%x1, 22 ... (3.102)
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In a similar manner we can determine the ideal time responses of the polyphase filters,
either by taking the inverse transform of Eq. (3.101) or by sampling the above time
response h; (k) according to Eq. (3.84). The net result is that the ideal time responses
of the polyphase filters are

sin[w(n + p/L)]
w(n + p/L)

A number of interesting observations can be made about the above ideal time re-
sponses. First we see that they constrain every Lth value of k;(k) such that
o 1 k=g '
h;(k?f {0’ k_= rLr==1,%2, ...

Alternatively, this implies the constraint that the zeroth-polyphase filter have an
impulse response that is a unit pulse, i.e., '

Pos(n) = 8(n), foralln - = g = (3.105)

In terms of the polyphase structure of Fig. 3.17 and its signal processing
interpretation in Fig. 3.18, the above constraint is easy to visualize. It simply implies
that the output yo(m) of the zeroth polyphase branch is identical to the input x(n) filled
in with L — 1 zeros, i.e., these sample values are already known. The remaining
L — 1 samples between these values must be interpolated by the polyphase filters
pe(m),p=1,2, ... L — 1. Since these filters are theoretically infinite in duration,
they must be approximated, in practice, with finite-duration filters. Thus the inter-
polation “error” between the outputs of a practical system and an ideal system can be
zero form = 0, =L, *2L, . . . . However “in between” these samples, the error will
always be nonzero. L _ vzt

By choosing a design that does not specifically satisfy the constraints of Eq.
(3.104) or (3.105), we can make a tradeoff between errors that occur at sample times
m =0, £L, *2L, . . ., and errors that occur between these samples.

. Another “time-domain” property that can be observed is that the ideal filter hy (k)
is symmetric about zero, i.e., '

=0,1,2,...,L—1, andalln  (3.103)

“ Poa (n) =

(3.104)

b (k) = hy(—k) (3.106)

(Alternatively, for practical systems it may be symmetric about some fixed nonzero
delay.) This symmetry does not necessarily extend directly to the polyphase filters
since they correspond to sample values of h; (k) offset by some fraction of a sample.
Their envelopes, however, are symmetrical (see Fig. 3.18).

The ideal time responses for 4, (k) and Py.(n) for decimators are the same as those
of Eqs. (3.102) and (3.103), respectively, with L replaced by M.

3.4.4 Filter Designs Based on Conventional Techniques

Many filter design techniques can be applied to the above ideal filter characteristics
to achieve practical designs. They may be applied for a variety of reasons depending
on the nature of the application and on the degree of accuracy necessary in meeting
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desired error criteria. For example, window designs offer a simple, classical design
procedure, and they have the property that they preserve the zero-crossing pattern of
h;(k) in the actual design. They are limited, howevcr in the ablhty to control cutoff
frequencies and stopband errors.

Equiripple filters have the advantage that highly efficient optimization tech-
niques are available to design such filters with full control over the choice of error
criteria and cutoff frequencies. They generally lead to very efficient designs, i.e.,
designs with a minimum filter length for a given tolerance specification. They can also
be modified to accommodate the multiband design criteria illustrated in Fig. 3.27.

A third class of designs can be derived based on classical linear and Lagrange
interpolation techniques. They are of interest from a historical point of view but are
not widely used in modemn digital signal processing.

Halfband filters are another class of designs of particular interest for inter-
polation or decimation by a factor of two. They are obtained by specifying the
passband and stopband cutoff frequencnes w,, and w,, to be symmetrical about
@ = /2, that is,

O, =T~ © - (3.107)

~ and the passband and stopband error tolerances 8, and &, to be equal This leads to filter
designs with the symmemc property that

H(w) =1~H(mr— aJ) o | -(3, 108)

and with coefficient constraints
i, =0 I _
h(E) = _{o. k=2, 24, .. s A=t

The condition specified in Eq. (3.109) satisfies the zero-crossing criterion of ideal
filters and results in efficient designs in that every other cocfﬁc1ent is zero and need
not be computed in a practical implementation.

Comb filters are another class of designs that are used, partmularly for multistage
designs (to be discussed in Section 3.5). They are characterized by the impulse
response

1, O0=n=N-1

b = {0, elsewhere (3.110)

where N is the length of the filter. N is usually chosen such that N = M for decimation
by M, or N = L for mtcrpolanon by L. The frequency response of this class of filters
can be shown to be

sin(wN/2)
sin{w/2)

Under restricted conditions, comb filters can be applied to meet multiband require-
ments of the type illustrated in Fig. 3.27. When applicable, they are very useful in
practical implementations since all coefficients are 1.0 and they can be efficiently
implemented by simple sum-and-dump or sample-and-hold procedures.

Finally, a major class of filter designs that may be applied to decimation and

H(w) = t3.111)
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interpolation designs are the infinite impulse response (IIR) designs. They can be used
when linear phase response is not required in the application. Numerous classical
design techniques are available including well-known Butterworth, Bessel, Che-
byshev, and elliptic designs.

3.4.5 Minimum Mean-Square Error Design
of FIR Interpolator: Deterministic Signals

Thus far we have considered the design of decimation and interpolation filters based
on conventional techniques applied to approximating the ideal choice of h(k). In this
section we consider an alternative point of view of filter design based on a minimum
mean-square error criterion. In this approach the error criterion to be minimized is a
function of the difference between the actual interpolated signal and its ideal value
rather than a direct specification on the filter itself. We see in this section and in
following sections that such an approach leads to a number of filter design techniques
[17] that are capable of accounting directly for the spectrum of the signal being
interpolated.

Figure 3.28(a) depicts the basic theoretical framework used for defining the
above interpolator error criterion. We wish to design the FIR filter h(m) such that it
can be used to interpolate the signal x() by a factor of L with minimum interpolation
error. To define this error we need to compare the output of this actual interpolator
with that of an ideal (infinite-duration) interpolator k(m) whose characteristics were
derived in Sections 3.4.2 and 3.4.3. This signal error is defined as

- Ay(m) = y(m) — yi(m) (3.112)

where y(m) is the output of the actual interpolator and yi1(m) is the ideal output. We
will consider interpolator designs that minimize the mean-square value of Ay(m),
defined as : :

K
E* = [ay(m)f = Jim 5= 3 Ay(m)? (3.1132)
m=—K
=%r :'IM’(w’)Fdw'  (3.113b)

. Alternative approaches lead to designs that minimize the maximum value of |AY (") ]
over a prescribed frequency range or to designs that minimize the maximum value of
|Ay((m))| in the time domain [10].

The above design problems are greatly simplified by considering them in the
framework of the polyphase structures as illustrated in Fig. 3.17. Here we see that the
signal y(m) is actually composed of interleaved samples of the signals u,(n), p = 0,
1,2, ..., L~ 1, as shown by Fig. 3.28(b), where u,(n) is the output of the
pth-polyphase filter. Thus the errors introduced by each polyphase branch are orthog-
onal to each other (since they do not coincide in time), and we can define the error
in the pth branch as the error between the actual output and the output of the pth
branch of an ideal polyphase interpolator as shown in Fig. 3.28(b), i.c.,

Au,(n) = uy(n) — u,;(n) (3.114)
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Figure 3.28 Framework for defining error criteria for mterpolauon filters.

Because of this orthogonality property we can separately and independently
design each of the polyphase filters for minimum ermror and arrive at an overall
interpolator design that minimizes the error || Ay(m)|. Thus a large (multirate) filter
design problem can be broken down into L smaller (time-invariant) filter design
problems.

