Bias in Word Embeddings

Caleb Kaiji Lu Class 18739 Spring 2019

Agenda

- Recap on word embeddings
- Bias in word embeddings
 - 3 metrics for quantifying embedding stereotypes [Bolukabasi et. al, 2016]
- Debiasing algorithms [Bolukabasi et. al, 2016]
- Embedding as a lens to study history [Garg et al, 2018]

Previously: Word Embedding is a Dictionary

find v's to $\max \log P(chasing|dog) + \log P(cat|dog)$ where $P(cat|dog) \propto \exp(v_{cat} \cdot v_{dog})$

Previously: Word Embedding

- Word embedding captures relationships among words
 - Semantic relationship: *woman:man::queen:king*
 - Syntactic relationship: *they: their:: he:his*
 - More complicated knowledge-base like relationship:
 - Beijing:China :: Paris: France
 - Standard metric to evaluate a word embedding

Word Embeddings Also Capture Bias [Bolukabasi, 16]

- Man: King :: Woman:Queen
- Paris: France :: Tokyo:Japan
- He:Brother :: She:
- He:Blue :: She
- He:Doctor :: She:
- He:Realist :: She:
- She:Pregnancy :: He:
- She:Baking::He:
- She:Blonde::He:
- He:Computer :: She:

Word Embeddings Also Capture Bias [Bolukabasi, 16]

- He: Computer Programmer :: She: Homemaker
 - Equivalent to having a biased dictionary:

nurse ('nərs) 1. A *woman* trained to care for the sick or infirm, especially in a hospital. computer programmer (kəmˈpjuːtə 'prəʊgræmə) 1. A *man* who writes programs for the operation of computers, especially as an occupation.

Bias in Downstream Applications: Machine Translation

7

- Metric 1: Occupations
 - 327 gender neutral occupations. Project on to *she—he* direction

Crowdworkers rate each occup. for gender stereotype

 $Corr(projection_{she-he}, crowd rating) = 0.51$

Consistency of embedding stereotype

GloVe trained on web crawl

Each dot is an occupation; Spearman = 0.8

word2vec trained on Google news

- Metric 2: Analogies
 - Automatically generate he : x :: she : y analogies.

 $\min \cos(\mathsf{he} - \mathsf{she}, \mathbf{x} - \mathbf{y})$ such that $||\mathbf{x} - \mathbf{y}||_2 < \delta$

- Metric 2: Analogies
 - Automatically generate he : x :: she : y analogies.

- Metric 3: Indirect Bias
 - Gender stereotype could affect the geometry between words that should be gender-neutral.
 - Project occupations onto softball—football axis.

The Geometry of Gender

The Geometry of Gender

Principal Component Analysis

- Principal Components (PC) are orthogonal directions that capture most of the variance in the data.
 - 1st PC direction of greatest variability in data
 - 2nd PC Next orthogonal (uncorrelated) direction of greatest variability (remove all variability in first direction, then find next direction of greatest variability)
 - And so on...

Geometry of Gender

The top PC seems to capture the gender subspace B.

Debiasing Algorithm (Hard-debiased)

- Identify words that are gender neutral N and gender-definitional S
- Project away the gender subspace from the gender-neutral words
 - w := w-w.B B is the gender subspace
- Normalize vectors

Identify gender-definitional words

Projecting away gender component

Projecting away gender component

Projecting away gender component

Advanced debiasing (soft debiasing)

• Find a linear transformation *T* of the gender- neutral words to reduce the gender component while not moving the words too much.

$$\begin{split} W &= \text{matrix of all word vectors.} \\ N &= \text{matrix of neutral word vectors.} \\ \min_{T} || (TW)^{T} (TW) - W^{T} W ||_{F}^{2} + \lambda || (TN)^{T} (TB) ||_{F}^{2} \\ \text{don't move too} \\ \text{much} \\ \end{split}$$

Debiasing results: indirect bias

Debiasing result analogies

Debiasing result: Appropriate Analogies

	RG	WS	analogy
Before Hard-debiased	$\begin{array}{c} 62.3 \\ 62.4 \end{array}$	$54.5 \\ 54.1$	57.0 57.0

- He:King :: She:Queen
- He:Doctor::She:Doctor

Natural Questions

- Does mitigating bias in word embeddings also mitigate bias in the downstream tasks?
- Does mitigating bias in word embeddings impact the performance of the downstream tasks?
- To be answered in a later lecture

Summary

- Geometry of word embedding captures bias
 - Who's responsible: data, algorithm or user?
- Can effective debias algorithms for sensitive applications

Thanks!

• References

• Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. NIPS'16