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Threat:	Data	Privacy
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Threat:	Data	Privacy	(black-box)
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Threat:	Data	Privacy	(white-box)
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Inference	Attacks
Sensitive	Data

Inference
Attack

Inference

Model

Training

What does accessing the model tell 
us about the sensit ive training data?

Given	instance,	
(x,y),	was	(x,y)	
a	training	point	
or	not?



Example

Non-sensitive	
information	of	patients	
with	sensitive	condition	X

Model	predicting	non-
sensitive	 target,	e.g.,	
height	of	patient

Bob	was	in	training	set	
(has	condition	X)

Membership	
inference

Adversary	learns	Bob	
has	condition	X



Why	do	We	Care	About	Membership	
Inference?
• Membership	itself	may	be	sensitive	information	(as	in	example)
• Ability	to	perform	membership	inference	suggests	leakage	of	
(potentially	sensitive)	training	data	information
• Membership	inference	vulnerability	linked	to	overfitting,	
generalization
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Membership	Inference

• Uiverse,	𝑈,	of	points,	(𝑥, 𝑦),	of	features	(𝑥)	and	labels	(𝑦 ∈ [𝐶]),	
distributed	according	to	distribution,	𝜃∗.
• Training	set,	𝑆,	of	𝑁 points	drawn	from	𝜃∗.

• (𝑥, 𝑦) drawn	from	the	training	set:	(𝑥, 𝑦) chosen	uniformly	at	random	from	
the	elements	 of	𝑆.
• (𝑥, 𝑦) drawn	from	the	general	population	(or	test	set):	(𝑥, 𝑦) drawn	directly	
from	𝜃∗.

• Target	model,	𝑔0,	learned	by	algorithm,	𝒜,	which	takes	a	training	set	
and	produces	a	model.



Membership	Inference:	Threat	Models

• Black-box:	adversary	has	black-box	access	to	𝑔0,	i.e.,	given	features,	𝑥,	
the	adversary	can	obtain	𝑦0 = 𝑔0(𝑥).
• Adversary	doesn’t	have	access	to	weights	or	internal	activations.
• Typically,	we	do	assume	adversary	has	access	to	𝒜.
• We	also	assume	adversary	has	access	to	some	set	of	points,	𝑆3,	also	drawn	
from	𝜃∗ (but	disjoint	from	𝑆).

• White-box:	adversary	additionally	has	access	to	the	internals	of	𝑔0,	
e.g.,	weights	and	biases.



Membership	Inference

• Draw	a	point,	(𝑥, 𝑦),	with	½	probability	from	the	training	set,	and	
with	½ probability	from	the	general	population.
• Adversary	predicts	1 ((𝑥, 𝑦) was	a	training	point)	or	1 ((𝑥, 𝑦) was	not	
a	training	point).
• Advantage:	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒	 − 𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒,	or	
equivalently,		2(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 −½).
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Membership	Inference	&	Overfitting

Intuitively,	overfitting	can	lead	to	membership	inference	vulnerability.	
Suppose	we	have	an	overfit	target	model,	𝑔0,	that	gets	90%	training	
accuracy	and	75%	test	accuracy.

How	might	we	attack	this	model?



Naïve	Attack

• If	𝑦0 = 𝑦,	predict	1,	else	predict	0.	In	other	words	we	assume	correctly	
classified	points	are	training	members,	and	incorrectly	classified	
points	are	not.
• Advantage:	𝑡𝑟𝑎𝑖𝑛	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 − 𝑡𝑒𝑠𝑡	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 .
• Surprisingly,	this	attack	is	quite	effective,	i.e.,	compares	similarly	to	
more	sophisticated	attacks.



What’s	Wrong	with	the	Naïve	Attack?