In the case of the mean-square error criterion it can be seen that

1 &1 _
E* = |Ay(m)F =7 3 E; (3.115)
p=0
where
E% = |Au,(n)|P (3.116)
To minimize E*? we then need to design L independent polyphase filters p,(n), p = 0,
I, 2, ..., L —1, which independently minimize the respective mean-square

errors E2.
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~ To analytically set up the filter design problem, we can note that the ideal poly-
phase filter response is g e -

P,i(w) = e/w/t (3.117)
which then leads to the form '
E; = [[Au,(n) |

= [ 1B - e Plx @ do G119

Equation (3.118) reveals that in the minimum-mean-square error design, we are in fact
attempting to design a polyphase filter such that the integral of the squared difference
_between its frequency response P,(w) and a linear (fractional sample) phase delay
e/*#/", weighted by the spectrum of the input signal | X (w) |, is minimized. Note also
that the integral from — to 7 in Eq. (3.118) is taken over the frequency range of the
input signal of the interpolator, not the output signal.
In practice this error criterion is often modified slightly by specifying that X (w)
is bandlimited to the range 0 < w =< aw, where 0 < a < |, i.e.,

| X(w)| =0, for|w|= ar (3.119)
- Then Eq. (3.118) can be expressed as TR '

E}i= ﬁ F, |Pp(w) = et} | X(0) P doo (3.120)

where the subscript « is used to distinguish this norm from the one in Eq. (3-118).

Alternatively we can consider the modification in Eq. (3.120) as a means of specifying

that we want the design of F,(w) to be minimized only over the frequency range

- 0 =< o = o and that the range am < @ = 7 is allowed to be a transition region.
- Then a can be used as a parameter in the filter design procedure. ;

The solution to the minimization problem of Eq. (3.120) involves expressing the
norm E7, directly in terms of the filter coefficients p,(n). Then, since the problem is
formulated in a classical mean-square sense, it-can be seen-that E2, is a quadratic
function of the coefficients p,(n) and thus it has a single, unique' minimum for some
optimum choice of coefficients. At this minimum point, the derivative -of E?% . with
respect to all the coefficients p,(n) is zero. Thus the second step in the solution is to
take the derivative of E},, with respect to the coefficients p,(n) and set it equal to zero.
This leads to a set of linear equations in terms of the coefficients p,(r), and the solution
to this set of equations gives the optimum choice of coefficients that minimize Bl
This minimization problem is solved for each value of p, p = 0, 1,2, . . . [ L — 1,
and each solution provides the optimum solution for one of the polyphase filters.
Finally, these optimum polyphase filters can be combined as in Eqgs. (3.86) to (3.88)
to obtain the optimum prototype filter k(m) that minimizes the overall norm. The
details for this approach can be found in [17]. Also, reference [17] contains a computer
program that designs interpolation filters according to the above techniques and that
greatly simplifies the task of designing these filters.
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The minimum mean-square error interpolators designed using the procedure
described have a number of interesting properties.

1. The resulting filters have the same symmetry properties as the ideal filters in Eq.
(3.106).

2. The minimum error min E3 , for the polyphase filters also sansﬁes the. symmetry
condition

min E%, = min E}_,, (3.121)

This error increases monotonically as p increases (starting with E3, = 0)

until p = L/2, at which point it decreases monotonically according to Eg.

'(3.121). Thus the greaxcst error occurs in interpolating sa.mple values that are

haifway between two given samples. This normalized error is closely approm-
mated by the smc—squarcd funcuon ie.,

- 1 3 v [
8 Bre o sl £ o e(3.122)
7 L

3. If an interpolator is designed for a given signal with a large value of L, all
- interpolators whose lengths are fractions of L are obtained by simply sampling
the original filter; i.e., if we design an interpolator for L = 100, then for the
same parameters « and R we can derive from this filter the optimum mean-square
error interpolators for L = 50, 25, 20, 10, 5, and 2 by taking appropriate
samples (or appropnate poly'phase filters). -

Figure 3.29 shows an example of the impulse response and frequency response
for a minimum mean-square error interpolation filter with parameter values « = 0.5,
=49, R= (N - I)XZL =3, L =8, and assuming that | X(w)| = I.

3.5 MULTISTAGE IMPLEMENTATIONS
0|= SAMPLING RATE CONVERSION

: Thc concept of using a series of stages to implement a sampling rate conversion system
can be extended to the case of simple interpolators and decimators [10], as shown in
Fig. 3.30 and 3.31. Consider first a system for interpolating a signal by a factor of L
as shown in Fig. 3.30(a). We denote the original sampling frequency of the input
signal x(n) as K, and the interpolated signal y(m) has a sampling rate of LE,. If the
interpolation rate L can be factored into the product

L=T]]L: (3.123)
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Figure 3.29 The impulse and frequency responses of a minimum mean-square
error interpolation filter with @ = 0.5, R = 3, and L = 8.
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Figure 3.30 Steps in constructing a multistage interpolator for interpolation by a factor L.
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Figure 3.31; Steps in constructing 2 multistage decimator for decimation by a factor M.
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where each L, is an integer, then we can express this network in the form shown in
Fig. 3.30(b). This structure, by itself, does not provide any inherent advantage over
the structure of Fig. 3.30(a). However, if we modify the structure by introducing a
lowpass filter between each pair of the sampling rate increasing boxes, we produce
the structure of Fig. 3.30(c). This structure has the property that the sampling rate
increase occurs in a series of [ stages, where each stage (shown within dashed boxes)
is an independent interpolation stage. e

Similarly, for an M-to-1 decimator, if the overall decimation rate M can be
factored into the product i B2 g

M= . G4

then the general single-stage decimator structure of Fig. 3.31(a) can be converted into
the multistage structure of Fig. 3.31(b). Again, each of the stages within the structure
of Fig. 3.31(b) is an independent decimation stage. '

Perhaps the most obvious question that arises from the preceding discussion is
why we should consider such multistage structures. At first glance it would appear as
if we are greatly increasing the overall computation (since we have inserted filters
between each pair of stages) of the structure. This, however, is precisely the opposite
of what occurs in practice. The reasons for considering multistage structures, of the
types shown in Figs. 3.30(c) and 3.31(b), are as follows:

1. Significantly reduced computation to implement the system
Reduced storage in the system
Simplified filter design problem

Reduced finite word length effects, i.e., roundoff noise and coefficient sensi-
tivity, in the implementations of the digital filters

S ik

These structures, however, are not without some drawbacks:

1. Increased control structure required to implement a multistage process

2. Difficulty in choosing the appropriate values of I (or J) of Eq. (3.123) and the
best factors L; (or M;)

It is the purpose of this section to briefly show why and how a multistage imple-
mentation of a sampling rate conversion system can be (and generally is) more
efficient than the standard single-stage structure for the following cases:

Case I: L>1 M =1)
Case 2: M>1 =1
Case 3: L/M =~ 1 butL > 1, M > 1

Cases 1 and 2 are high-order interpolation and decimation systems, and Case 3 occurs
when a slight change in sampling rate is required (e.g., L/M = 80/69).
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3.5.1 Computational Efficiency of a Two-Stage Structure:
A Deslgn Exarnple

Since the motivation for considering multistage implementations of sampling rate
conversion systems is the potential reduction in computatmn, it is worthwhile to
present a sunple design example that 1llustrates the manner in which the computational
efficiency is achieved.

