
Evaluation of Blue Gene/Q Hardware Support for
Transactional Memories

Amy Wang
IBM Toronto Software Lab.

Markham, ON, Canada
aktwang@ca.ibm.com

Matthew Gaudet
Dep. of Computing Science

University of Alberta
Edmonton, AB, Canada

mgaudet@ualberta.ca

Peng Wu
IBM Research

Yorktown, NY, USA
pengwu@us.ibm.com

José Nelson Amaral
Dep. of Computing Science

University of Alberta
Edmonton, AB, Canada
jamaral@ualberta.ca

Martin Ohmacht
IBM Research

Yorktown, NY, USA
mohmacht@us.ibm.com

Christopher Barton
IBM Toronto Software Lab.

Markham, ON, Canada
kbarton@ca.ibm.com

Raul Silvera
IBM Toronto Software Lab.

Markham, ON, Canada
rauls@ca.ibm.com

Maged Michael
IBM Research

Yorktown, NY, USA
magedm@us.ibm.com

ABSTRACT
This paper describes an end-to-end system implementation
of the transactional memory (TM) programming model on
top of the hardware transactional memory (HTM) of the
Blue Gene/Q (BG/Q) machine. The TM programming model
supports most C/C++ programming constructs on top of a
best-effort HTM with the help of a complete software stack
including the compiler, the kernel, and the TM runtime.

An extensive evaluation of the STAMP benchmarks on
BG/Q is the first of its kind in understanding characteristics
of running coarse-grained TM workloads on HTMs. The
study reveals several interesting insights on the overhead
and the scalability of BG/Q HTM with respect to sequential
execution, coarse-grain locking, and software TM.

Categories and Subject Descriptors
B.8.0 [Hardware]: Performance and Reliability—general ;
C.1.4 [Computer Systems Organization]: Processor Ar-
chitectures—parallel architectures; D.1.3 [Software]: Pro-
gramming Techniques—concurrent programming, parallel pro-
gramming

General Terms
Design, Measurement, Performance

Keywords
Hardware Transactional Memories, Programming Model, Run-
time System, Software Support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT ’12 Minneapolis, Minnesota USA
Copyright 2012 ACM 978-1-4503-1182-3/12/09 ...$15.00.

1. DELIVERING THE PROMISED TRANS-
ACTIONAL MEMORY SIMPLICITY

Transactional memory (TM) was proposed more than
twenty years ago as a hardware mechanism to enable atomic
operations on an arbitrary set of memory locations [13, 20].
The target applications for TM are those with concurrent
computations where it is not possible to determine, until
runtime, which specific computations will result into con-
flicting accesses to memory.

Given the high cost of implementing TM in hardware, the
research community developed several implementations of
software transactional memory (STM) [7, 9, 18, 19] and con-
ducted simulation-based studies of hardware transactional
memory (HTM) [1, 2, 17]. An early implementation of HTM
was never distributed commercially [6]. For the HTM by
Azul, there is little public disclosure on the implementa-
tion and no performance study of the TM support [5]. The
specification of a hardware extension for TM in the AMD64
architecture has yet to be released in hardware [4]. It is only
recently that IBM [12] and Intel [14] disclosed that they are
releasing implementations of HTM.

This paper makes three important contributions. First,
it provides a detailed description of the BG/Q HTM im-
plementation and quantifies its major sources of overheads.
One of the main pain points of STMs is the high over-
head incurred to start and commit a transaction and to
instrument and monitor memory references inside a trans-
action [3]. While it is widely expected that such overheads
be significantly reduced in an HTM, one of the surprising
findings of this performance study is that, the BG/Q HTM
overhead, while much smaller than that of STM’s, is still
non-trivial. The causes of HTM overheads are also very
different from those of STM’s. For instance, BG/Q TM
maintains speculative states in the L2 cache. This allows
for transactions with a large memory footprint, the price
to pay, however, is the overhead, where the L1 cache is ei-
ther bypassed during a transaction or flushed upon entry

127

to a transaction. The loss of cache locality is the dominant
cause of BG/Q TM overhead.

Second, the paper conducts a thorough evaluation of the
STAMP benchmark suite [16] running on BG/Q TM and
in comparison with sequential execution, OpenMP critical,
and TinySTM [10]. By comparing the performance of alter-
native concurrency implementations of the same benchmark
with respect to sequential execution baseline, we try to an-
swer the question of how effective BG/Q TM is to improve
performance. The performance study leads us to divide typ-
ical concurrent applications into three categories. There are
applications that are suitable for BG/Q-style HTM, where
significant performance improvements can be achieved with
very low programming effort. Such applications usually use
medium to large transactions that fit in the capacity of
BG/Q HTM and exhibit low abort ratios. On the other
hand, applications that scale well with conventional lock-
ing should use neither STM nor BG/Q TM as both in-
cur larger single-thread overhead. Furthermore, applica-
tions using very small transactions but with abundant op-
timistic concurrency may be better suited for STM because
the single-thread overhead of an STM system may be com-
pensated by the additional scalability it enables.

Third, we describe how the best-effort HTM support in
BG/Q can be complemented with a software stack that in-
cludes the kernel, the compiler, and the runtime system to
deliver the simplicity of a TM programming model. The
HTM support in BG/Q is best effort because some program-
level transactions may never succeed in executing on BG/Q
HTM due to the bounded capacity for transactional reads
and writes. In terms of programmability, HTM is a clear
win over STM. The latter often requires annotations and
instrumentation of all codes that can potentially be invoked
in a transactional execution. In terms of performance, there
is also a noticeable programming difference between codes
manually instrumented for STM and those using BG/Q TM.
For example, the STM version of the STAMP benchmark
is heavily privatized to minimize instrumented memory ac-
cesses, whereas the BG/Q TM version of the codes requires
only block annotation of transactional codes. As a result,
on the two benchmarks that trigger capacity overflow in a
single-thread BG/Q TM execution, the STM version per-
forms well and with extremely low overhead because the
amount of instrumented states are dramatically reduced by
manual instrumentation.

