Computer Architecture:
Speculation (in Parallel Machines)

Prof. Onur Mutlu
Carnegie Mellon University

Readings: Speculation

Required

Q

Q

Sohi et al., "Multiscalar Processors,” ISCA 1995.

Zhou, “Dual-Core Execution: Building a Highly Scalable Single-
Thread Instruction Window,” PACT 2005.

Herliny and Moss, “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” ISCA 1993.

Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution,” MICRO 2001.

Recommended

Q

Colohan et al., “A Scalable Approach to Thread-Level Speculation,”
ISCA 2000.

Akkary and Driscoll, “A dynamic multithreading processor,” MICRO
1998.

And, many others

Speculation in Parallel Machines

Speculation

Speculation: Doing something before you know it is needed.
Mainly used to enhance performance

Single processor context
o Branch prediction

o Data value prediction

o Prefetching

Multi-processor context
o Thread-level speculation
o Transactional memory
o Helper threads

Speculative Parallelization Concepts

Idea: Execute threads unsafely in parallel
o Threads can be from a sequential or parallel application

Hardware or software monitors for data dependence
violations

If data dependence ordering is violated

o Offending thread is squashed and restarted
If data dependences are not violated

o Thread commits

o If threads are from a sequential order, the sequential order
needs to be preserved - threads commit one by one and in
order

Inter-Thread Value Communication

Can happen via
o Registers
o Memory

Register communication

o Needs hardware support between processors

o Dependences between threads known by compiler
o Can be producer initiated or consumer initiated
Q

If consumer executes first:
consumer stalls, producer forwards
o If producer executes first
producer writes and continues, consumer reads later
o Can be implemented with Full/Empty bits in registers

Memory Communication

Memory dependences not known by the compiler

True dependencies between predecessor/successor threads
need to be preserved

Threads perform loads speculatively
o get the data from the closest predecessor

o keep record that they read the data (in L1 cache or another
structure)

Stores performed speculatively

a buffer the update while speculative (write buffer or L1)
o check successors for premature reads

o if successor did a premature read: squash

o typically squash the offending thread and all successors

Dependences and Versioning

Only true data dependence violations should cause a thread
squash

Types of dependence violations:

o LD A = ST A: name dependence; hardware may handle
o ST A = ST A: name dependence; hardware may handle
o ST A > LD A: true dependence; causes a squash

Name dependences can be resolved using versioning

Idea: Every store to a memory location creates a new
version

Example: Gopal et al., “"Speculative Versioning Cache,” HPCA
1998.

Where to Keep Speculative Memory State

Separate buffers

o E.g. store queue shared between threads

o Address resolution buffer in Multiscalar processors
o Runahead cache in Runahead execution

L1 cache

o Speculatively stored blocks marked as speculative

o Not visible to other threads

o Need to make them non-speculative when thread commits
o Need to invalidate them when thread is squashed

Speculation to “Parallelize™
Single-Threaded Programs

Referenced Readings

Sohi et al., “"Multiscalar Processors,” ISCA 1995.

Herlihy and Moss, “Transactional Memory: Architectural Support for Lock-Free Data
Structures,” ISCA 1993.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
Gopal et al., "Speculative Versioning Cache,” HPCA 1998.
Steffan et al., “A Scalable Approach to Thread-Level Speculation,” ISCA 2000.

Franklin and Sohi, "ARB: A hardware mechanism for dynamic reordering of memory
references,” IEEE TC 1996.

Moshovos et al., “"Dynamic Speculation and Synchronization of Data Dependences,” ISCA
1997.

Chrysos and Emer, “Memory Dependence Prediction using Store Sets,” ISCA 1998.
Dubois and Song, “Assisted Execution,” USC Tech Report 1998.

Chappell et al., “Simultaneous Subordinate Microthreading (SSMT),” ISCA 1999.
Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA 2001.

Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction Windows for
Out-of-order Processors,” HPCA 2003.

Sundaramoorthy et al., “Slipstream Processors: Improving both Performance and Fault
Tolerance,” ASPLOS 2000.

Zhou, “Dual-Core Execution: Building a Highly Scalable Single-Thread Instruction Window,”
PACT 2005.
11

Thread Level Speculation

Speculative multithreading, dynamic multithreading, etc...

Idea: Divide a single instruction stream (speculatively) into
multiple threads at compile time or run-time

o Execute speculative threads in multiple hardware contexts
o Merge results into a single stream

Hardware/software checks if any true dependencies are
violated and ensures sequential semantics

Threads can be assumed to be independent

Value/branch prediction can be used to break dependencies
between threads

Need to verify such predictions: can be done by executing a
“safe version” or checking invariants
12

Thread Level Speculation Example

= Steffan et al., “A Scalable Approach to Thread-Level
Speculation,” ISCA 2000.