‘The de51gn example is one in wluch a signal x(n) with a sampling rate of
10,000 Hz is to be decimated by a factor of M = 100 to give the signal y(m) at a
100-Hz rate. Figure 3.32(a) shows the staridard single-stage decimation network that
implements the desired process. It is assumed that the passband of the signal is from
0 to 45 Hz and that the band from 45 to 50 Hz is a transition band. Hence the
specifications of the required lowpass filter are as shown in Fig. 3.32(b). We assume,
for Slmpllclty, that the demgn formula [10]

D(5,8)
_ (AF/ER)
can be used to give the order N of a symmetric FIR filter with maximum passband

ripple §,, maximum stopband ripple J;, transition width AF, and samplmg frequency
F,.. For the lowpass filter of Fig. 3.32(b), we have

AF =50 -45=5Hz

W (3.125)

F, = 10,000 Hz

8, = 0.01

5, = 0.001
D(3,, &) = 2.54

giving, from Eq. (3.125), N = 5080. The overall computation in mulnpllcauons per
second (MPS) necessary to 1mplcrnent this system is

NF _ (5080)10,000
2M 2(100)

i.e., a total of 250,000 MPS at the 10,000-Hz rate is required to implement the system
_of Fig. 3.32(a) (assuming the use of symmetry of k(n)).

Consider now the two-stage implementation shown in Fig. 3.32(c). The first
stage decimates the signal by a factor of 50, and the second stage decimates the
(already decimated) signal by a factor of 2, giving a total decimation factor of 100.
The resulting filter specifications are illustrated in Fig. 3.32(d). For the first stage the
passband is from 0 to 45 Hz, but the transition band extends from 45 to 150 Hz. Since
the sampling rate at the output of the first stage is 200 Hz, the residual signal energy
from 100 to 150 Hz gets aliased back into the range 50 to 100 Hz after decimation by
the factor of 50. This aliased signal then gets removed in the second stage. For the
second stage the passband extends from O to 45 Hz, and the transition band extends

R= = 250,000 MPS
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Figuré 3.32 Simple example of (a) a oi:c-stage and (c) a mq-sﬁgé network for
decimation by a factor of 100:1 and their respective filter design requirements (b
and d).

from 45 to 50 Hz with a sampling rate of 200' Hz. One other change in the filter
specifications occurs because we are-using a two-stage filtering operation. The pass-
band ripple specification of the two-stage structure is reduced to 8,/2 (since each stage
can theoretically add passband ripple to each. preceding stage). The stopband ripple
specification does not change since the cascade of two lowpass filters reduces only the
. stopband ripples. Hence the D(3,, 8,) function in the filter design equation becomes
D(8,/2, ;) for the filters in the two-stage implementation. Since D(§,, &) is rela-
tively insensitive to factors of 2, only slight changes occur (from 2.54 to 2.76) due
to this factor. For the specific example of Fig. 3.32(c) we get (for the first stage)

2.76
N = 50 = 45)/10,000) ~ 262
NiF _ 263(10,000)
Rl = —

2M) - (2)(50) |
26,300 MPS
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For the second stage we get

2.716
N, = '672—0-0—) = 1104
110.4(200)
R; = ——— = 5500 MPS
20

The total computation for the two-stage implementation is R; + R; = 26,300 +
5500 = 31,800 MPS. Thus a reduction in computation of almost 8 to 1 is achieved
in the two-stage decimator over a single-stage decimation for this design example.

It is easy to see where the reduction in computation comes from for the multi-
stage decimator structure by examining Eq. (3.125). We see that the required filter
orders are directly proportional to D (8,, &) and F and inversely proportional to AF,
the filter transition width. For the early stages of a multistage decimator, although the
sampling rates are large, equivalently the transition widths are very large, thereby
leading to relatively small values of filter length N. For the last stages of a multistage
decimator, the transition width becomes small but so does the sampling rate, and the
combination again leads to relatively small values of required filter lengths. We see
from the preceding analysis that computation is kept low in each stage of the overall
multistage structure.

The simple example presented above is by no means a complete picture of the
capabilities and sophjstication that can be found in multistage structures for sampling
rate conversion. It is merely intended to show why such structures are of fundamental
importance for many practical systems in which sampling rate conversion is required.

3.5.2 Design Considerations for Multistage Decimators
and Interpolators

A large number of parameters and tradeoffs are involved in the design of multistage
decimator and mterpolator systems, mcludmg the followmg

1. The number of stages to realize an overall decimation (or mterpolanon) factor
M (or L) most efficiently

2. The choice of decimation ratios that are appropriate for each stage

3. The types of digital filters used in each stage

4. The structure used to implement filters in each stage

5. The required filter order in each stage

6. The resulting amount of computation, storage, and processing delay incurred in
each stage and in the overall structure

As in most signal processing design problems, a number of factors influence each
choice, and it is not-a simple matter to make any one choice over all others. However,
three general approaches and design philosophies have been applied to these designs.
Each approach has slightly different advantages and disadvantages, and often a mix
of these strategies is applied in practical applications to obtain the most effective
design.
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The first general approach is based on the formulation of the design problem in
terms of a mathematically defined optimization problem with decimation (or inter-
polation) factors in each stage treated as continuous variables. The objective function
to be minimized is then expressed as an analytical measure of the efficiency of the
design. The design procedure is then performed by finding the most efficient solution
(i.e., the best choice of decimation or interpolation factors for each stage) for each
value of / (the number of stages) and then selecting that choice of [ and its solution
that give the best the overall solution [10].- INE

A second approach is based on the use of halfband filter designs with a 2-to-1
decimation (or interpolation) factor for each stage. These filters have the advantage
that approximately half of the filter coefficients are zero value (because of the halfband
designs) and need not be implemented. This design procedure works best when the

~overall decimation or interpolation ratio is a power of two.. . ..

A third design approach combines the use of simple comb filters, where possi-
ble, in the initial stages of multistage decimators (or the final stages of multistage
interpolators), followed by halfband filters and other special classes of filter designs.
The idea here is to use a large number of stages to implement a large change in
sampling rates and to use extremely simple linear phase FIR filters when possible.

In the preceding discussion we have very briefly outlined the issues and ap-
proaches used to design multistage decimation and interpolation systems. In addition
to issues of overall computation rate, the cost of the control structure associated with
multiple stages must be considered in the implementation of the design. As in most
real-world problems there is no simple or universal answer about what design ap-
proach is best, and in practice a combination of these techniques often yields the most
appropriate tradeoffs. : : -

3.6 SIGNAL PROCESSING OPERATIONS BASED ON DECIMATION
AND INTERPOLATION CONCEPTS SRR

In the previous sections we discussed the basic concepts of sampling rate conversion
and the issues involved in the efficient design of decimators and interpolators. In this
section we show that these concepts not only are useful in designing efficient integer
or ratio-of-integer sampling rate conversion systems but also can be applied more
generally to the efficient design of a broad range of signal processing operations.