The rest of the paper is organized as follows. Section 2
describes the hardware support for transactional memory
in BG/Q. Section 3 describes the TM programming model.
And Section 4 describes the extension to the XL compiler,
the runtime system, and the kernel to support the TM pro-
gramming model. The performance study using the STAMP
benchmark suite is presented in Section 5. We discuss re-
lated work in Section 6 and conclude in Section 7.

2. HARDWARE TRANSACTIONAL MEM-
ORY IMPLEMENTATION IN BG/Q

In BG/Q, each compute chip has 16 A2 processor cores,
each core can run four hardware Simultaneous Multi-Threaded
(SMT) threads. A core has a dedicated 16K-byte level-1
(L1) cache that is 8-way set-associative with a cache line
size of 64-byte and a 2K-byte prefetching buffer. All 16

cores share a 32M-byte level-2 (L2) cache with a cache line
size of 128-byte.

As one of the first commercial implementations of HTM,
BG/Q provides the following hardware mechanisms to sup-
port transactional execution:

• Buffering of speculative states. Stores made dur-
ing a transactional execution constitute speculative states.
In BG/Q, speculative states are buffered in the L2
cache and are only made visible (atomically) to other
threads after a transaction commits.

• Conflict detection. Under the transactional exe-
cution mode, the hardware detects read-write, write-
read, or write-write conflicts among concurrent trans-
actions or when a transactional access is followed by a
non-transactional write to the same address. When a
conflict is detected, the hardware sends interrupts to
transactional threads involved in the conflict. A spe-
cial conflict register is flagged to record various hard-
ware events that cause a transaction to fail.

2.1 Hardware Support for Transactional Ex-
ecution in L2

BG/Q’s hardware support for transactional execution is
implemented primarily in the L2 cache, which serves as the
point of coherence. The L2 cache is divided into 16 slices,
where each slice is 16-way set-associative. To buffer specula-
tive states, the multi-versioned L2 cache can store multiple
versions of the same physical memory line, each version oc-
cupies a different L2 way. BG/Q uses a pre-existing core
design and therefore there is no hardware modification to
support transactional execution in L1.

Upon a transactional write, the L2 allocates a new way
in the corresponding set for the write. A value stored by
a transactional write is private to the thread. It is made
visible to other threads when a transaction commits and is
discarded upon a transaction abort.

In addition, the L2 directory records, for each access,
whether it is read or written, and whether it is speculative.
For speculative accesses, it also tracks which thread has read
or written the line by recording the speculation ID used by
the thread to activate speculation. This tracking provides
the basic bookkeeping to detect conflicts among transactions
and between transactional and non-transactional memory
operations.

The hardware uses unique speculative IDs to associate a
memory operation with a transaction. BG/Q provides 128
speculative IDs for transactions. If a program runs out of
IDs then the start of a new transaction blocks until an ID be-
comes available. The L2 examines, at predetermined inter-
vals, lines whose speculation ID has either been invalidated
or committed. When all the lines associated with an inval-
idated ID are marked as invalid, or when lines associated
with a committed ID are merged with the non-speculative
state, the speculation ID is reclaimed and made available
again. This process is called ID scrubbing. The interval be-
tween two starts of the scrubbing process is the scrubbing
interval. The default scrubbing interval is 132 cycles but it
can be altered by the runtime via a system call. Setting this
interval too high may lead to the blocking of new transac-
tions. Setting it too low may cause the scrubbing activity
to interfere with the normal operation of the L2 cache.

128

The buffering of speculative states in the L2 requires co-
operation from components of the memory subsystem that
are closer to the pipeline than the L2, namely, the L1 cache.
BG/Q supports two transactional execution modes for proper
interaction between the L1, the L1 prefetcher (L1P) and the
L2, each with a different performance consideration. From
herein L1 refers to both L1 and L1P unless otherwise stated.
The main difference between the two modes is in how the
L1 cache keeps a speculative thread’s writes invisible to the
other three SMT threads sharing the same L1.

• Short-running mode (via L1-bypass). In this mode,
when a TM thread stores a speculative value, the core
evicts the line from the L1. Subsequent loads from the
same thread have to retrieve the value from that point
on from L2. If the L2 stores multiple values for the
same address, the L2 returns the thread-specific data
along with a flag that instructs the core to place the
data into the register of the requesting thread, but to
not store the line in the L1 cache. In addition, for any
transactional load served from the L1, the L2 is noti-
fied of the load via an L1 notification. The notification
from L1 to L2 goes out through the store queue.

• Long-running mode (via TLB aliasing). In this
mode, speculative states can be kept in the L1 cache.
The L1 cache can store up to 5 versions, 4 transac-
tional ones for each of the 4 SMT threads, and one
non-transactional. To achieve this, the software cre-
ates an illusion of versioned address space via Transla-
tion Lookaside Buffer (TLB) aliasing. For each mem-
ory reference by a speculative thread some bits of the
physical address in the TLB are used to create an
aliased physical address by the Memory Management
Unit (MMU). Therefore, the same virtual address may
be translated to 4 different physical addresses for each
of the 4 SMT TM threads at the L1 level. However, as
the load or store exits the core, the bits in the phys-
ical address that are used to create the alias illusion
are masked out because the L2 maintains the multi-
version through the bookkeeping of speculation ID. In
this mode the L1 cache is invalidated upon entering
the transaction because there is no L1 notification to
the L2 on an L1 hit. The invalidation of the L1 cache
makes all first TM accesses to a memory location vis-
ible to the L2 as an L1 load miss.

These two modes are designed to exploit different locality
patterns. By default, an application runs under the long
running mode. One can specify an environment variable to
enable the short-running mode before starting an applica-
tion. The main drawback of the short-running mode is that
it nullifies the benefit of the L1 cache for read-after-write ac-
cess patterns within a transaction. Thus it is best suited for
short-running transactions with few memory accesses. The
long-running mode, on the other hand, preserves temporal
and spatial locality within a transaction, but, by invalidating
L1 at the start of a transaction, prevents reuse between code
that run before entering the transaction and code that run
within the transaction or after the transaction ends. Thus,
this mode is best suited for long-running transactions with
plenty of intra-transaction locality.