(a) Example psuedo-code
while{continue condition) |

% = hash[indexl];
hash[index2] = v;
}

(b) Execution using thread-level speculation
Processorl Processor2 Processord Processord
Epoch 1 Epoch 2

Epoch 3
Epoch 4
= hash[13] = hash[19] - hash{33] T**° =Er
- Yiolation! = hashk(10]
hﬂlh[lﬂ] - _h-H.E]l|2Lj - e A
v o hash|3D] = hash[25] =
l#t-t-!‘i"‘t_m“'-tli:l__n-rtjﬂjlt-_'-'-:—it-ll attompt_commiti) | puoo o Kt“
Epoch 4 }Rm
Epoch 5 Epoch & = hash(10]
Epoch 7
= hash|3i0] = hash(9] hash[25] =
= hash[27] ‘ua e
e -_l.tbll.p‘t_mltl::l

TLS Conftlict Detection Example

Epoch 5 Epoch 6

e become speculative()
LOAD a = *p:

@) sone vq - 2; 2% FAIL

@ attempt commit ()

Processor1 , _ . - zx) Processor2 TlmeJ

L1 Cache L1 Cache

Epoch #=5 Epoch #=6 | @
Violation? = False Violation? = TRUE
Speculatively
-~ Loaded?

Speculatively
— Modified?

x=1—=>2|T|T

\ SLSM
Invalidation
(Epoch #5)

Figure 2. Using cache coherence to detect a RAW dependence
violation.

14

Some Sample Results [Colohan+ ISCA 2000]

Table 3. Performance impact of TLS on our baseline architecture
(a four-processor single-chip multiprocessor).

Overall Region | Parallel | Program
Application Speedup Coverage | Speedup
buk 2.26 56.6% 146
compress95 1.27 47 3% 1.12
equake 1.77 393% 121
ijpeg 1.94 22.1% 1.08

(a) Execution Time

b
=
o

Q

E o} 100 100 100

Lo .] 93 —

c = o7 91

9 o -

5 o2

(3] i3 spawn
a || sync
w homefree
c .

(o] s idle
o)

o L | istall
o dcache_miss
©

T busy
N

©

E

=

=]

=

=]

12 3 4 6 8 12 34 6 8 12 34 6 8 1 2 34 6 8
buk compress95 equake ijpeg

15

Multiscalar Processors (ISCA 1992, 1995)

Exploit “implicit” thread-level parallelism within a serial
program

Compiler divides program into tasks

Tasks scheduled on independent processing resources

Hardware handles register dependences between tasks

o Compiler specifies which registers should be communicated
between tasks

Memory speculation for memory dependences
o Hardware detects and resolves misspeculation

Franklin and Sohi, “The expandable split window paradigm for
exploiting fine-grain parallelism,” ISCA 1992.

Sohi et al., "Multiscalar processors,” ISCA 1995.
16

Multiscalar vs. Large Instruction Windows

Instruction Stream Instruction Stream

Register File

Ker ae
" (i)
Figure 1: Splitting a large window of instructions

into smaller windows
(i) A single large window (ii) A number of small windows

17

Multiscalar Model of Execution

Superscalar Multiscalar

single centralized window multiple distributed windows

task

PC—"

task

PC—*

task

Pc—-,

|
- Im
:J

|

PC —*

=t

N\

dynam [IFISUUC!IDFI STI’EEHT'I

FAERL AR AN E R d R AR R Y TR

Multiscalar Tasks

A task is a subgraph of the control
flow graph (CFG)

o e.g., a basic block, multiple basic
blocks, loop body, function

Tasks are selected by compiler and
conveyed to hardware

Tasks are predicted and scheduled
by processor

Tasks may have data and/or control CE
dependences

19

Multiscalar Processor

Task

sequencer

l

Tail l Head 1 l 1
|-cache |-cache |-cache |-cache
Processing Processing Processing Processing

Element (PE)

Element (PE)

Element {PE)

Register
File

Element {PE)

Register
File

i

!

|

Interconnection Metwork

!

ARB

D—cache

!

ARB

[
b |

D—cache

20

Multiscalar Compiler

Task selection: partition CFG into tasks
o Load balance across processors
o Minimize inter-task data dependences

a Minimize inter-task control dependences
By embedding hard-to-predict branches within tasks

Convey task and communication information in the executable
o Task headers

create_mask (1 bit per register)

0 Indicates all registers that are possibly modified or created by the task
(better: live-out of the task)

0 Don’t forward instances received from prior tasks
PCs of successor tasks
o Release instructions: Release a register to be forwarded to a
receiving task
21

Multiscalar Program Example

for (ndx = 0 indx < BUFSIZE: indx++) {
*# get the symbol for which to search */
symbal = SYMVAL(buffer[indx]);

/* do a linear search for the symbol in the list */
for (list = listhd; list; list = LNEXT(list}) |
/# if symbol already present, process entry */
if (symbol == LELE(list)) |
process(hst);
break;

}

[+ if symbol not found in the list, add 1o the il +/
if {!ist) {
addlist(symbaol);

Figure 3: An Example Code Segment.

Targ Spec Branch, Branch
Targl OUTER
Targ2 OUTERFALLOUT

Create mask $4,58,517,520,%23

OUTER:

addu %20, $20, 16

1d %23, SYMVAL-16(520)

move $17, 521

beq $17,50, SKIPINNER
INNER.:

1d %8, LELE(S$1T

bne %8, 523, SKIPCALL

move §4, 517

jal Process

jump INNERFALLOUT
SKIPCALL:

1d %17, NEXTLIST($17)

bne %17, 50, INNER
INNERFALLOUT:

release $8,517

bne %17, 80, SKIPINNER

move 54,523

jal addlist
SKIPINNER:

release 34

bne %20, 516, OUTER
OUTERFALLOUT:

5 =
(=9
=]
£ &
F
F
F
Stop
Always

Figure 4: An Example of a Multiscalar Program.