3.6.1 Sampling Rate Conversion Between Systems
with Incommensurate Sampling Rates

So far we have considered multirate systems in which the various sampling rates
within the system are related by exact integer or rational fraction ratios. That is, the
sampling rates within the process are all generated from some common (higher-rate)
clock. In practice, however, it is sometimes desired to interface digital systems that
are controlled by independent (incommensurate) clocks. For example, it may be
desired to exchange signals between two different systems, both of which are intended
to be sampled at a rate F,. However, due to practical limitations on the accuracy of the
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clocks, the first system may be sampled at an actual rate of F, + ¢, and the second
system may be sampled at an actual rate of F, + & where ¢ and & represent slowly
varying components of drift as a function of time. If we simply exchange digital
signals between these two systems (e.g., by means of a sample-and-hold process)
samples may be either lost or repeated in the exchange due to the relative “slippage”
of the two clocks. If the signals are highly uncorrelated from sample to sample (i.e.,
sampled at their Nyquist rates), this process can introduce large spikes or errors into
the signals. The rate of occurrence of these errors is directly related to the amount of
sampling rate slippage, that is, to the ratio (¢; — €)/F. =

One way to avoid the above problem is to interface the two digital systems
through an analog connection, that is, to convert the signals to analog signals and then
resample them with the new clock. In principle this process provides an error-free
interface. In practice, however, it is limited by the practical capabilities and expense
of the A/D and D/A converswn process as well as the dynamic range of the analog
connection. - -

- A more attractive all-digital approach to this problem can be accomphshed by
applying the multirate techniques discussed above to, in effect, duplicate the analog
process in digital form. Figure 3.33 shows an example of a system for transferring a
digital signal x(n) from system 1 (with sampling rate F, + ¢) to system 2 (with

sampling rate F; + ). The signal x(n) is first interpolated by a 1-to-L interpolator
" (where L >>1) to produce the highly oversampled signal y(m) (at sampling rate
L(F, + €)). This signal is then converted to a signal §(m) (at the sampling rate

L(F, + &)) through a digital sample-and-hold procedure that interfaces the two in-
commensurate sampling rates. It is then decimated by an L-to-1 decimator to produce
the signal £(n) for input to system 2. The interface between the oversampled digital
signals y(m) and § (m) plays the same role as that of an analog interface and as L — «
it is equivalent. The advantage is that the system is all-digital and the accuracy of the
conversion can be designed with any degree of desired precision. ;

Although samples may be repeated or dropped in the sample-and-hold con-
version process between y (/m) and 7(m), it can be shown that the effects of these errors
become small as L becomes large. This can be seen by considering the sample-to-
sample difference of the signal y(m) (or $(m)) relative to its actual value as a function
of L [10]. The sampling rate conversion can be efficiently realized using the structures
and filter designs in Sections 3.3-3.5. In particular, for large values of L, the multi-

Clock 1 Clock 2
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1 ]
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i 1 [ 1
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A4 1-to-L sample L-to-1
Sy 1 " | interpolator and > decimator [ System 2
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F,+e LIF, +¢,) L(F, + ;) Fitep

Figure 3.33 A multirate approach to sampling rate conversion between systems
with incommensurate sampling rates.
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stage designs are appropriate. Also it should be noted that although the system in Fig.
3.33 is described in terms of a conversion process between two “equivalent” but
incommensurate sampling rates F, + €, and F, + &, it can be readily extended to a
process of conversion between any two incommensurate sampling rates by choosing
different ratios for the interpolator and decimator. It is necessary only that the signals
y(m) and § (m) have “equivalent” rates to minimize the amount of sample repeating or
dropping in the sample-and-hold process. '

3.6.2 Design of Fractional Sample Phase Shifters Based
on Muitirate Concepts

Many signal processing applications require a network that essentially delays the input
signal by a fixed number of samples. When the desired delay is an integer number of
samples, at the current sampling rate, such a network is trivially realized as a cascade
of unit delays. However, when delays of a fraction of a sample are required, the
processing required to achieve such a delay is considerably more difficult. We show
here how multirate signal processing concepts can be used to greatly simplify the
~ process required to design noninteger delay as long as the desired delay is a rational
 fraction of a sample. i e i
Consider the ideal delay network hap(n) of Fig. 3.34(a). The desired allpass
network processes x(n) to give the output y(n) so that the relationship between their
Fourier transforms is ' - '

x(a)— hupln) — yin)

(a)

| an (co) |
w
—¢(w)
Slope &/M
[
{(b)
vim) ulm) wim)
x{r)—>— TM = hplm) > 2t -+ LM —= y{n}
E; FM FM FM F,

{e)
Figure 3.34 A multirate structure for realizing a fixed delay of £/M samples.
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Y(w) = e MY (w) ' (3.126)

where € and M are any integers. In the time domain this amounts to a delay of the
envelope of the signal x(n) by a fraction of a sample £/M. The magnitude and phase
responses of hap(n), shown in Fig. 3.34, are of the form

- Hap(w) = |Hpp(w) |ej"f”} (3.127a)

where '
|He(@)| =1 = - | (3.127b)
) = i‘; (3.127¢)

‘and where dJ(w) denotes the phase of Hyp(w). (At this point the observant reader
should notice the similarity between the desired response and that of a polyphase filter.
We return to this equivalence later in this section.) It should be clear that for arbitrary
values of € and M, the desired frequency response of Eqs. (3.127) cannot be achieved

"exactly by an FIR or an IIR filter."An FIR filter (a].l zeros) cannot achleve an exact
allpass magnitude response, and an IIR filter (poles and zeros) cannot achieve an exact
linear phase response. Thus the desired noninteger delay network h,p(n) cannot be
rea.hzod exactly but can only be approximated through a design procedure.

 Using multirate principles, this design problem can be clearly defined as illus-
trated in Fig. 3.34(c). The key to this procedure is the realization that a delay of £/M
samples at rate F; is equivalent to a delay of { samples (i.e., an integer delay) at rate

F.M. Hence the structure in Fig. 3.34(c) first raises the sampling rate of the signal to
F; M, filters the signal with a lowpass filter h;»(m) to eliminate images of x(n), delays
the signal by € samples, and then decimates it back to the original sampling rate.

A simple analysis of the structure of Fig. 3.34(c) gives

V(w) = X(wM) ' ©(3.128)
U(®) = His(@)X (M) (3.129)
W(w) = U(w)e 7=t

= Hip(0)X (wM )e 7 (3.130)
Pl ﬁ g W((~27r/M) + (0/M)) (3.131)

We assume that H;p(w) sufficiently attenuates the images of X (w) so that they are
negligible in Eq. (3.131), thereby giving only the r = 0 term, that is,

o %W(cu/M)
(3.132)

- KJLHU(@/M).-; 1M X ()
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We further assume that H\ p(w) is an FIR filter with exactly linear phase, whose delay
(at the high rate) is (N — 1)/2 samples, and this value is chosen to be an integer delay
at the low rate, that is, : ;

=i
N lem . (3.133)
or
N=2M+1 . (3.134)

We also require Hyp(w) to have a magnitude response essentially equal to M (to within
a small tolerance) in the passband, thereby giving for Y(w) - - - =+ -

Y(w) =e e mMy(e) T (3.135)
or, as an equivalent network,

Y(@) _ |, ot -suern '
X(@) e Julg | (3.136)
Thus the structure of Fig. 3.34(c) is essentially an allpass network with a fixed integer
delay of / samples and a variable, noninteger delay of /M samples.

One efficient implementation of the multirate allpass filter of Fig. 3.34(c) is
given in Fig. 3.35. A polyphase structure is used to realize the sampling rate increase
and lowpass filtering based on the counterclockwise commutator structure where

P =he(M +p), O<p=M-1 . (3.137)

x(a) Pgla)

=1 pyln) |

=~ pain)

yin)

/.Q*M'—!