2.2 Causes of Transactional Execution Failures
BG/Q hardware supports bounded, best-effort, transac-

tional execution. While the entire instruction set is allowed
in transactional execution, a transaction may fail in the fol-
lowing scenarios:

• Transactional conflicts are detected by the hard-
ware at the L2 cache level as described earlier. In the
short-running mode conflicts are detected at a gran-
ularity of 8 bytes if no more than two threads access
the same cache line, or 64 bytes otherwise. In the
long-running mode the granularity is 64 bytes and can
degrade depending on the amount of prefetching done
by a speculative thread.

• Capacity overflow cause a transaction to fail when
the L2 cache cannot allocate a new way for a specu-
lative store. By default, the L2 guarantees 10 ways
to be used for speculative storage without an eviction.
Therefore, up to 20M-bytes (32M*10/16) of specula-
tive state can be stored in the L2. A set may con-
tain more than 10 speculative ways if the speculative
ways have not been evicted by the Least Recently Used
(LRU) replacement policy. In practice, however, ca-
pacity failures may occur at a much smaller specula-
tive state footprint by exhausting the way limitation
within a set.

• Jail mode violation (JMV) occur when the trans-
action performs irrevocable actions, that is, operations
whose side-effects cannot be reversed, such as writes to
device I/O address space. Irrevocable actions are de-
tected by the kernel under a special mode called the jail
mode, which will send a JMV interrupt to the owner
thread of the event.

3. TRANSACTIONAL MEMORY
(TM) PROGRAMMING MODEL

BG/Q provides a simple TM programming model based
on an abstraction called transactions. Transactions are single-
entry/single-exit code blocks denoted by #pragma tm_atomic

annotations. Any computation is allowed in a transaction.
The only constraint is that the boundary of a transaction
must be statically determinable in order for the compiler to
insert proper code to end a transaction. As a result, control-
flow constructs that may exit a transactional block may re-
sult in a compile- or run-time error. Similarly, exceptions
thrown by a transaction are unsupported.

The semantics of a transaction is similar to that of a
critical section or that of relaxed transactions as defined
in [11]. In a multi-threaded execution, transactions appear
to execute sequentially in some total order with respect to
other transactions. Specifically, operations inside a transac-
tion appear not to interleave with any operation from other
(concurrent) transactions. The specification of transactional
code region is orthogonal to the threading model such as the
use of OpenMP or Pthreads.

Two transactions are nested if one transaction is entirely
inside the other transaction. Nested transactions in BG/Q
are flattened: the entire nest commits at the end of the outer-
most level of nesting. A failed nested transaction rolls back
to the beginning of the outermost nesting level. The nest-
ing support is implemented purely in software, specifically
in the TM runtime.

129

#pragma tm_atomic
{

a[b[i]] += c[i];
}

Figure 1: Transaction in kmeans expressed in BG/Q
TM annotation.

Figure 1 shows a transaction code expressed by BG/Q
TM annotations. This simple programming interface may
enclose complex and large transaction regions.

4. SOFTWARE SUPPORT FOR
TM PROGRAMMING MODEL

While the BG/Q HTM is bounded and can fail a transac-
tional execution in various ways, a transaction, as defined by
the programming model, can be arbitrarily large and is guar-
anteed to eventually succeed. The TM software stack, devel-
oped to bridge the gap between the TM programming model
and the TM hardware implementation, includes a transac-
tional memory run-time system and extensions to the kernel
and the compiler.

The main component of the TM software stack is the TM
runtime. The description of the state transition flow man-
aged by the TM runtime to execute a transaction will refer
to the letters that appear in Figure 2.

4.1 Saving and Restoring of Register Context
In BG/Q TM, register checkpointing is done by the soft-

ware in a . A straightforward way to save and restore the
register context is to use the system setjmp and longjmp

routines [21]. The system setjmp routine typically saves
all registers into the context buffer and the corresponding
longjmp routine restores the context by restoring all of these
registers. Since the setjmp overhead is incurred every time
a transaction is entered, the context-save overhead can be
significant for small transactions. Therefore, the BG/Q run-
time is specially optimized to reduce this overhead. Since
rolling back a transaction is equivalent to performing a longjmp

to the start of the transaction, three registers need to be
restored in order to perform the longjmp and to establish
the minimal context. The registers are the current value
of the stack pointer, the global offset table (GOT) pointer
– to a table that holds addresses for position-independent
code, and a pointer to the first instruction of the register-
restore code, which is placed immediately before the start of
the transaction. These three registers, which comprise the
minimal context information, are passed to the runtime and
the runtime passes them down to the kernel because both
the runtime and the kernel can rollback a transaction. The
analysis to determine which other registers require saving
and restoring is left to the compiler. The compiler uses live-
range analysis to determine the set of live registers that are
modified inside the transaction, to identify the registers that
need to be saved and restored.

4.2 Managing Transaction Abort and Retry
The TM runtime activates a hardware transactional exe-

cution by writing to a memory-mapped I/O location. When
the execution reaches the end of the transaction, it enters the

TM runtime routine that handles transaction commit in d .
The TM runtime attempts to commit the transaction. If the
commit fails, the transaction is retried. If commit fails for

Register	 Context	
Save	 &	 Restore	
(compiler	 generated	 code)	

Transac9on	
Begin	

(TM	 run9me	 code)	

Transac9on	
Commit	

(TM	 run9me	 code)	

Transac9on	
Execu9on	

(compiler	 generated	 code)	

Token	 Acquisi9on	
(TM	 run9me	 code)	

Conflict	
Arbitra9on/

JMV	 Detec9on	
(Kernel	 code)	

Conflict	
Detec9on	

(hardware)	

Abort	

Context	 and	 Priority	

JMV,	 Max	 Rollbacks	
Reached	

Commit	 Failed,	 Abort	 Commit	
Succeeded	

Buffer	 Overflow	
Conflict	 Interrupts	

a	

b	

e	

c	
f	

d	 g	

Figure 2: Transactional Memory Execution
Overview

a transaction TA because of conflict with a transaction TB ,
the runtime invalidates the speculation ID associated with
TA causing the hardware to clear the conflict register of TB .
Therefore, TB now has a chance to commit successfully.