22

Forwarding Registers Between Tasks

Compiler must identify the last instance of write to a
register within a task

o Opcodes that write a register have additional forward bit,
indicating the instance should be forwarded

o Stop bits - indicate end of task
o Release instruction

tells PE to forward the register value

23

Task Sequencing

= Task prediction analogous to branch prediction
= Predict inter-task control flow

Control ndependent Highly predictable
inter-task branch

24

Handling Inter-Task Dependences

Control dependences
o Predict

a Squash subsequent tasks on inter-task misprediction

Intra-task mispredictions do not need to cause flushing of later
tasks

Data dependences
o Register file: mask bits and forwarding (stall until available)

o Memory: address resolution buffer (speculative load, squash
on violation)

25

Address Resolution Buffer

Multiscalar issues loads to ARB/D-cache as soon as address
is computed

ARB is organized like a cache, maintaining state for all
outstanding load/store addresses

Franklin and Sohi, "ARB: A hardware mechanism for
dynamic reordering of memory references,” IEEE TC 1996.

An ARB entry:

' ' ! | Stage = Task = PE
Tag |L|S| Data LS| Data L|S| Data L|S| Data L' load performed
= store performed

Stage 0 ' Stage 1 Stage 2 I Stage 3 Data: store data

26

Address Resolution Buffer

Loads
o ARB miss: data comes from D-cache (no prior stores yet)

o ARB hit: get most recent data to the load, which may be from
D-cache, or nearest prior task with S=1

Stores
o ARB buffers speculative stores

o If store from an older task finds a load from a younger task to
the same address - misspeculation detected

o When a task commits, commit all of the task’s stores into the
D-cache

27

Address Resolution Buffer

= Franklin and Sohi, “"ARB: A hardware mechanism for
dynamic reordering of memory references,” IEEE TC 1996.

[|] A | |
_.fl. I. 1I :
l'l o i \ 1.\.
Lo 00 T50 TF0 Thbwl i
| i B o B H 1 ! 1 '
Be Address L8Vl & r ;
2000 P Vo 1:
Bank 0 :
s N P
Bgge 01 : Stage 1 Elape 2 Rlage 3 Stuge 4 I] Stage §
Heamd Tail
e Active ARB Window ——

Figure 1: A 4-Way Interleaved, f-stage ARB

Memory Dependence Prediction

ARB performs memory renaming

However, it does not perform dependence prediction

o Can reduce intra-task dependency flushes by accurate
memory dependence prediction

Idea: Predict whether or not a load instruction will be
dependent on a previous store (and predict which store).
Delay the execution of the load if it is predicted to be
dependent.

Moshovos et al., "Dynamic Speculation and Synchronization of
Data Dependences,” ISCA 1997.

Chrysos and Emer, "Memory Dependence Prediction using Store
Sets,” ISCA 1998.

29

Handling of Store-LLoad Dependencies

A load’ s dependence status is not known until all previous store
addresses are available.

How does the processor detect dependence of a load instruction on a
previous store?

o Option 1: Wait until all previous stores committed (no need to
check)

o Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

How does the processor engine treat the scheduling of a load
instruction with respect to previous stores?

o Option 1: Assume load independent of all previous stores
o Option 2: Assume load dependent on all previous stores
o Option 3: Predict the dependence of a load on an outstanding store

30

Memory Disambiguation

Option 1: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads

-- Requires recovery and re-execution of load and dependents on misprediction

Option 2: Assume load dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction
o Alpha 21264 : Initially assume load independent, delay loads found to be dependent

o Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

o Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

31

Memory Disambiguation

Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

IPC
O = NWAGO O N

xlisp e

compress [
- perl scr

‘A no speculatlon B naive sﬁécullation.." ;;erfect

Predicting store-load dependencies important for performance

Simple predictors (based on past history) can achieve most of
the potential performance

32

Multiscalar Comparisons and Questions

VS. superscalar, out-of-order?
vs. multi-core?

vs. CMP and SMT-based thread-level speculation
mechanisms

o What is different in multiscalar hardware?

Scalability of fine-grained register communication

Scalability of memory renaming and dependence
speculation

33

Helper Threading for Prefetching

Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

o Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can
be considered a “thread”

Speculative thread can be executed
On a separate processor/core
On a separate hardware thread context
On the same thread context in idle cycles (during cache misses)

34

Generalized Thread-Based Pre-Execution

= Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

fork

prediction

= Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999,

BRANCH

= Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
speedup 2001.

35

Thread-Based Pre-Execution Issues

Where to execute the precomputation thread?
1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context
When the main thread is stalled

When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load

How far ahead?
0 Too early: prefetch might not be needed
0 Too late: prefetch might not be timely

2. When the main thread is stalled

When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback

36

Thread-Based Pre-Execution Issues

Read

a Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”

ISCA 2001.
o Many issues in software-based pre-execution discussed

Key {a) Multiple Pointer Chains {b) Non-Affine Array Accesses

> Main Execution

™ Pre-Execution

L > = Array Elements Accessed

{d) Multiple Control-Flow Paths

37

An Example

(a) Original Code

register int 1;
register arc_t *arcout;
for(; i< trips;){
I loap over ‘trips” lists
if (arcout[1] 1dent != FIXED) {

first_of_sparse_list = arcout + 1;