> Dy (0)

Figure 3.35 A polyphase network implementation of a fractional sample delay
network.
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The delay of € samples is implemented as a new initial position of the commutator
corresponding to the m = 0 sample. Finally, the decimation by M is implemented as
a fixed arm position of the commutator, since it is back at the original position each
M samples.

Thus for a single fixed delay of €/M samples, only one branch (corresponding
to the p = €th polyphase filter branch) is required, and for a network that requires all
possible values of € (from O to M — 1) the entire network of Fig. 3.35 is required,
i.e., it represents a selectable choice of M different fractional delays.

A key point made in this section is that the design of an N-tap time-invariant filter
with a noninteger delay (and flat magnitude response), such as hyp(n) in Fig. 3.34(a),
can be readily transformed to that of an NM-tap lowpass filter design. This trans-
formation is accomplished by means of an appropriate multirate interpretation of the
problem and an application of the concept of polyphase filters.

3.6.3 Multirate Implementation of Lowpass F'Iters
In Section 3.2 we introduced the idea of cascading a 1-to-L interpolator with an M-to-1

decimator and showed that the resulting structure implemented a sampling rate con-
version by a factor of L/M. Consider now cascading an M-to-1 decimator with a

. 1-to-M interpolator as shown in Fig. 3.36(a). Intuitively, we see that the overall

system relating the output y(n) to the input x(n) acts like a lowpass filter (due to h;(rn)
and hy(r)) with aliasing (due to the decimation) and imaging (due to the interpolation).
When these components are appropriately removed by filters h,(n) and h(n) it can be
shown that the overall system acts like a well-behaved lowpass digital filter [10].
This same line of reasoning can be applied to the multirate lowpass system of
Fig. 3.36(b). It can be shown that as the bandwidth of the resulting lowpass filter
(relative to the sampling rate) becomes small, the benefits of the multistage approach
become large. Since the design is identical to that of the cascaded multistage deci-
mators and interpolators, the same methodologies discussed in Section 3.5 apply to
the efficient design of narrowband lowpass digital filters. This approach leads to
designs that can be significantly more efficient and also less sensitive to effects of

i R s e e i A e e o ==
1 1 pi I
1 | | :
x{n]—-—-:—-l- hy(n) > } M : : T M = hyln) |——yin)
1 I ! 1.
| I | |
B e e i J 2 A [ (S —— 4
(a)
Multistage Multistage
| realization of realization of
xtel M-to-1 & 1-to-M yin)
decirmator interpalator

(b)

Figure 3.36 Block diagram of a multistage realization of a multirate lowpass filter
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coefficient quantization and roundoff noise than classical implementations. To illus-
trate the above concepts more explicitly we conclude this section ‘with a design
example that illustrates the gains in efficiency attainable using a multirate, multistage
implementation of a narrowband lowpass filter over a standard, direct-form imple-
mentation. _ - : "
Consider the design of a narrowband lowpass filter with specifications F, = 1.0,
fo = w,/2m = 0.00475, f, = w,/27 = 0.005, "8, =0.001, and &, = 0.0001.
Clearly, this filter is a very narrowband lowpass filter with very tight ripple specifi-
- A s . e e e
For the single-rate, standard, direct-form FIR implementation, the estimate of
filter order, based on the standard equiripple design formula [2] is No = 15,590; that
is, an extremely high-order FIR filter is required to meet these filter specifications.
Such a filter would never be designed in practice, and even if it could be designed,
 the implementation would yield excessive roundoff noise and therefore would not be
useful. However, for theoretical purposes, we postulate such a filter and compute its
multiplication rate (using symmetry of the impulse response) as s

Ro =22 = 7795 MPS

For a multirate implementation, a decimation ratio of M = 100 = 0.5/0.005
can be used. For a one-stage implementation of the decimator and interpolator as
shown in Fig. 3.36(a), the (estimated) required filter order for /;(n) and hy(n) is
N; = 16,466. Again, we could never really design such a high-order filter, but, for
theoretical purposes, we can compute its multiplication rate (again employing sym-
metry in both the decimator and interpolator) to give :

Ny
R, = 3(100) (2) = 165 MPS
resulting in a potential savings (of multiplications per second) of about 47.2 to 1 over
the direct-form implementation. T ;

For a two-stage implementation of the decimator and interpolator (i.e., two
stages of decimation followed by two stages of interpolation), a reasonable set of ratios
for decimationis M, = L, = 50, M, = L, = 2, resulting in filter orders of N; = 423
and N, = 347. The total multiplication rate for the two-stage structure is

N N,
R, 2[2(50) + 2(100] 11.9 MPS
resulting in a potential savings of about 655 to 1 over the direct-form structure.

Finally, if we use a three-stage implementation of the decimator and inter-
polator, a reasonable set of ratios is M, = L, = 10, M, = L, = 5, My=L=2,.
resulting in filter orders of Ny = 50, N, = 44, and N; = 356. The total multiplication
rate is then

_#l N N, N3
e .2[2(10) " 260) T 2(100)

resulting in a savings of 829 to 1 over the direct-form implementation.

] = 9.4 MPS
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By way of comparison, an elliptic filter meeting the given filter design
specifications is of 14th order and, in a cascade realization, requires 22 MPS. This
shows that for the given design example, the three-stage FIR design is about 2.3 times
more efficient than a single-stage, fixed-rate IIR filter (and it has linear phase).
However, it requires a significantly larger amount of storage for coefficients and data
than does the IIR design.
A summary of these results (for the FIR filters) is presente:d in Table 3.1. The
key point to note is the spectacular gains in efficiency that are readily achievable by
a multistage, multirate implementation over a direct FIR filter implementation. Fur-
. thermore, we see that, for the three-stage structure, the resulting FIR designs can be

readily achieved and 1mplemented without problem due to excessive length of the
" impulse response or the excessive roundoff noise in the implementation. Thus we have
achieved both an efficient implementation and an efficient method of deSIgnmg very
long, very narrow-bandwidth lowpass filters with tight ripple t_olerances :

TABLE 3.1 COMPARISONS OF FILTER CHARACTERISTICS FOR SEVERAL MULTISTAGE
IMPLEMENTATIONS OF A LOWPASS FILTER WITH SPECIFICATIONS F, = 1.0,
fx = 0.00475, f, = 0.005, §, = 0.001, 3, = 0.0001

Direct Form One-Stage Two-Stage Three-Stage
Decimation - 100 0 10
: . : - s
. Filter 15,590 16,466 423 1 - 50
lengths ' 347 . : 44
' 356
MPS 7795 165 11.9 9.4
Rate reduction 1 47.2 655 829
(MPS) :
Total storage 7795 8233 385 . - 225
for filter
coefficients

-3.6.4 Sampling Rate Conversion Applied
to Bandpass Signals

Until now we have assumed that the signals with which we are dealing are lowpass
signals and that the filters required for decimation and interpolation are therefore
lowpass filters that preserve the baseband signals of interest. In many practical sys-
tems, however, it is often necessary to deal with bandpass signals as well as lowpass
signals. In this section we show how the concepts of decimation and interpolation can
be applied to systems in which bandpass signals are present.