Capacity overflow and JMV prevent the thread from fur-
ther execution, thus the transaction failure must be handled
immediately. For JMV, the kernel invalidates the current
transaction and invokes the restart handler. The restart
handler sends the thread back to the start of the failing
transaction.

For capacity overflow, the hardware invalidates the trans-
action and an interrupt is triggered in g . For conflict-
induced transactional failures, the runtime can configure
the hardware to trigger a conflict interrupt for eager con-
flict detection in g as well. This is the default setting of
the runtime. Alternatively, conflict interrupts can be sup-
pressed and conflicts are then handled lazily when the exe-
cution reaches the end of the transaction. A transactional
failure due to capacity overflow is retried in the same way as
conflict-induced failures because capacity overflow may be a
transient failure.

In the eager detection scheme, once the hardware trig-
gers an interrupt, the interrupt handler in the kernel per-
forms conflict arbitration by comparing the starting time of
the conflicting threads and favours the survival of an older
thread. When a transaction is started, the current time is
recorded through a read of the timebase register and passed
by the runtime to the kernel, which is used as the priority
value during conflict resolution.

4.3 Sandboxing of Speculative Execution
System resources must be protected from being corrupted

by a transaction that may later get aborted. BG/Q uses

130

a sandbox, called jail mode to confine transactional execu-
tions and prevent speculative accesses to memory-mapped
I/O space. These accesses include the ones for starting and
stopping hardware transactional execution and the Direct-
Memory Access (DMA) engine start operation. In jail mode,
transactional accesses to protected TLB entries generate
an access-violation exception called Jail-Mode Violation de-
tected in f . Jail mode is entered and exited via system
calls inside the tm_begin and tm_end runtime routines. By
default, all transactions are executed in jail mode.

A second aspect of BG/Q sandboxing, which is orthogonal
to the jail-mode, is that the interrupt handler in the kernel
is, by default, capable of checking whether the triggering
thread is speculative or not. System-level side effects of
speculative execution, such as TLB misses, divide-by-zero
and signals triggered by program fault cause the interrupt
handler to invalidate the current speculation and invoke the
restart handler.

4.4 Ensuring Forward Progress via Irrevoca-
ble Mode

The TM programming model supports transactions of ar-
bitrary size and with any computation including irrevocable
ones. However, not all transactions expressed by the pro-
gramming model can execute successfully by the underlying
best-effort HTM. Therefore, one main functionality of the
TM software stack is to ensure that a transaction eventu-
ally succeeds.

Such guarantee is provided by judiciously retrying failed
transactions in a special mode called the irrevocable mode.
Under the irrevocable mode, a transaction executes non-
speculatively and can no longer be rolled back. To execute
in the irrevocable mode, a thread must acquire the irrevo-
cable token, that is associated with all tm_atomic blocks in
the program. Interference of the irrevocable token with user-
level locking may cause deadlock. Token acquisition in e
is implemented using special BGQ L2 atomics. In essence,
transactions executing under the irrevocable mode are serial-
ized and the tm_atomic blocks behave like unnamed critical
sections. It is however possible that there are concurrent
speculative transactions and a transaction running in the
irrevocable mode at the same time.

When a hardware transactional execution failure or a JMV
exception occurs in d , the TM runtime determines how to
retry the transaction. When the cause of a hardware trans-
action failure is transient, for example, due to a conflict, the
TM runtime may retry transactional execution a few times
before switching to the irrevocable mode. However, when a
transactional execution failure is likely persistent, for exam-
ple, due to a JMV, the TM runtime retries the transaction
in the irrevocable mode.

4.5 Runtime Adaptation
The runtime employs a simple adaption scheme: it re-

tries a failing transaction a fixed number of times before
switching into irrevocable mode. After completion of the
transaction in irrevocable mode, the runtime computes the
serialization ratio of the executing thread. If the serializa-
tion ratio is above a certain threshold, the runtime records
this transaction into a hash table. This hash table tracks
problematic transactions. Once a transaction is entered into
the hash table, its next execution will be speculative. Upon
failing, it immediately switches into the irrevocable mode.

Benchmark Running Options
bayes -v32 -r4096 -n10 -p40 -i2 -e8 -s1
genome -g16384 -s64 -n16777216
intruder -a10 -l128 -n262144 -s1
kmeans low -m40 -n40 -t0.00001 -i 〈input〉1
kmeans high -m15 -n15 -t0.00001 -i 〈input〉1
labyrinth -i inputs/random-x512-y512-z7-n512.txt
ssca2 -s20 -i1.0 -u1.0 -l3 -p3
vacation low -n2 -q90 -u98 -r1048576 -t4194304
vacation high -n4 -q60 -u90 -r1048576 -t4194304
yada -a15 -i inputs/ttimeu1000000.2

Table 1: STAMP Benchmark Options

This scheme allows a problematic transaction to have a sin-
gle rollback. The amount of time that a transaction remains
in the hash table is controlled via a runtime parameter.

5. EXPERIMENTAL RESULTS
This evaluation runs the STAMP benchmark suite [16]

on a single 16-core, 1.6 GHz, compute node of a production
BG/Q machine. We choose STAMP as our evaluation target
because it is most widely used TM benchmark with largely
coarse-grain transactions. The binaries are compiled by a
prototype version of the IBM XL C/C++ compiler with the
option of -O3 -qhot -qsmp=omp -qtm. The study reports
the mean of five runs with an error bar. In the absence of
more information, the measurements are assumed to be nor-
mally distributed. Thus, the length of the error bar is four
standard deviations, two above and two below the mean, to
approximate 95% confidence.