I
arcin = (arc_t *)first_of sparse_list
—tail— mark;
!l traverse the list starting with
! the first node just assigned
while (arcin) {
tail = arein— tail;

arcin = (arc_t *)tail—» mark:
}
1++, arcout+=3;

}

(b) Code with Pre-Execution

register it 1;
register arc_t *arcout;
for(; 1< tips;)|
I/l loop over ‘trips™ lists
if (arcout[1] ident != FIXED) {

first_of_sparse_list = arcout + 1;
I
[/l inveke a pre-execution starting
/ at END_FOR
PreExecute StartitEND_FOR);
arcin = (arc_t *)first_of_sparse_list

ktajlkmark,

/f traverse the list starting with
I the first node just assigned
while (arcin) |

tail = arcin— tail;

arcin = (arc_t *)tail— marlk;
}
/f terminate this pre-execution after
I/l prefetching the entire list
PreExecute _Stop();
END_FOR:
/I the target address of the pre-
!l execution
1++, arcout+=3;
1
/I terminate this pre-execution if we
I have passed the end of the for-loop
PreExecute_Stop();

Figure 2. Abstract versions of an important loop nest in the
Spec2000 benchmarkmc £. Loads that incur many cache miss-

es are underlined.

The Spec2000 benchmark mcf spends roughly half of its ex-
ecution time in a nested loop which traverses a set of linked list-
s. An abstract version of this loop is shown in Figure 2(a), in
which the for-loop iterates over the lists and the while-loop vis-
its the elements of each list. As we observe from the figure, the
first node of each list is assigned by dereferencing the pointer
first_of_sparse_list, whose value is in fact determined by
arcout, an induction variable of the for-loop. Therefore, even
when we are still working on the current list, the first and the re-
maining nodes on the next list can be loaded speculatively by pre-
executing the next iteration of the for-loop.

Figure 2(b) shows a version of the program with pre-execution
code inserted (shown in boldface). END_FOR is simply a label
to denote the place where arcout gets updated. The new in-
struction PreExecute_Start(END_FOR) initiates a pre-execution
thread, say 1", starting at the PC represented by END_FOR. Right
after the pre-execution begins, 1'’s registers that hold the values
of 1 and arcout will be updated. Then i's value is compared
against trips to see if we have reached the end of the for-loop.
If so, thread 1" will exit the for-loop and encounters a PreExe-
cute_Stop(), which will terminate the pre-execution and free up
T for future use. Otherwise, 7' will continue pre-executing the
body of the for-loop, and hence compute the first node of the next
list automatically. Finally, after traversing the entire list through
the while-loop. the pre-execution will be terminated by another
PreExecute_Stop(). Notice that any PreExecute_Start() instruc-
tions encountered during pre-execution are simply ignored as we
do not allow nested pre-execution in order to keep our design sim-
ple. Similarly, PreExecute_Stop() instructions cannot terminate
the main thread either.

38

Example ISA Extensions

{'hread_{ D = PreExecute_Start(Stari_FPC', Mar_Insts):
Request for an 1idle context to start pre-execution at
Start_PC and stop when Mar_Insts instructions have
been executed: T'hread_{) holds either the identity of
the pre-execution thread or -1 if there is no idle context.

This instruction has effect only if it 1s executed by the main
thread.

PreExecute_Stop(): The thread that executes this instruction
will be self terminated 1if it 1s a pre-execution thread: no
effect otherwise.

PreExecute_Cancel(! hread_{1)): Terminate the pre-
execution thread with T'hread_{). This instruction has
effect only 1f 1t 1s executed by the main thread.

Figure 4. Proposed instruction set extensions to support pre-
execution. (C syntax is used to improve readability.)

39

Results on an SMT Processor

(a) Execution Time Normalized to the Original Case

o 100 I 100 mum 100 100 100 100 100
E 92
: ™
=
2 l /3 load L2-miss stall
3 64 :
® load L2-hit stall
W S0 other stall
ﬁ busy
1]
E
S
=

0 0 PX O PX 0 PX O PX O PX 0 PX O PX

Compress Em3d Equake Mcf Mst Raytrace Twolf

40

Problem Instructions

= Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

= Zilles and Sohi, “Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

Figure 2. Example problem instructions from heap insertion
roufine in vpr.

struct s_heap **heap; // from [l..heap size]
int heap size; // # of slots in the heap
int heap tail; // first unused slot in heap

void add to heap (struct s heap *hptr) {

heap[heap tail] = hptr; branch

int ifrom = heap_ tail; misprediction
int ito = ifrom/2; .
heap_tail++; cache miss
while ((ito >= 1) &&

(heap[ifrom]->cost < heap[itec]->cost))
struct s heap *temp ptr = heap[itc];
heap[itc] = heap[ifrom];
heap[ifrom] = temp ptr;
ifrom = ito;
ito = ifrom/2;

H O W @ =] oW i Wk
= & & &8 &8 & 8 &

= &

41

Fork Point for Prefetching Thread

Figure 3. The node teo heap function, which serves as
the fork point for the slice that covers add _to heap.

void node to heap (..., fleat cost, ...) {
struct s heap *hptr; -+———— fork point

hptr = alloc heap data();
hptr->cost = cost;

add to heap (hptr);

42

Pre-execution Slice Construction

Figure 4. Alpha assembly for the add te heap function.
The insfructions are annotated with the number of the Iine in
Figure 2 to which they correspond. The problem instrucfions
are in bold and the shaded instructions comprise fhe
un-optimized slice.