Figure 3.37(a) shows an example of the discrete-time Fourier transform of a
digital bandpass signal S(27fT) that contains spectral components only in the fre-
quency range f; < |f| < fe + fa- If we apply directly the concepts of lowpass sam-
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: S(2nfT)
’-q—f A—o—’ ’-4——!'3—-
S S*
f
h-fy 0 I i+,
{a)
: S, (27fT)
Modulate Modulate
5 g
f
~fa 0 fa )
Figure 3.37 Bandpass signal and its
(b) : : . lowpass translated representation.

pling, we see that the sampling rate, F,, necessary to represent this signal must be
twice that of the highest-frequency component in S (2#fT), that is, F, = 2(f; + f,).
Alternatively, let S* denote the component of S(27fT) associated with f > 0 and S~
denote the component of §(27f T) associated with f < 0, as seen in Fig. 3.37. Then,
by lowpass translating (modulating) S* to the band 0 to f; and S~ to the band —fato
0, as illustrated by Fig. 3.37(b), we see that a new signal S, (27fT) can be generated
that is “equivalent” to S(27fT) in the sense that S(27fT) can uniquely be recon-
structed from S, (27f T) by the inverse process of bandpass translation. (Actually, we
see that S(2@fT) is the “single-sideband” modulated version of S,(27fT).) By ap-
plying concepts of lowpass sampling to S, (27fT), however, we can see that the
sampling frequency necessary to represent this signal is now F, = 2f;, which can be
much lower than the value of F, specified above (if f; >> f,). Thus we see that by an
appropriate combination of modulation followed by lowpass sampling, any real band-
pass signal with (positive-frequency) bandwidth f, can be uniquely sampled at a rate

. Fa = 2f; (i.e., such that the original bandpass signal can be uniquely reconstructed
from the sampled representation).

Perhaps the simplest and most direct approach to decimating or interpolating
digital bandpass signals, sometimes referred to as integer-band sampling, is to take
advantage of the inherent frequency translating (i.e., aliasing or imaging) properties
of decimation and interpolation. As discussed in Section 3.1, sampling and sampling
rate conversion can be viewed as a modulation process in which the spectrum of the
digital signal contains periodic repetitions of the baseband signal (images) spaced at
harmonics of the sampling frequency. This property can be used to advantage when
dealing with bandpass signals by associating the bandpass signal with one of these
images instead of with the baseband.

Figure 3.38(a) illustrates an example of this process for the use of decimation
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Figure 3.38 Integer-band decimation and a spectral interpretation for the k = 2
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by the integer factor M. The input signal x(n) is first filtered by the bandpass filter
hge(n) to isolate the frequency band of interest. The resulting bandpass signal, xgp(n),
is then directly recduced in sampling rate by an M-sample compressor giving the final
output, y(m). We see that this system is identical to that of the integer lowpass
decimator discussed in Section 3.2.1, with the exception that the filter is a bandpass
filter rather than a lowpass filter. Thus the output signal ¥ («’) can be expressed as

M-
V(@) = Y Husllw' = 200/M)X((@’ - 270)/M) (3139

=0 .
From Eq. (3.138) we see that Y(w’) is composed of M aliased components of
X(w")Hzpp(w") modulated by factors of 27r€ /M. The function of the filter Hpp(w) is to
remove (attenuate) all aliasing components except those associated with the desired
band of interest. Since the modulation is restricted to values of 27¢/M, we can see
that only specific frequency bands are allowed by this method. As a consequence, the
choice of the filter Hpp(w) is restricted to approximate one of the M ideal charac-
teristics

T T
; — <|o| < (k+ 1)—
Hapi () = {1 ky <lel <@+ (3.139)
a, otherwise
where k = 0, 1,2, ..., M — 1; that is Hgp(w) is restricted to bands @ = kw/M to

w = (k + 1)a/M, where w/M is the bandwidth. '

Figures 3.38(b)—(e) illustrate this approach. Figure 3.38(b) shows the M possi-
ble modulating frequencies that are a consequence of the M-to-1 sampling rate reduc-
tion; that is, the digital sampling function (a periodic train of unit samples spaced M
samples apart) has spectral components spaced 27 €/M apart. Figure 3.38(c) shows
the “sidebands™ that are associated with these spectral components, which correspond
to the M choices of bands as defined by Eq. (3.139). They correspond to the bands

that are aliased into the baseband of the output signal ¥ (') according to Eq. (3.139).
' Figure 3.38(d) illustrates an example in which the-¥ = 2 band is used, such that
Xpp(w) is bandlimited to the range 27/M < |w| < 37w/M. Since the process of
sampling rate compression by M to 1 corresponds to a convolution of the spectra of
Xge(w) (Fig. 3.38d) and the sampling function (Fig. 3.38b), this band is lowpass
translated to the baseband of Y(w’) as seen in Fig. 3.38(e). Thus the processes of
modulation and sampling rate reduction are achieved simultaneously by the M-to-1
coimpressor. ;

Figure 3.39 illustrates a similar example for the k = 3 band such that Xgp(w) is
bandlimited to the band 37w/M < |w| < 4mw/M. In this case it is seen that the
spectrum is inverted in the process of lowpass translation. If the noninverted represen-
tation of y(m) is desired, it can easily be achieved by modulating y (m) by (—1)™ (i.e.,
y(m) = (—1)"y(m)), which corresponds to inverting the signs of odd samples of
y(m). In general, bands associated with even values of k are directly lowpass translated
to the baseband of Y(w '), whereas bands associated with odd values of k are translated
and inverted. This is a consequence of the fact that even-numbered bands (k even)
correspond to “upper sidebands™ of the modulation frequencies 27€/M, whereas
odd-numbered bands (k odd) correspond to “lower sidebands” of the modulation
frequencies.
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Figure3.39 Spectral interpretation of integer-band decimation for the band k = 3.

The process of integer-band interpolation is the transpose of that of integer-band
decimation; that is, it performs the reconstruction (interpolation) of a bandpass signal
from its integer-band decimated representation. Figure 3.40(a) illustrates this process.
The input signal, x(n), is sampling rate expanded by L to prodice the 31gnal w(m).
The spectrum of w(m) can be expressed as .

W) = X(w'L) - (3.140)

and it corresponds to periodically repeated images of the baseband of X(w) centered
at the harmonics @’ = 27€/L. A bandpass filter hgp(m) is then used to select the
appropriate image of this signal. We can see that to obtain the kth image, the bandpass
filter must approximate the ideal characteristic

L, iz jp|zchkeris -
Haeu(0) ={ s Ao L (3.141)

10, otherwise

where k=0, 1,2, ..., L — 1. Figure 3.40(d).shows an exa.mplé of the output
spectrum of the bandpass signal ¥ (w') for the ¥ = 2 band, and Fig. 3.40(e) illustrates
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Figure 3.40 Spectral interpretation of integer-band interpolation of bandpass sig-
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an example for the k = 3 band. As in the case of integer-band decimation, we also
see that the spectrum of the resulting bandpass signal is inverted for odd values of k.
If this inversion is not desired, the input signal x(n) can first be modulated by (—1)",
which inverts the spectrum of the baseband and consequently the bandpass signal.