The baseline for speedups is always a sequential, non-
threaded, version of the STAMP benchmark run with the
1-thread input. Table 1 shows that the large input, which
is intended for runs on real hardware, is used. The compar-
ison against Software Transactional Memories (STMs) uses
TinySTM 1.0.3 [9].

0
0.5

1
1.5

2
2.5

3
3.5

4

Si
ng

le
-T

hr
ea

d
Sl

ow
 D

ow
n

omp-critical BG/Q Long BG/Q Short TinySTM

7.73 5.20 5.24 8.39

Figure 3: Relative execution time of OMP-Critical,
BG/Q TM, and TinySTM over sequential version.

1Input for kmeans is inputs/random-n65536-d32-c16.txt.

131

5.1 Single-thread TM performance
This section evaluates the overhead of TM execution run-

ning on a single-thread. Figure 3 shows the slow down of
single-thread BG/Q TM under the short- and long-running
modes relative to that of the sequential code. There is no
noticeable run-to-run variations in performance for this ex-
periment. For BG/Q TM, TM_BEGIN and TM_END macros
of the STAMP benchmarks are replaced by BG/Q pragma
annotation. Likewise, for omp-critical, the macros are re-
placed by omp critical pragma. TinySTM, uses the STM
version of the benchmarks with extensive privatization to
minimize instrumented states. Table 2 shows the number of
L1 misses per 100 instructions as well as instruction path
lengths, which is the number of instructions executed, col-
lected by hardware performance monitor.

The long-running mode incurs less overhead than the short-
running mode for all STAMP benchmarks except for ssca2

and kmeans, which have very small transactions (see Sec-
tion 5.1.1).

Even using the best performing mode for each application,
BG/Q TM still incurs noticeable overhead over the sequen-
tial version. The overhead comes primarily from increases in
L1 cache misses, but, for some benchmarks, also from path
length increases.

The relative speedup of the long-running mode over the se-
quential version in some benchmarks is the artifact of outlin-
ing OMP regions, which leads to reduced register pressure and
allows the compiler to generate better code. Similar single-
thread speedups are also observed on some omp-critical

versions of the benchmarks.
The rest of the section explains in details the root causes

of BG/Q TM overhead.

5.1.1 Cache performance penalty

One of the most dominant BG/Q TM runtime overhead
is caused by the loss of L1 cache support due to the L1
flush and bypass needed for the bookkeeping of transactional
state in L2. This observation is born by the number of
L1 cache misses in short- and long-running modes relative
to that of the sequential version. For instance, the three-
fold slowdown for yada (Figure 3) in short-running mode
is caused by 5 times as many L1 misses as the sequential
version (Table 2). Similarly, the eight-fold slowdown for
bayes is caused mainly by the 12× increase in L1 misses.
Note that the L2 cache and L1P buffer load latencies are
13x and 5x higher than L1 load latency.

Under the long-running mode, L1 is flushed upon enter-
ing the transaction thus destroying any reuse between code
before the transaction and code after the transaction. The
locality penalty can be severe for small transactions with
few memory accesses or little reuse. As shown in Table 2,
the long-running mode suffers less L1 misses than the short-
running mode for all but ssca2 and kmeans. For ssca2,
the short-running mode works well because the transactions
mostly implement single-address atomic updates. For kmeans,
both short- and long-running mode cause significant increase
in the number of L1 misses because locality exists both
within a transaction and across transactional boundaries.

While the long-running mode preserves more locality than
the short-running mode for applications with not-so-small
transactions, we still observe 15% to 38% increase in L1
misses compared to the sequential version.

0

20

40

60

80

100

120

C
ap

ac
ity

 R
ol

lb
ac

ks
 (%

 A
ll

R
ol

lb
ac

ks
)

1
2
4
8
16
32
64

Threads

Figure 4: Percentage of rollbacks caused by capacity
overflow

5.1.2 Capacity overflow

Compared to STMs, one main disadvantage of a best-
effort HTM is the bounded size of speculative states. Fig-
ure 4 shows the percentage of rollbacks caused by capacity
overflow in relation to the total number of rollbacks expe-
rienced by each benchmark for various number of threads.
Two of the STAMP benchmarks experience capacity over-
flow under single-thread TM execution. In labyrinth, ca-
pacity overflow is persistently triggered in one of its two
main transactions, which unconditionally copies a global
grid of 14M bytes inside the transaction. As a result, the
most important transactions of labyrinth (accounting for
50% transactions) are executed in the irrevocable mode, re-
sulting in a TM performance similar to omp-critical. For
bayes, only 3% of the transactions trigger capacity over-
flow. However, due to the low serialization ratio, each failed
transaction is retried 10 times before switching to the irrevo-
cable mode, resulting in a significant (55%) increase in path
length. This problem is not observed on labyrinth because
the runtime adaptation is able to quickly limit the number
of retries for consecutively failed transactions.

As shown in Figure 4, except for labyrinth and bayes

which are known to exhibit large transactional footprint,
capacity overflow on BG/Q is insignificant for most of the
STAMP benchmark. At thread-counts above 16, genome,
intruder, ssca2 and yada experience some capacity over-
flow because of the shared speculative state, however never
more than 2% of transaction rollbacks are caused by capac-
ity overflow. The percent of executed transactions which
experience capacity overflow in bayes and labyrinth de-
creases as the thread count increases because transactional
conflicts become the leading cause of aborts.

5.1.3 Transaction enter and exit overhead

The basic overhead of entering and exiting a transaction
comes from several sources: 1) saving of register contexts,
2) obtaining a spec ID, 3) the latency to write to memory-
mapped I/O to start or commit a transaction, 4) the system
calls to turn on and off kernel sandboxing, 5) additional
runtime bookkeeping.