• High	false	positive	rate	(bad	precision)
• Doesn’t	quantify	confidence	in	inference
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Shadow	Model	Approach	[1]

• Idea:	frame	membership	inference	as	supervised	learning	problem.
• We	would	like	to	train	an	attack	model,	𝑚,	that,	given	an	instance,	
predicts	whether	the	instance	is	a	training	point	or	not.
• Features:	outputs	of	the	model	on	the	given	instance,	𝑦0 = 𝑔0(𝑥).
• Learn	one	attack	model,	𝑚I,	for	each	true	class,	y ∈ [𝐶].

How	can	we	obtain	labels	to	train	each	𝑚I?



Shadow	Model	Approach

• Train	a	shadow	model,	𝑔K, on	a	subset	of	𝑆3,	𝑆3LM,	that	is	made	to	mirror	
𝑔0 (i.e.,	it	is	trained	with	𝒜).
• We	know	the	exact	training	data	used	for	𝑔K,	therefore	we	can	
construct	labels:
• Label	𝑔K(𝑥) with	1 for	𝑥 ∈ 𝑆3LM
• Label	𝑔K(𝑥) with	0 for	𝑥 ∈ 𝑆3\𝑆3LM

• We	assume	that	the	patterns	found	in	the	outputs	of	𝑔K will	apply	to	
membership	the	same	way	on	𝑔0.



Illustration

𝑆3

𝑆3LM

𝑆3OPQ

Label	“1”

Label	“0”

𝑔K
Train	shadow	model

Feed	to	𝑔K

𝑔K(𝑆3LM)

𝑔K(𝑆3OPQ)

𝑚

Train	attack	
model

(do	this	for	each	class)



Additions/Optimizations

• We	can	train	multiple	shadow	models	using	different	random	splits	of	
𝑆3 to	increase	the	size	of	our	training	set	for	𝑚.
• Shokri	et	al.	[1]	also	include	the	one-hot	encoding	of	𝑦 as	input.
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How	Might	we	Mitigate	Information	Leakage?

• Decrease	generalization	error
• Regularization
• Dropout

• Add	noise	during	training
• Train	using	differentially-private	algorithm

not shown to be highly effect ive

we will also see that well-generalized 
models can still be vu lnerable to MI 
attacks

gives a provable guarantee against 
membership inference



Differential	Privacy

Let	𝜀 be	a	positive	real	number,	and	𝒜 be	a	randomized	algorithm	that	
takes	a	dataset	as	input	and	outputs	a	model.	𝒜	 is	𝜀-differentially	
private	if,	for	all	datasets	𝐷T and	𝐷U that	differ	on	a	single	instance,	and	
all	𝑆 ⊆ 𝑖𝑚𝑎𝑔𝑒(𝒜),

Pr 𝒜 𝐷T ∈ 𝑆 ≤ 𝑒ZPr	[𝒜(𝐷U) ∈ 𝑆]

Intuition:	we	have	some	instance	𝑥 ∈ 𝐷T and	we	would	like	to	ensure	that	
the	probability	of	𝒜 producing	a	particular	model	(or	set	of	models)	is	not	
increased	by	more	than	a	factor	of	𝑒Z when	the	dataset	contains	𝑥 as	when	𝑥
is	replaced	by	some	𝑥′.	

probability of 𝒜 producing a model 
in 𝑆 when 𝑥 is replaced with 𝑥′

probability of 𝒜 producing a 
model in 𝑆 when 𝑥 is included 

some set of particu lar models



Differential	Privacy	Guarantee

An	adversary	attacking	target	model,	𝑔0,	trained	with	an	𝜀-differentially	
private	algorithm,	can	achieve	an	advantage	of	at	most	

𝑒Z − 1



Drawbacks	of	Differential	Privacy

• In	order	to	get	a	good	guarantee,	𝜀 must	be	small.
• Differentially-private	training	tends	to	hurt	model	performance,	often	
significantly	– performance	is	worse	the	smaller	𝜀 is.
• In	practice	people	use	a	large	𝜀 (e.g.,	Apple	has	used	𝜀 = 16),	losing	
the	theoretical	guarantee.
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