From the discussion in Section 3.2.2 we see that the integer-band interpolator
is identical to that of the lowpass interpolator with the exception that the filter may be
a bandpass filter. Thus the spectrum of the output signal can be expressed as

Y(o') = Hpp(w")X (L) (3.142)
or
LX('L), k"f <lo'| < k+ 1)}%ar
Y(w') = ) (3.143)
0, otherwise :

The processes of integer-band decimation and interpolation can also be used for
translating or modulating bandpass signals from one integer band to another. For
example, a cascade of an integer-band decimator with the bandpass characteristic for
k = 2 and an integer-band interpolator (with L = M) with a bandpass characteristic
for k = 3 results in a system that translates the band from 27/M to 37/M to a band
from 37w/M to 47r/M. : i

3.6.5 Decimation and Interpolation Applied
to Filter Bank Implementations

Decimation and interpolation concepts often arise in digital filter banks and spectrum
analyzers. In this section we give one example of how the concepts discussed in this
chapter can be used to achieve highly efficient implementations of filter banks. Figure
3.41(a) illustrates the basic framework for a K-channel filter bank analyzer, and Fig.
3.41(b) shows a similar framework for a X-channel synthesizer. In the analyzer the

Channel Channel
0 . g2
F——— X,(m]} XNg(m) ————>
1 o 1

> X, (m) ) X, {m) ———

—21-- Xylm) )?Z(ml —zh-

-—---:-;--—-I-- Xq(m) )?;lm.'l —-3—-—-- Output
npit Filter bank - - Filter bank Sl
xinl =1 naiyzer . 3 synthesizer xn

k A k
= X, (m) X, (m) =
=1 A K-=1

L e X, lm) Xy _p(m) ———]

(a) (b)

Figure 3.41 Basic framework for (a) a K-channel filter bank analyzer and (b) a K -channel
filter bank synthesizer.
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input signal x(n) is divided into a set of K spectral components or channel signals
denoted as X, (m), k = 0, 1, , K — 1. In the synthesizer a similar set of spectral
components X, (m) can be recombmecl to form a smgle output signal (). In practice
the signals X;(m) and X, (m) are often reduced in sampling rate for efficiency and
therefore these systems are inherently multirate systems.

An important class of filter banks are those based on the framework of the
discrete Fourier transform (DFT). Perhaps the simplest interpretation of the DFT filter
bank, shown in Fig. 3.42(a), is that in which each channel, k, is separately bandpass
modulated by a complex modulation signal e 7", lowpass filtered by a filter h(n), and
then reduced in sampling rate by a factor M. Signal paths with double lines denote
complex signals. Figure 3.42(b) shows the equivalent transpose operation for channel
k in the synthesizer. In this framework the filter h(n) is often referred to as the azmlysu
filter and f(n) is often referred to as the synthesis filter.’

xtm——-%:{) hin) J,M > X (m)

(a)

Xm) == fu N fln) I:Q%‘&tnl

o

(b)

Xlw)

Wy

X lw)

Figure 3.42 (a) Single channel of a

w  DFT filter bank analyzer; (b) single
. channel of a DFT filter bank synthesizer;
{c) : (c) a spectral interpretation.
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In the DFT filter bank model the center frequencies of the channels are further
defined to be uniformly spaced so that the modulation frequencies are

m=%, k=0,1,2,...,K~-1 . (3.144)
It is convenient to define ; .
| W = eawi G4y
~:and the complex modulation function as -

The channel signals can then be éxpresscd as

X(m) = 3 h(mM - x(We", k=0,1,2,...,K-1 (.147)

n= —xm

Similarly, in the synthesizer the reconstructed channel signals £, (n) can be expressed
s .

W) =WE S Klmf(n —mM), k=0,1,2,...,K—1 (3.148)

m= —m

and the final output, £(n), is defined as the sum of the channel signals, i.e.,
1 -1 _
) == #ln) : . (3.149)
K k=0 -

where the scale factor of 1/Kis inserted for convenience. Applying Eq. (3.148) to Eq.

(3.149) and interchanging sums then gives the resulting overall expression for the
DFT filter bank synthesizer in the form

@ K-1
=3 fia- mM)% S R(mWE (3.150)
m=—a k=0
The properties of the analyzer and synthesizer are determined by the choice of the
number of bands X, the decimation ratio M, and the designs of the analysis filter h(n)
and the synthesis filter f(n).

For the purposes of this discussion we will restrict and simplify our example to
an important subset of DFT filter banks called critically sampled filter banks, where
the decimation ratio M is equal to the number of bands X. (For a discussion of the more
general case, see [10].) For the analyzer we will further define a set of polyphase .
analysis filters of the form "

Po(m) = h(mM — p), p=0,12,..., M—1 (3.151)
and a set of decimated input signals of the form
i x(m) =x(mM +p), p=01,2,...,M—1 (3.152)

By cai‘é'i:ully applying-these definitions and the condition M = K to Eq. (3.147), we
can derive an expression for the filter bank analyzer in the form
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Xm =S 3 BWas(m - 1)
e U Gasy

M—~1 , .
=3 Wil?[P,(m) * x,(m)]
: p=0 i i - 1
where * denotes discrete convolution [10]. This form suggests the structure of Fig.
~3.43(a) for a single filter bank channel k. oeE I
Equation (3.153) further suggests that X, (m) is of the form of a discrete Fourier
transform of the convolved outputs p,(m) * x,(m) of the polyphase branches. In fact,
these output signals are independent of the filter channel number k. Therefore, it is
clear from Eq. (3.153) or Fig. 3.43(a) that computations involving the polyphase
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(b)

Figure 3.43 (a) Polyphase structure for the kth channel of a DFT filter bank
analyzer; (b) the total polyphase DFT filter bank structure with an FFT modulator.
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filters p,(m) can be shared among all the filter bank channels, saving a factor of M in
the total computation. An additional factor of M is gained from the polyphase form
of the structure, as discussed in Section 3.3.3. Finally, we can recognize that the DFT
in Eq. (3.153) can be performed with M log, M efficiency (as opposed to M?
efficiency) by using the fast Fourier transform (FFT) algorithm. This then leads to the
highly efficient filter bank structure shown in Fig. 3.43(b). In this implementation the
input signal x(n) is divided into a decimated set of branch signals, each of which is
filtered by a separate polyphase filter (a decimated set of the coefficients k(n)). After
one sweep of the commutator, the filtered outputs are transformed by the FFT to
produce the desired filter bank signals. The overall structure 1s therefore very simple
and elegant to implement.

A similar form for the synthes:zer can be derived by deﬁmng the polyphase syn-
thesis filters

g.(m) =fmM +p), p=01,2,..., M—1 (3.154)
and the branch signals |
L) = 2(M + p), p=0,1,2,..., M-1 (3.155)

which define subsets of the output signal £(n). Then, from Egs. (3.150), (3.154),
(3.155) and the condition K = M, we can derive the pth branch signal in the form

2,(r) == 2 2 L (mg,(r = mWi
Mis et (3.156)
1 M-
Z 9(r = m)[ 3 Xx(m)Wi?]
m=—= =0
This form suggests the polyphase filter bank synthesis structure shown in Fig. 3.44
where, again, an efficient implementation is achieved by combining the advantages of
the FFT and polyphase structures. It can be further observed that the structures of
Figs. 3.43(b) and 3.44 are transpose structures. _
An additional subtle but critical issue that is revealed in the preceding derivation
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Koy m) R =1 (m) /
—_— -1 M=1 =g, _,(m

Figure 3.44 Synthesis structure for the polyphase DFT filter bank.
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is that the transpose of a clockwise commutator is a counterclockwise commutator.
This accounts for the fact that forms of the polyphase filters in Egs. (3.151) and
(3.154) must be defined with different signs to reflect the direction of commutation
. implied by the polyphase structure [10]. _
~ This concludes our discussion of filter bank implementations. The example
derived above represents one of a class of filter bank structures that can be derived to
take full advantage of efficient decimation and interpolation structures combined with
the efficiency of fast transform algorithms. The issues are further complicated when
we consider back-to-back arrangements of filter banks in which the processes of both
analysis and synthesis.must be performed. The interested reader is referred to Chapter
7 in [10]. For a discussion of the related topic of short-time Fourier transform, see
Chapter 6 of this book.