We measured the single-thread overhead of entering and

132

L1 misses per 100 instr. (thread=1) Instr. path length relative to serial (thread=1)
Benchmark

sequential BG/Q Short BG/Q Long omp critical BG/Q Short BGQ Long

bayes 0.6 8.1 0.7 87 % 155 % 156 %
genome 0.6 1.6 0.7 99 % 101 % 101 %
intruder 0.8 1.5 1.3 97 % 102 % 104 %
kmeans low 0.1 0.3 2.7 101 % 105 % 106 %
kmeans high 0.1 0.7 3.2 103 % 110 % 113 %
labyrinth 0.9 1.0 1.2 100 % 100 % 101 %
ssca2 1.0 0.7 1.3 96 % 109 % 111 %
vacation low 1.5 6.2 2.4 88 % 92 % 93 %
vacation high 1.7 7.0 2.4 88 % 91 % 92 %
yada 1.5 7.2 0.8 101 % 90 % 90 %

Table 2: Hardware performance monitor stats for the STAMP benchmarks.

��
��
��
��
��

���
���
���
���

� � � � �� �� ��

�
�
��
�
�
�
��
�
��
��
��
�
��
��
��

�������

������

��

��

��

��

��

���

���

���

� � � � �� �� ��

�
�
��
�
�
�
��
�
��
��
��
�
��
��
��

�������

������������

��
��
��
��
��

���
���
���
���
���

� � � � �� �� ��

�
�
��
�
�
�
��
�
��
��
��
�
��
��
��

�������

�������������

��

��

��

��

��

���

���

� � � � �� �� ��

�
�
��
�
�
�
��
�
��
��
��
�
��
��
��

�������

�����

��

��

��

��

��

���

���

���

� � � � �� �� ��

�
�
��
�
�
�
��
�
��
��
��
�
��
��
��

�������

���������

��

��

��

��

��

���

���

� � � � �� �� ��

�
�
��
�
�
�
��
�
��
��
��
�
��
��
��

�������

����������

��
����
��

����
��

����
��

����
��

����
��

� � � � �� �� ��

�
�
��
�
�
�
��
�
��
��
��
�
��
��
��

�������

�����������

��
��
��
��
��
��
��
��
��
��

� � � � �� �� ��

�
�
��
�
�
�
��
�
��
��
��
�
��
��
��

�������

�����

��

����

��

����

��

����

� � � � �� �� ��

�
�
��
�
�
�
��
�
��
��
��
�
��
��
��

�������

����

omp critical	

BG/Q Long	

TinySTM	

BG/Q Short	

��

����

��

����

��

����

� � � � �� �� ��

�
�
��
�
�
�
��
�
��
��
��
�
��
��
��

�������

��������

Figure 5: Speedup over sequential for upto 64 threads.

133

exiting a transaction that implements a single atomic up-
date. While this overhead for both BG/Q TM and TinySTM
is in the order of hundreds of cycles, the overhead for BG/Q
TM is smaller, about 44% of the TinySTM overhead for
short-running mode, and 76% for long-running mode. Long-
running mode has higher overhead because accesses to in-
ternal TM run-time data structures before and after trans-
action execution also suffer from L1 misses due to the L1
cache invalidation.

The transaction enter and exit overhead is also reflected
in increases of instruction path length. As shown in Table 2,
ssca2 and kmeans experience the most path length increase
under BG/Q TM (11% for ěscans) due to the small size of
its transactions.

5.2 HTM Scalability
Figure 5 shows the speedup of BG/Q TM relative to the

sequential code for up to 64 threads. The rest of the exper-
iments use long-running mode for all STAMP benchmarks
except for kmeans and ssca2 because short-running mode is
only beneficial for very small transactions. In kmeans short-
running mode can be up to 50% faster then long-running
mode. In the experiments, each thread is bound to a differ-
ent core on a round-robin breadth-first fashion.

Table 3 shows two metrics computed from transaction-
execution statistics collected by the TM runtime:

• Serialization ratio is the percentage of committed trans-
actions that were executed in the irrevocable mode. It
is an indicator of the degree of concurrency in the TM
execution.

• Abort ratio is the percentage of executed transactions
that are aborted. It indicates the amount of wasted
computation in the TM execution.

Both metrics reflect the combined effects of optimistic con-
currency inherent to the program, hardware conflict detec-
tion granularity, and the retry adaptation of the TM run-
time. A generally preferred scenario for TM is for an applica-
tion to have both low serialization ratio and low abort ratio.
A TM execution with both high serialization and high abort
ratio is likely to show low scalability and even absolute per-
formance slowdown. The lower abort ratio at higher num-
ber of threads, in Table 3, for some benchmarks (labyrinth,
kmeans, and vacation) is counter intuitive. However, aborts
caused by conflicts are highly dependent on the start and
commit timing for the various transactions and therefore
changing the number of threads may change this ratio in
unexpected ways.

We first look at the relative speedup of TM execution and
classify the benchmarks into several categories:

• Effective HTM. Genome and vacation exhibit good
speedup and low serialization ratio. Note that per-
formance boost beyond 16 threads comes from SMT
threads multiplexing on the processor pipeline and hid-
ing in-order processor stalls.

• Spec-ID bottleneck. Despite zero abort and serial-
ization ratios, ssca2 scales only up to 4 threads. This
is because short and frequent transactions lead the sys-
tem to quickly run out of spec-IDs, which blocks on
spec-ID request until after some spec-IDs are recycled.
BG/Q TM has 128 spec IDs that need to be recycled,

��

��

��

��

��

��

��

� � � � �� �� ��

�
�
��
�
�
�
��
�
��
��
��
�
��
��
��

�������

�����

��������

��������

��������

���������

���������

�

Figure 6: Effect of varying scrub intervals for ssca2.

based on the scrub interval, before being reassigned to
new transactions. Figure 6 shows a sensitivity study
on the impact of scrub interval on the performance of
ssca2. With a scrub setting above 34, ssca2 runs out
of IDs and transactions are blocked waiting for an ID.
And the scalability improves with lower intervals.

• Contention bottleneck. For yada, bayes, intruder,
and kmeans, high serialization ratio at higher thread
counts is the main bottleneck for scalability. The high
serialization ratio is directly caused by the significant
increase in aborts. Note that bayes exhibits high vari-
ability in the execution time because its termination
condition depends on the order of its transactions com-
mit.