/* skips ~40 instructions */

node to heap:

2 lda sl, 252(gp)
2 1d1 t2, 0(sl)

1 ldg t5, —76(=1)
3 cmplt t2, 0, t4
4 addl £2, 0Oxl, t6
1 sBaddg t2, t5, t3
4 atl t6, 0(sl)

1 stq s0, 0(t3)
3 addl t2, t4, t4
3 sra t4, Oxl1l, t4
5 ble t4, return
loop:

6 sBaddg t2, t5, a0
& sBaddg t4, t5, t7
11 cmplt t4, 0, t9
10 move td, t2

B ldg az, 0(a0)

& ldg ad, 0(t7)
11 addl t4, t9, t9
11 sSra t9, Oxl1l, t4
6 1ds sfo, 4(a2)
6 1ds 5f1, 4(aq)
& cmptlt $f0,$f1,5f0
[fheq 5f0, return
B stq a2, 0(t7)

9 stg ad, 0(ad)

5 bgt t4, loop
return:

H H:

e e e ome He oo T He e T e e e R e e He e He M T H M T

theap tail
ifrom = heap tail
theap[0]

see note
heap_tail +4
theap[heap tail]
store heap tail
heap[heap tail]
see note

ito = ifrom/2
{ito < 1)

theap[ifrom]
theap[ito]

see note

ifrom = ito
heap[ifrom]
heap[iteo]

see note

ite = ifrom/2
heap[ifroem]->cost
heap[ito]=>cost
{heap[ifrom]->cost
< heap[ito]->cost)
heap[iteo]
heap[ifrom]

{ito >= 1)

/* register restore code & return */

note: the divide by 2 operation is implemented by a 3 instruc-

tion sequence described in the strength reduction optimization.

43

Review: Runahead Execution

A simple pre-execution method for prefetching purposes

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Speculatively pre-execute instructions

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

44

Review: Runahead Execution (Mutlu et al., HPCA 2003)

Small Window:

Load 1 Miss Load 2 Miss
Miss 1 :

Runahead: :
Load 1 Miss Load 2Miss Load 1Hit Load 2 Hit :

Saved Cycles

45

Slipstream Processors

Goal: use multiple hardware contexts to speed up single
thread execution (implicitly parallelize the program)
Idea: Divide program execution into two threads:

o Advanced thread executes a reduced instruction stream,
speculatively

o Redundant thread uses results, prefetches, predictions
generated by advanced thread and ensures correctness

Benefit: Execution time of the overall program reduces

Core idea is similar to many thread-level speculation
approaches, except with a reduced instruction stream

Sundaramoorthy et al., “Slipstream Processors: Improving
both Performance and Fault Tolerance,” ASPLOS 2000.

46

Slipstreaming

“At speeds in excess of 190 m.p.h., high air pressure forms at
the front of a race car and a partial vacuum forms behind it. This
creates drag and limits the car’s top speed.

A second car can position itself close behind the first (a process
called s/ipstreaming or drafting). This fills the vacuum behind the
lead car, reducing its drag. And the trailing car now has less wind
resistance in front (and by some accounts, the vacuum behind
the lead car actually helps pull the trailing car).

As a result, both cars speed up by several m.p.h.: the two
combined go faster than either can alone.”

47

Slipstream Processors

Detect and remove ineffectual instructions; run a shortened
“effectual” version of the program (Advanced or A-stream)
in one thread context

Ensure correctness by running a complete version of the
program (Redundant or R-stream) in another thread
context

Shortened A-stream runs fast; R-stream consumes near-
perfect control and data flow outcomes from A-stream and
finishes close behind

Two streams together lead to faster execution (by helping
each other) than a single one alone

48

Slipstream Idea and Possible Hardware

A-stream R-stream
Branch Reorder
Predictor IR-D < Buffer >
k -Detector Execution
L Core
Instruction T
L1 <—| IR-Predictor T L1
Data Cache . Data
Cache | NStruction Cache
l i Cache
Execution ?
Core , [TTTTT] (
~ Reorder Delay Butfer— Branch
Buffer Predictor
A

«—»

L2 Cache (R-stream state only)

Instruction Removal in Slipstream

IR detector
o Monitors retired R-stream instructions
o Detects ineffectual instructions and conveys them to the IR predictor
o Ineffectual instruction examples:
dynamic instructions that repeatedly and predictably have no

observable effect (e.g., unreferenced writes, non-modifying
writes)

dynamic branches whose outcomes are consistently predicted
correctly.
IR predictor

o Removes an instruction from A-stream after repeated
indications from the IR detector

A stream skips ineffectual instructions, executes everything
else and inserts their results into delay buffer

R stream executes all instructions but uses results from the

delay buffer as predictions
50

What if A-stream Deviates from Correct Execution?