- 3.7 CONCLUSIONS AND PRACTICAL EXAMPLES -
. OF MULTIRATE DIGITAL SYSTEMS '

In this chapter we have described the basic concepts of sampling rate conversion and
have shown how these concepts can be efficiently utilized and extended to a broad
range of signal processing operations. We conclude this chapter by showing specific
“examples of how these concepts have been utilized in practical applications and
" Systems. C

- 3.7.1 Sampling Rate Conversion in Digital Audio Systems

An important practical application of multirate digital signal processing and sampling
rate conversion is in the field of professional digital audio. A variety of different types
of digital processing systems have emerged for storage, transmission, and processing
of audio program material. For a number of reasons such systems may have different
sampling rates depending on whether they are used for broadcasting, digital storage,
consumer products, or other professional applications. Also in digital processing of
audio material, signals may be submitted to different types of digital rate control for
varying the speed of the program material. This process can inherently vary the
. sampling frequency of the digital signal. :

In practice it is often desired to convert audio program material from one digital
format to another. One way to achieve this format conversion is to convert the audio
signal back to analog form and digitize it in the new format. This process inherently
introduces noise at each stage of conversion because of the limited dynamic range of
the analog circuitry associated with the D/A and A/D conversion processes.
Furthermore, this noise accumulates at each new interface.

An alternative and more attractive approach is to convert directly between the
two digital formats by a process of waveform interpolation. This process is depicted
in Fig. 3.45 and it is seen to be basically a sampling rate conversion problem. Since
the accuracy of this sampling rate conversion can be maintained with any desired
degree of precision (by controlling the wordlengths and the interpolator designs),
essentially a noise free interconnection between the two systems can be achieved.
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Figure 3.45 Example of a'digita.l-to-digital translation between two audio signal

3.7.2 Conversion Between Delta Modulation -
and PCM Signal Coding Formats

A second application of sampling rate conversion is in the area of digital
communications. In communication networks a variety of different coding formats
may be used in different parts of the network to achieve flexibility and efficiency.
Conversion between these coding formats often involves a conversion of the basic
sampling rate.

By way of example, delta modulation (DM) is sometimes used in A/D con-
version or in voice terminals because of its simplicity and low cost. DM is basically
a 1-bit/sample coding technique in which only the sign of the sample-to-sample

" difference of a highly oversampled signal is encoded. This approach eliminates the
need for expensive antialiasing filters and allows the signal to be manipulated in a
simple unframed serial bit stream format. '

Alternatively, in long-distance transmission or in signal processing operations,
such as digital filtering, it is generally desired to have the signal in a pulse code
modulation (PCM) format. Thus it is necessary to convert between the high-sampling-
rate, single-bit format of DM and the low-sampling-rate, multiple-bit format of PCM.
Figure 3.46(a) shows an example of this process for the DM-to-PCM conversion, and
Fig. 3.46(b) shows the reverse process of converting from a PCM to a DM format.
When used as a technique for A/D conversion, this approach can combine the advan-
tages of both the DM and the PCM signal formats.

Delta modulation

format
Analog ’ PCM
input format
Delta Digital E
s(t) modulation # integration and s{m)
encoder s(n) decimation
(a)

i Interpolation ) Delta ' "
s(m) and digital 2o~ madulation s(t)
i differentiation decoder ﬂ
PCM Analog
format output

Delta madulati
Pl Figure 3.46 Tllustration of ()

a DM-to-PCM conversion and (b)
(b) a PCM-to-DM conversion.
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3.7.3 Digital Time-Division Multiplexing (TDM) _
to Frequency-Division Multiplexing (FDM) Translation

A third example of multirate digital systems is the translation of signals in a
telephone system between time-division-multiplexed (TDM) and frequency-division-
multiplexed (FDM) formats. The FDM format is often used for long-distance trans-
mission, whereas the TDM format is more convenient for digital switching.

Figure 3.47 illustrates the basic process of translating a series of 12 TDM digital
speech signals, s5i(n), s:(n), . - ., sia(n), to a single FDM signal r(m), and Fig.
3.47(b) illustrates the reverse (FDM-to-TDM) translation process. The sampling rate
of the TDM speech signals is 8 kHz, whereas the sampling rate of the FDM signal is
much higher to accommodate the increased total bandwidth. In each channel of the
TDM-to-FDM translator the sampling rate is effectively increased (by interpolation)
to the higher FDM sampling rate. The signal is then modulated by single-sideband
modulation techniques to its appropriate frequency-band location in the range 56 to

TAM; [ s e e e e s T T A
signals II TDM-to-FDM translator | :gr:::‘
|
I
|
Channel 54 (n) . .| Single-sideband I
1 i Interpolator iodutatas ;
i {
| 1
I rim)
| )
I I
(n) | |
Syaln | g : |
Channel 12 »_| Single-sideband
12 ! Interpolator Julator :
| |
B o T SR e e .|
{a
EOMair =" " n e e e e S e 1 TDM
signal | FDM-to-TDM translator I signals
|
|I Single-sideband i Deci : 54 (n) Channel
: demodulator " Imatoy i 1
I I
I |
| |
| |
| |
1 Single-si 1 542 (n}
] i | pemaer [ oo
| 1
| 1
e L e . |
(b)

Figure 3.47 Illustration of (a) a TDM-to-FDM translator and (b) an FDM-to-TDM
translator.
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112 kHz, as illustrated in Fig. 3.48. The interpolated and modulated channel signals
are then digitally summed to give the desired FDM signal. In the FDM-to-TDM
translator, the reverse process takes place. As seen in Fig. 3.47 the process of
translation between TDM and FDM formats involves samphng rate conversmn and
- therefore these systems are inherently multirate systems.

Channel 1

Channel 2

0 56 kHz ’ 112 kH
Channel 12 R2kik
FDM signal

4 kHz
TDM signals

# P

(=]

Figure 3.48 Spectral interpretation of TDM-to-FDM signal translation.

3.7.4 Subband Coding of Speech Signals

A fourth example of a practical multirate digital system is that of subband coding.
Subband coding is a technique that is used to efficiently encode speech signals at low
bit rates by taking advantage of the time-varying properties of the speech spectrum as
well as some well-known properties of speech perception. It is based on the principle
of decomposing the speech signal into a set of subband signals and separately encoding
each signal with an adaptive PCM quantizer. By carefully selecting the number of bits
per sample used to quantize each subband, according to perceptual criteria, one can
achieve an efficient encoding of the speech.

Figure 3.49(a) shows a block diagram of a subband coder-decoder, and Fig.
3.49(b) shows a typical five-band filter bank arrangement for subband coding. A key
element in this design is the implementation of the filter bank analysis and synthesis
systems. Each subband in the filter bank analyzer is effectively obtained by a process
of bandpass filtering, modulation to zero frequency, and decimation in a manner
similar to that of the FDM-to-TDM translator. In the receiver the reverse process takes
place, with the filter bank synthesizer reconstructing an output signal from the decoded
subband signals. The process is similar to that of the TDM-to-FDM translator.
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