• Capacity bottleneck. Due to the capacity problem
(see Section 5.1.2), the main transactions of labyrinth
are always executed in irrevocable mode and serialized
with the irrevocable token. In the end, HTM execution
exhibits no scaling and performs very close to naive
locking.

5.3 Comparing against OMP-Critical and
TinySTM

Using OMP critical (i.e. a big-lock) and using an STM
represent the two end points of the spectrum of concur-
rency implementation. Big-locks have the lowest single-
thread overhead, but are more likely to become a locking
bottleneck. While STM has the best relative scaling (with
respect to single-thread STM), but often exhibits the worst
single-thread overhead.

The BG/Q TM fits in between these two ends both in
terms of single-thread overhead and relative scalability. This
is exactly what we observe. As shown in Figure 5 the scal-
ability curves of omp-critical are mostly flat except for
kmeans which suffers from little contention on a single big
lock. When omp-critical scales (kmeans), it performs the
best among the three because it has the lowest overhead.
TinySTM, on the other hand, exhibits the best relative scal-
ability with respect to single-thread TinySTM. Comparing
BG/Q TM against TinySTM, we make the following obser-
vations:

134

Serialization ratio (# threads) Abort ratio (# threads)
Benchmark

1 2 4 8 16 32 64 1 2 4 8 16 32 64

bayes 3 % 4 % 53 % 64 % 85 % 84 % 84 % 23 % 39 % 50 % 55 % 62 % 73 % 73 %
genome 0 % 0 % 0 % 0 % 1 % 0 % 1 % 0 % 0 % 4 % 5 % 13 % 13 % 18 %
intruder 0 % 0 % 1 % 19 % 58 % 63 % 66 % 0 % 3 % 24 % 53 % 56 % 59 % 59 %
kmeans low 0 % 0 % 0 % 1 % 7 % 19 % 82 % 0 % 0 % 3 % 21 % 59 % 65 % 59 %
kmeans high 0 % 0 % 2 % 11 % 62 % 81 % 88 % 0 % 1 % 26 % 53 % 57 % 58 % 57 %
labyrinth 50 % 50 % 50 % 72 % 89 % 94 % 89 % 34 % 55 % 68 % 59 % 59 % 62 % 67 %
ssca2 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
vacation low 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 15 % 8 % 8 % 17 % 26 % 20 %
vacation high 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 12 % 6 % 8 % 14 % 28 % 22 %
yada 0 % 5 % 7 % 11 % 41 % 53 % 53 % 0 % 39 % 43 % 49 % 49 % 52 % 52 %

Table 3: Percentage of irrevocable and aborted transactions in BG/Q TM execution.

• Effective HTM. For genome and vacation, BG/Q
TM has both a steeper and a longer ascending curve
than TinySTM does. This is because, for these bench-
marks, BG/Q TM does not suffer from any HTM-
specific scaling bottlenecks. In addition, the lower
overhead of BG/Q TM likely reduces the window of
overlap among concurrent transactions.

• Spec-ID and capacity bottleneck. For ssca2 and
labyrinth, BG/Q TM peaks much earlier than TinySTM
due to HTM-specific scaling bottlenecks.

• Effective STM via privatization. The good scal-
ing of labyrinth and bayes on TinySTM is the re-
sult of a STM programming style that relies heavily
on privatization and manual instrumentation. On the
only two benchmarks with capacity overflow during
a single-thread BG/Q TM execution, the STM codes
incur no single-thread overhead because instrumented
states are aggressively reduced to a tiny fraction of the
actual footprint of the transactions.

• Contention bottleneck. For the rest of the bench-
marks, BG/Q TM has a steeper ascending curve ini-
tially, but often peaks at a lower thread count and
descends more rapidly afterwards in comparison to
TinySTM. This may be explained by the bounded hard-
ware implementation and the coarser granularity of
conflict detection in BG/Q TM.

6. RELATED WORK
Despite of many HTM proposals in the literature, only two

other real HTM implementations exist today, including the
Rock processor [8] and the Vega Azul system [5]. While all
three are best-effort HTMs, their design points differ drasti-
cally. Table 4 compares the key characteristics of the three
systems in detail. The recently announced Intel’s Haswell
implementation of TSX is not included in Table 4 because
that level of information is not yet available.

Both Rock HTM and Vega from Azul have small specula-
tive buffers, compared to BG/Q’s 20Mbytes of speculative
states. Rock imposes many restrictions on what operations
can happen in a transaction excluding function calls, divide,
and exceptions. Rock also restricts the set of registers that
functions may save/restore to enable the use of save/restore
instructions that use register windows [8]. In contrast, in
BG/Q, the entire instruction set architecture is supported

HTM BG/Q Rock Azul
Buffer capacity 20MB 32 lines 16 KB
Speculative buffer L2 L2 cache L1
Register save/restore no yes no
Unsupported ISA none div, call, sync none
Conflict detection 8-64B n/a 32B
User-level abort no n/a yes

Table 4: Basic features of real HTM implementa-
tions.
within a transaction and register save/restore are a respon-
sibility of the compiler and never cause transaction failure.

The method presented in this paper to build a software
system to offer guarantee of forward progress on top of a
best-effort HTM is an elegant solution that does not require
that TM programmers provide an alternative code sequence
for transaction rollbacks. Similar methods have been used
before [5, 8] and should be useful for upcoming HTM sys-
tems [14, 15].

The TM system in Azul deals with more expensive trans-
action entry/exit operations by restricting speculation to
contended locks that successfully speculate most of the time.
Azul also avoids speculation on rollbacks. A transaction that
has failed once is always executed non-speculatively. This
is a contrast to the adaptive retry system described in this
paper.

