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Threat: Data Privacy

Training Learning Trained
Data Algorithm Model

2N y
E/a‘-—xlnpuf/

(Icopyll Of
training data

Output




Threat: Data Privacy (black-box)
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Threat: Data Privacy (white-box)
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Inference Attacks
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Example

Non-sensitive Model predicting non-
information of patients sensitive target, e.g.,
with sensitive condition X height of patient
- —)

Bob was in training set
(has condition X)
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Membership
inference
Adversary learns Bob
has condition X



Why do We Care About Membership
Inference?

* Membership itself may be sensitive information (asin example)

* Ability to perform membership inference suggests leakage of
(potentially sensitive) training data information

* Membership inference vulnerability linked to overfitting,
generalization
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Membership Inference

* Uiverse, U, of points, (x,y), of features (x) and labels (y € [C]),
distributed according to distribution, 8~.

* Trainingset, S, of N points drawn from 6~.
* (x,y) drawn from the training set: (x, y) chosen uniformly at random from

the elements of S.
* (x,y) drawn from the general population (or test set): (x,y) drawn directly

from 0*.
* Target model, g, learned by algorithm, A, which takes a training set
and produces a model.



Membership Inference: Threat Models

* Black-box: adversary has black-box access to g, i.e., given features, x,
the adversarycan obtain y = g(x).
* Adversary doesn’t have access to weights or internal activations.
* Typically, we do assume adversary has access to A.
* We also assume adversary has access to some set of points, S, also drawn
from 8 (but disjoint from S).
* White-box: adversary additionally has access to the internals of g,
e.g., weights and biases.



Membership Inference

* Draw a point, (x,y), with 12 probability from the training set, and
with 72 probability from the general population.

* Adversary predicts 1 ((x,y) was a training point) or 1 ((x, y) was not
a training point).

* Advantage: true positive rate — false positive rate, or
equivalently, 2(accuracy — %2).
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Membership Inference & Overfitting

Intuitively, overfitting can lead to membership inference vulnerability.
Suppose we have an overfit target model, g, that gets 90% training
accuracy and 75% test accuracy.

How might we attack this model?



Naive Attack

* If y = y, predict 1, else predict 0. In other words we assume correctly
classified points are training members, and incorrectly classified
points are not.

* Advantage: train accuracy — test accuracy.

 Surprisingly, this attack is quite effective, i.e., compares similarly to
more sophisticated attacks.



What’s Wrong with the Naive Attack?

 High false positive rate (bad precision)
* Doesn’t quantify confidence in inference



Overview

* Overview of Privacy Attacks
* Membership Inference

e Black-box Attacks
* Naive
e Shadow Models
* Mitigation



Shadow Model Approach [1]

* |[dea: frame membership inference as supervised learning problem.

* We would like to train an attack model, m, that, given an instance,
predicts whether the instance is a training point or not.
* Features: outputs of the model on the given instance, y = §(x).
* Learn one attack model, m”, for each trueclass, y € [(].

How can we obtain labels to train each m”>?



Shadow Model Approach

* Traina shadow model, g, on a subset of 5, fin, that is made to mirror
g (i.e., itis trained with A).

* We know the exact training data used for g, therefore we can
construct labels:
e Label g(x) with 1 for x € S;,,
* Label §(x) with 0 for x € S\S;,,
* We assume that the patterns foundin the outputs of g will apply to
membership the same way on g.



Illustration
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Additions/Optimizations

* We can train multiple shadow models using different random splits of
S to increase the size of our training set for m.

* Shokriet al. [1] also include the one-hot encoding of y as input.
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How Might we Mitigate Information Leakage?

wewill also see that well-generalized
«= models can still be vulnerable to Ml

* Decrease generalization error & attacks
e Regularization
- Dropout E e, 10T $hOWN 10 be highly effective

* Add noise during training
* Train using differentially-private algorithm

gives a provable guarantee against
mewbership inference



Differential Privacy

Let € be a positive real number, and A be a randomized algorithm that
takes a datasetas input and outputs a model. A is e-differentially
private if, for all datasets D; and D, that differ on a single instance, and
all § € image (A), some set of particular models

PrlA(D,) € S]‘S/egPr[cfl (DZE‘S]

probability of A producing a probability of <A producing a model
modelin S when x isincluded in S when x is replaced with x’

Intuition: we have some instance x € D; and we would like to ensure that

the probability of A producing a particular model (or set of models) is not
increased by more than a factor of e when the dataset contains x as when x

is replaced by some x'.




Differential Privacy Guarantee

An adversary attacking target model, g, trained with an e-differentially
private algorithm, can achieve an advantage of at most

et —1



Drawbacks of Differential Privacy

* In order to get a good guarantee, € must be small.

* Differentially-private training tends to hurt model performance, often
significantly — performanceis worse the smaller ¢ is.

* In practice people use a large € (e.g., Apple has used € = 16), losing
the theoretical guarantee.
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