Why

o A-stream deviates due to incorrect removal or stale data
access in L1 data cache

How to detect it?

o Branch or value misprediction happens in R-stream (known as
an IR misprediction)

How to recover?

o Restore A-stream register state: copy values from R-stream
Legi(sj’fers using delay buffer or shared-memory exception
andler

o Restore A-stream memory state: invalidate A-stream L1 data
cache (or speculatively written blocks by A-stream)

51

Slipstream Questions

How to construct the advanced thread

o Original proposal:

Dynamically eliminate redundant instructions (silent stores,
dynamically dead instructions)

Dynamically eliminate easy-to-predict branches

o Other ways:
Dynamically ignore long-latency stalls
Static based on profiling

How to speed up the redundant thread

o Original proposal: Reuse instruction results (control and data
flow outcomes from the A-stream)

o Other ways: Only use branch results and prefetched data as
predictions

52

Dual Core Execution

= Idea: One thread context speculatively runs ahead on load
misses and prefetches data for another thread context

= Zhou, “Dual-Core Execution: Building a Highly Scalable
Single- Thread Instruction Window,” PACT 2005.

front processor i

In-order superscalar

fetch core
j result queue

2 . In-order
superscals ' retire
superscalar .

back processor coic

53

Dual Core Execution: Front Processor

———

In-order || superscalar front processor

fetch core
j result queue
i)

(\ In-order
;uperscal | retire
superscalar | .

bﬂck processor CORC

The front processor runs faster by |nvaI|dat|ng long-latency cache-
missing loads, same as runahead execution

o Load misses and their dependents are invalidated
o Branch mispredictions dependent on cache misses cannot be resolved

Highly accurate execution as independent operations are not
affected

o Accurate prefetches to warm up caches

o Correctly resolved miss-independent branch mispredictions
54

Dual Core Execution: Back Processor

In-order i | superscalar Jront processor

5 result queue i
: 2 In-order
superscalar retire

back processor i

Re-execution ensures correctness and provides precise program
state

o Resolve branch mispredictions dependent on long-latency cache
misses

Back processor makes faster progress with help from the front
processor
o Highly accurate instruction stream

o Warmed up data caches
55

Dual Core Execution

Runahead:
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

Saved
Cycles

Miss 2

Miss

DCE: front processor

Load 1 Miss Load 2 Miss Load 3 Miss

Miss 1

Miss 3

DCE: back processor
Load 1 Miss

Saved Cycles

56

DCE Microarchitecture

From front processor’s insttuction cache From back processor’s instruction cache
Resolving branch misprediction (global

Resolving branch misprediction (local)

Izsue | Reg Fead Execution Write Back| Eetire

Fetch| Dispatch{Issue IReg Read [Execution [Write Back| Retire

Physical IE LSQ Physical
rTegister file v P LsSQ register file
_FromtProcessorl 1 L — 1 /7 N T L) BackProcessor
R&ad.-'WriteH S -
¥ | |
Run dhead | LT |
cache Read only : tail head Result Quene : Write Read
- - - -"-"F-"F-""-"-"""—-"-"-"-"/"-""-""-"-"—-""-""-""-""-""-""-"-"""""""-""-"""-""-"-"-""¥"-"— - —_ "~ /- /~_ /- /- v/ r-/ /- //-/// |
: v Write to both L1 caches v !
[|
! L1 Data Cache (front core) L1 Data Cache (back core) !
[|
: Read only T :
| | v ReadWrite |
| 3 |
: L2 Cache (shared) Memory Hicrarchy |

Dual Core Execution vs. Slipstream

Dual-core execution does not
o remove dead instructions
o reuse instruction register results

o uses the “leading” hardware context solely for prefetching
and branch prediction

+ Easier to implement, smaller hardware cost and complexity

+ Tolerates memory latencies better with the use of runahead
execution in the front processor

- “Leading thread” cannot run ahead as much as in slipstream
when there are no cache misses

- Not reusing results in the “trailing thread” can reduce
overall performance benefit

58

Some Results

110% ¢ B Full result queue @ Bmply result queue O Other
100% = —
o [

80% | H = =
oo ML EE E R B R L
E,Dﬂll."n.._______ - - -
Sﬂﬂlllfn.._______ - - -
-d-['uf'rn"
3{'“.'{:-"
20% -
10% |

0oy, - __I___

Normalized execution time

DCE
DCEv

DCE
DCEw

S5

S35 (32.1%)
DCE

DGEv
55 (22.8%)
DGE vp

55 (23.5%)
DGE vp

SS (0.4%)
SS(11.9%)
SS(13.4%)
DGEv

S 35(10.1%)

parser | twolf | vpr ammp art | equake| swi

3

bzip2 gap goe average

Figure 6. Normalized execution time of DCE, DCE
with value prediction (DCE vp), and slipstreaming
processors (SS).

59

Speculation to Improve Parallel Programs

Computer Architecture:
Speculation (in Parallel Machines)

Prof. Onur Mutlu
Carnegie Mellon University

Speculation to Improve Parallel Programs

Referenced Readings

Herlihy and Moss, “Transactional Memory: Architectural Support for Lock-Free Data
Structures,” ISCA 1993.

Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly Concurrent
Multithreaded Execution,” MICRO 2001.

Martinez and Torrellas, “Speculative Synchronization: Applying Thread-Level Speculation
to Explicitly Parallel Applications,” ASPLOS 2002.

Rajwar and Goodman, “Transactional lock-free execution of lock-based programs,”
ASPLOS 2002.

Suleman et al., “Accelerating Critical Section Execution with Asymmetric Multi-Core
Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

Jensen et al., "A New Approach to Exclusive Data Access in Shared Memory
Multiprocessors,” LLNL Tech Report 1987.