7. CONCLUSION
This detailed performance study of one of the first com-

mercially available HTM systems has some surprising find-
ings. Even though the single-thread overhead is reduced
in comparison with STM implementations, it is still signifi-
cant. The use of L2 to support TMs is essential to enable a
sufficiently large speculative state. However, for many TM
applications recovering the lower latency of L1 for reuse in-
side a transaction, through the use of long running mode
in BG/Q, is critical to achieve performance. An end-to-end
solution that delivers a programming model that supports
the entire ISA delivers the simplicity promised by TMs.

Acknowledgments
The BG/Q project has been supported and partially funded
by Argonne National Laboratory and the Lawrence Liver-
more National Laboratory on behalf of the U.S. Department
of Energy, under Lawrence Livermore National Laboratory
subcontract no. B554331. The evaluation study reported

135

in this paper was partially funded by the the IBM Toronto
Centre for Advanced Studies and by grants from the Natu-
ral Sciences and Engineering Research Council of Canada.
Thanks to Wang Chen for diligently managing the release
of this paper through IBM legal process.

Trademarks
The following terms are trademarks or registered trademarks
of International Business Machines Corporation in the United
States, other countries, or both: IBM, AIX, Blue Gene.
UNIX is a registered trademark of The Open Group in the
United States and other countries. Intel is a registered trade-
mark of Intel Corporation in the United States, other coun-
tries, or both. Linux is a trademark of Linus Torvalds in the
United States, other countries, or both. Other company,
product, and service names may be trademarks or service
marks of others

8. REFERENCES
[1] J. Bobba, K. Moore, H. Volos, L. Yen, M. D. Hill,

M. M. Swift, and D. A. Wood. Performance
pathologies in hardware transactional memory. In
International Conference on Computer Architecture
(ISCA), pages 81–91, San Diego, CA, USA, 2007.

[2] C. C. S. Ananian, K. Asanovic, B. Kuszmaul,
C. Leiserson, and S. Lie. Unbounded transactional
memory. In High-Performance Computer Architecture
(HPCA), pages 316–327, San Francisco, CA, USA,
February 2005.

[3] C. Cascaval, C. Blundell, M. Michael, H. W. Cain,
P. Wu, S. Chiras, and S. Chatterjee. Software
transactional memory: Why is it only a research toy?
Communications of the Association for Computing
Machinery, 51(11):40–46, November 2008.

[4] J. Chung, L. Yen, S. Diestelhorst, M. Pohlack,
M. Hohmuth, D. Christie, and D. Grossman. ASF:
AMD64 extension for lock-free data structures and
transactional memory. In Intern. Symposium on
Microarchitecture (MICRO), pages 39–50, Atlanta,
GA, USA, December 2010.

[5] C. Click. Azul’s experiences with hardware
transactional memory. In HP Labs’ Bay Area
Workshop on Transactional Memory, 2009.

[6] S. C. R. Cypher, M. Ekman, M. Karlsson, A. Landin,
S. Yip, H. Zeffer, and M. Tremblay. Simultaneous
speculative threading: a novel pipeline architecture
implemented in sun’s rock processor. In International
Conference on Computer Architecture (ISCA), pages
484–495, Austin, TX, USA, 2009.

[7] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec:
Streamlining STM by abolishing ownership records. In
Principles and practice of parallel programming, pages
67–78, Bangalore, India, January 2010.

[8] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early
experience with a commercial hardware transactional
memory implementation. In Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 157–168, Washington, DC, USA,
March 2009.

[9] P. Felber, C. Fetzer, P. Marlier, and T. Riegel.
Time-based software transactional memory. IEEE

Transactions on Parallel and Distributed Systems,
21(12):1793–1807, December 2010.

[10] P. Felber, C. Fetzer, and T. Riegel. Dynamic
performance tuning of word-based software
transactional memory. In Principles and practice of
parallel programming, pages 237–246, Salt Lake City,
UT, USA, February 2008.

[11] T. M. S. D. Group. Draft specification of transactional
language constructs for C++ (version 1.1), 2012.

[12] R. Haring, M. Ohmacht, T. Fox, M. Gschwind,
D. Satterfield, K. Sugavanam, P. Coteus,
P. Heidelberger, M. Blumrich, R. Wisniewski,
A. Gara, G.-T. Chiu, P. Boyle, N. Chist, and C. Kim.
The ibm blue gene/q compute chip. IEEE Micro,
32(2):48–60, March-April 2012.

[13] M. Herlihy and J. E. Moss. Transactional memory:
Architectural support for lock-free data structures. In
International Conference on Computer Architecture
(ISCA), pages 289–300, San Diego, CA, USA, May
1993.

[14] Intel Corporation. Intel Architecture Instruction Set
Extensions Programming Reference, 319433-012
edition, February 2012.

[15] D. Kanter. Analysis of Haswell’s transactional
memory.
http://www.realworldtech.com/page.cfm?ArticleID=
RWT021512050738&p=1, February 2012. Real World
Technologies.

[16] C. C. Minh, J. Chung, C.Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for
multi-processing. In International Symposium on
Workload Characterization (IISWC), pages 35–46,
Seattle, WA, USA, September 2008.

[17] C. C. Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, and
K. Olukotun. An effective hybrid transactional
memory system with strong isolation guarantees. In
International Conference on Computer Architecture
(ISCA), pages 69–80, San Diego, CA, USA, 2007.

[18] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C.
Minh, and B. Hertzberg. McRT-STM: A high
performance software transactional memory system
for a multi-core runtime. In Principles and practice of
parallel programming, pages 187–197, New York, NY,
USA, January 2006.

[19] M. F. Spear, M. M. Michael, and C. von Praun.
RingSTM: scalable transactions with a single atomic
instruction. In ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA), pages 275–284,
Munich, Germany, June 2008.

[20] J. M. Stone, H. S. Stone, P. Heidelberger, and
J. Turek. Multiple reservations and the Oklahoma
update. IEEE Parallel & Distributed Technology
(PDT), 1(4):58–71, November 193.

[21] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R.
Adl-Tabataba. Code generation and optimization for
transactional memory constructs in an unmanaged
language. In Code Generation and Optimization
(CGO), pages 34–48, San Jose, CA, USA, March 2007.

136

