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Agenda

• Recap	on	word	embeddings
• Bias	in	word	embeddings

• 3	metrics	 for	quantifying	embedding	 stereotypes	 [Bolukabasi et.	al,	2016]

• Debiasing algorithms	[Bolukabasi et.	al,	2016]
• Embedding	as	a	lens	to	study	history	[Garg et	al,	2018]



Previously:	Word	Embedding	 is	a	Dictionary



Previously:	Word	Embedding

• Word	embedding	captures	relationships	among	words	
• Semantic	 relationship:	woman:man::queen:king
• Syntactic	relationship:	 they:	their::	he:his
• More	complicated	 knowledge-base	 like	relationship:

• Beijing:China ::	Paris:	France
• Standard	metric	to	evaluate	a	word	embedding

man
woman

queen king
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Word	Embeddings Also	Capture	Bias [Bolukabasi,	16]

• Man:	King	::	Woman:Queen
• Paris:	France	::	Tokyo:Japan

• He:Brother ::	She:	Sister
• He:Blue ::	She:Pink
• He:Doctor ::	She:Nurse
• He:Realist ::	She:Feminist
• She:Pregnancy ::	He:Kidney Stone
• She:Baking::He:Roasting
• She:Blonde::He:Blond
• He:Computer ::	She:	Homemaker



Word	Embeddings Also	Capture	Bias [Bolukabasi,	16]

• He:	Computer	Programmer	::	She:	Homemaker
• Equivalent	 to	having	a	biased dictionary:
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nurse ('nərs)	
1.	A	woman trained	to	care	for	the	 sick	or	
infirm,	 especially	 in	a	hospital.

computer	 programmer	 (kəmˈpjuːtə
ˈprəʊɡræmə)
1.	A	man who	writes	programs	 for	the	
operation	 of	computers,	 especially	 as	an	
occupation.



Bias	in	Downstream	Applications:	Machine	
Translation
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Metrics	to	Quantify	Gender	bias	in	WE

• Metric	1:	Occupations
• 327	gender	neutral	occupations.	 Project	on	to	she—he	direction



Consistency	of	embedding	stereotype	



Metrics	to	Quantify	Gender	bias	in	WE

• Metric	2:	Analogies
• Automatically	 generate	he	:	x	::	she	:	y	analogies.	



Metrics	to	Quantify	Gender	bias	in	WE

• Metric	2:	Analogies
• Automatically	 generate	he	:	x	::	she	:	y	analogies.	



Metrics	to	Quantify	Gender	bias	in	WE

• Metric	3:	Indirect	Bias
• Gender	stereotype	 could	affect	the	geometry	between	words	that	should	be	
gender-neutral.

• Project	occupations	 onto	softball—football	 axis.	



The	Geometry	of	Gender
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The	Geometry	of	Gender
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Principal	Component	Analysis

• Principal	Components	(PC)	are	
orthogonal	directions	that	capture	
most	of	the	variance	in	the	data.
• 1st PC	– direction	 of	greatest	variability	
in	data

• 2nd PC	– Next	 orthogonal	
(uncorrelated)	direction	 of	greatest	
variability	(remove	all	variability	 in	first	
direction,	then	find	next	direction	of	
greatest	variability)

• And	so	on…



Geometry	of	Gender



Debiasing Algorithm	(Hard-debiased)

• Identify	words	that	are	gender	neutral	N	and	gender-definitional	S
• Project	away	the	gender	subspace	from	the	gender-neutral	words

• w :=	w- w.B B	is	the	gender	subspace

• Normalize	vectors



Identify	gender-definitional	words	



Projecting	away	gender	component



Projecting	away	gender	component



Projecting	away	gender	component	



Advanced	debiasing (soft	debiasing)

• Find	a	linear	transformation	T	of	the	gender- neutral	words	to	reduce	
the	gender	component	while	not	moving	the	words	too	much.	



Debiasing results:	indirect	bias



Debiasing results:	indirect	bias	



Debiasing result	analogies



Debiasing result:	Appropriate	Analogies

• He:King ::	She:Queen
• He:Doctor::She:Doctor



Natural	Questions

• Does	mitigating	bias	in	word	embeddings also	mitigate	bias	in	the	
downstream	tasks?
• Does	mitigating	bias	in	word	embeddings impact	the	performance	of	
the	downstream	tasks?
• To	be	answered	in	a	later	lecture



Summary

• Geometry	of	word	embedding	captures	bias	
• Who’s	responsible:	 data,	algorithm	or	user?	

• Can	effective	debias algorithms	for	sensitive	applications



Thanks!

• References
• Man	is	to	computer	programmer	as	woman	is	to	homemaker?	Debiasing
word	embeddings.	NIPS’16	