Dice et al., “Early Experience with a Commercial Hardware Transactional Memory
Implementation,” ASPLOS 2009.

Wang et al., “Evaluation of Blue Gene/Q Hardware Support for Transactional Memories,”
PACT 2012.

Jacobi et al., "Transactional Memory Architecture and Implementation for IBM System Z,”
MICRO 2012.

Chung et al., “"ASF: AMD64 Extension for Lock-Free Data Structures and Transactional
Memory,” MICRO 2010.

03

Speculation to Improve Parallel Programs

Goal: reduce the impact of serializing bottlenecks
o Improve performance
o Improve programming ease

Examples

o Herlihy and Moss, “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” ISCA 1993.

o Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution,” MICRO 2001.

o Martinez and Torrellas, “Speculative Synchronization: Applying
Thread-Level Speculation to Explicitly Parallel Applications,” ASPLOS
2002.

o Rajwar and Goodman, "Transactional lock-free execution of lock-
based programs,” ASPLOS 2002.

64

Speculative Loock Elision

Many programs use locks for synchronization
Many locks are not necessary

o Stores occur infrequently during execution
o Updates can occur to disjoint parts of the data structure

Idea:

o Speculatively assume lock is not necessary and execute critical
section without acquiring the lock

a Check for conflicts within the critical section
a Roll back if assumption is incorrect

Rajwar and Goodman, “Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution,” MICRO 2001.

65

Dynamically Unnecessary Synchronization

i) 1.L0OCK({locks->error lock)
2.1f (local errcor > multi-2err multi)
3. multi->err multi = local err;

4 . UNLOCE { locks->arror lock)

b} Thread 1 Thread 2

LOCK({hash tbl.lock)
var = hash tbhl.lookup(X)
1f (lwvar)
hash tbl.add(X});
UNLOCK (hash tbl.lock)
LOCK{hash tbl.lock)
var = hash thbhl.lookup(Y}
i1f [iwvar)
hash tbhl-=add(Y):;
UNLOCK (hash tbl.lock)

Figure 1. Two examples of potential paralielism masked b_‘;:'.
dynamically unnecessary synchronization.

66

Speculative Lock Elision: Issues

Either the entire critical section is committed or none of it

How to detect the lock

How to keep track of dependencies and conflicts in a critical
section

o Read set and write set
How to buffer speculative state

How to check if “"atomicity” is violated
o Dependence violations with another thread

How to support commit and rollback

67

Maintaining Atomicity

If atomicity is maintained, all locks can be removed

Conditions for atomicity:

o Data read is not modified by another thread until critical
section is complete

o Data written is not accessed by another thread until critical
section is complete

If we know the beginning and end of a critical section, we
can monitor the memory addresses read or written to by
the critical section and check for conflicts

o Using the underlying coherence mechanism

68

SLE Implementation

Checkpoint register state before entering SLE mode

In SLE mode:

o Store: Buffer the update in the write buffer (do not make
visible to other processors), request exclusive access

a Store/Load: Set “access” bit for block in the cache

o Trigger misspeculation on some coherence actions
If external invalidation to a block with “access” bit set
If exclusive access to request to a block with “access” bit set

o If not enough buffering space, trigger misspeculation

If end of critical section reached without misspeculation,
commit all writes (needs to appear instantaneous)

09

Accelerated Critical Sections (ACS) vs. SLE

ACS Advantages over SLE
+ Speeds up each individual critical section

+ Keeps shared data and locks in a single cache (improves
shared data and lock locality)

+ Does not incur re-execution overhead since it does not
speculatively execute critical sections in parallel

ACS Disadvantages over SLE

- Needs transfer of private data and control to a large core
(reduces private data locality and incurs overhead)

- Executes non-conflicting critical sections serially
- Large core can reduce parallel throughput (assuming no SMT)

70

ACS vs. SLE (I)

8.2 Hiding the Latency of Critical Sections

Several proposals try to hide the latency of a critical sec-
tion by executing it speculatively with other instances of the
same critical section as long as they do not have data con-
flicts with each other. Examples include transactional mem-
ory (TM) [14], speculative lock elision (SLE) [33], trans-
actional lock removal (TLR) [34], and speculative synchro-
nization (SS) [29]. SLE is a hardware technique that allows
multiple threads to execute the critical sections speculatively
without acquiring the lock. If a data conflict is detected, only
one thread is allowed to complete the critical section while
the remaining threads roll back to the beginning of the crit-
ical section and try again. TLR improves upon SLE by pro-
viding a timestamp-based conflict resolution scheme that en-
ables lock-free execution. ACS is partly orthogonal to these
approaches due to three major reasons:

Suleman et al., “Accelerating Critical Section Execution with Asymmetric Multi-Core
Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

71

ACS vs. SLE (II)

1. TLR/SLE/SS/TM improve performance when the concur-
rently executed instances of the critical sections do not have
data conflicts with each other. In contrast, ACS improves
performance even for critical section instances that have data
conflicts. If data conflicts are frequent, TLR/SLE/SS/TM can
degrade performance by rolling back the speculative execu-
tion of all but one instance to the beginning of the critical
section. In contrast, ACS’s performance is not affected by
data conflicts in critical sections.

2. TLR/SLE/SS/TM amortize critical section latency by con-
currently executing non-conflicting critical sections, but they
do not reduce the latency of each critical section. In contrast,
ACS reduces the execution latency of critical sections.

3. TLR/SLE/SS/TM do not improve locality of lock and
shared data. In contrast, as Section 7.2 showed, ACS 1m-
proves locality of lock and shared data by keeping them in a
single cache.

72

ACS vs. Transactional L.ock Removwval

Figure 13. ACS vs. TLR performance.

73

ACS vs. SLE (Accelerating vs. -

Can you combine both?
How would you combine both?

Can you do better than both?

Fliding Locks)

74

Four Issues in Speculative Parallelization
How to deal with unavailable values: predict vs. wait
How to deal with speculative updates: Logging/buffering
How to detect conflicts

How and when to abort/rollback or commit

Eager vs. lazy approaches are possible for each issue

75

Transactional Memory

Transactional Memory

Idea: Programmer specifies code to be executed atomically
as transactions. Hardware/software guarantees atomicity
for transactions.

Motivated by difficulty of lock-based programming

Motivated by lack of concurrency (performance issues) in
blocking synchronization (or “pessimistic concurrency”)

77

Locking Issues

Locks: objects only one thread can hold at a time
o Organization: lock for each shared structure
o Usage: (block) - acquire - access - release

Correctness issues
o Under-locking > data races
o Acquires in different orders = deadlock

Performance issues

o Conservative serialization

o Overhead of acquiring

o Difficult to find right granularity
o Blocking

L.ocks vs. Transactions

Lock issues: How transactions help:

— Under-locking > data races + Simpler interface/reasoning

— Deadlock due to lock ordering + No ordering

— Blocking synchronization + Nonblocking (Abort on conflict)
— Conservative serialization + Serialization only on conflicts

Locks = pessimistic concurrency
Transactions - optimistic concurrency

79

Transactional Memory

Transactional Memory (TM) allows arbitrary multiple memory
locations to be updated atomically (all or none)

Basic Mechanisms:

o Isolation and conflict management: Track read/writes per
transaction, detect when a conflict occurs between transactions

o Version management: Record new/old values (where?)

o Atomicity: Commit new values or abort back to old values - all
or none semantics of a transaction

Issues the same as other speculative parallelization schemes
o Logging/buffering

o Conflict detection

a Abort/rollback or commit

80

Four Issues in Transactional Memory
How to deal with unavailable values: predict vs. wait
How to deal with speculative updates: logging/buffering
How to detect conflicts: lazy vs. eager

How and when to abort/rollback or commit

81

Many Variations ot TM

Software (STM)

-- High performance overhead (e.g., tracking read and write sets)
++ No virtualization issues

Hardware (HTM)

-- Need support for virtualization
What if buffering is not enough?
Context switches, I/O within transactions?

++ Low performance overhead

Hybrid HW/SW
o HTM when buffering is enough and no I/O or context switch
o Switch to STM to handle long transactions and buffer overflows

82

Initial TM Ideas

Load Linked Store Conditional Operations [Jensen+, LLNL 1987]

Q

Q

Lock-free atomic update of a single cache line

Used to implement non-blocking synchronization
Alpha, MIPS, ARM, PowerPC

Load-linked returns current value of a location

A subsequent store-conditional to the same memory location will
store a new value only if no updates have occurred to the
location

Herliny and Moss [Herlihy and Moss, ISCA 1993]

Q

Q

Instructions explicitly identify transactional loads and stores
Used dedicated transaction cache for buffering

a Size of transactions limited to transaction cache

83

Herlihy and Moss, ISCA 1993

Our transactions are intended to replace short critical sec-
tions. For example, a lock-free data structure would typ-
ically be implemented in the following stylized way (see
Section 5 for specific examples). Instead of acquring a
lock, executing the critical section, and releasing the lock,
a process would:

1

"

use LT or LTX to read from a set of locations,

nse VALIDATE to check that the values read are consis-
tent,

. use ST to modify a set of locations, and

. use COMMIT to make the changes permanent. If either

the VALIDATE or the COMMIT fails, the process returns
to Step (1).

84

Current Implementations of TM/SLE
Sun ROCK

o Dice et al., “Early Experience with a Commercial Hardware Transactional
Memory Implementation,” ASPLOS 2009.

IBM Blue Gene

o Wang et al., "Evaluation of Blue Gene/Q Hardware Support for Transactional
Memories,” PACT 2012.

IBM System z: Two types of transactions

o Best effort transactions: Programmer responsible for aborts
o Guaranteed transactions are subject to many limitations

o Jacobi et al., "Transactional Memory Architecture and Implementation for
IBM System Z,” MICRO 2012,

Intel Haswell

AMD

o Chung et al., "ASF: AMD64 Extension for Lock-Free Data Structures and
Transactional Memory,” MICRO 2010.

85

Some TM Research Issues

Scalability
o Conflict and version management

Complexity
o How to virtualize transactions (without much complexity)

Ensure long transactions execute correctly
In the presence of context switches, paging

o Handling I/O within transactions
o Hardware complexity

Semantics of nested transactions (more of a
language/programming research topic)

Does TM increase programmer productivity?

o Does the programmer need to optimize transactions?
86

Computer Architecture:
Speculation (in Parallel Machines)

Prof. Onur Mutlu
Carnegie Mellon University

Backup slides

