Security and Fairness of Deep Learning

Second-Order Optimization Methods

Anupam Datta

CMU

Spring 2019

Key insight

Leverage second-order derivatives (gradient) in addition to first-order derivatives to converge faster to minima

Newton's method for convex functions

- Iterative update of model parameters like gradient descent
- Key update step

$$
x^{k+1}=x^{k}-H\left(x^{k}\right)^{-1}>f\left(x^{k}\right)
$$

- Compare with gradient descent

$$
x^{k+1}=x^{k}-\eta^{k} \nabla f\left(x^{k}\right)
$$

In two steps

- Function of single variable
- Function of multiple variables

Derivative at minima

Turning Points

- Both maxima and minima have zero derivative
- Both are turning points

Derivatives of a curve

- Both maxima and minima are turning points
- Both maxima and minima have zero derivative

Derivative of the derivative of the curve

- The second derivative $f^{\prime \prime}(x)$ is -ve at maxima and +ve at minima

Summary

- All locations with zero derivative are critical points
- The second derivative is
- ≥ 0 at minima
- ≤ 0 at maxima
- Zero at inflection points

In two steps

- Function of single variable
- Function of multiple variables

Gradient of function with multi-variate inputs

- Consider $f(X)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- $\nabla f(X)=\left[\begin{array}{llll}\frac{\partial f(X)}{\partial x_{1}} & \frac{\partial f(X)}{\partial x_{2}} & \cdots & \frac{\partial f(X)}{\partial x_{n}}\end{array}\right]$

Note: Scalar function of multiple variables

The Hessian

- The Hessian of a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

$$
\nabla^{2} f\left(x_{1}, \ldots, x_{n}\right):=\left[\begin{array}{ccccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdot & \cdot & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdot & \cdot & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdot & & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Unconstrained minimization of multivariate function

1. Solve for the X where the gradient equation equals to zero

$$
\nabla f(X)=0
$$

2. Compute the Hessian Matrix $\nabla^{2} f(X)$ at the candidate solution and verify that

- Hessian is positive definite (eigenvalues positive) $->$ to identify local minima
- Hessian is negative definite (eigenvalues negative) -> to identify local maxima

Catch

- Closed form solutions not always available
- Instead use an iterative refinement approach
- (Stochastic) gradient descent makes use of first-order derivatives (gradient)
- Can we do better with second-order derivatives (Hessian)?

Newton's method for convex functions

- Iterative update of model parameters like gradient descent
- Key update step

$$
x^{k+1}=x^{k}-H\left(x^{k}\right)^{-1}>f\left(x^{k}\right)
$$

- Compare with gradient descent

$$
x^{k+1}=x^{k}-\eta^{k} \nabla f\left(x^{k}\right)
$$

Taylor series

The Taylor series of a function $f(x)$ that is infinitely differentiable at the point a is the power series

$$
f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots .
$$

Taylor series second-order approximation

The Taylor series second-order approximation of a function $f(x)$ that is infinitely differentiable at the point a is

$$
f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Local minimum of Taylor series second-order approximation

$$
\begin{gathered}
f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2} \\
x_{m}=a-\frac{1}{f^{\prime \prime}(a)} f^{\prime}(a) \text { if } f^{\prime \prime}(a)>0
\end{gathered}
$$

Newton's method approach

Take step to local minima of second-order Taylor approximation of loss function

Example

Murphy, Machine Learning, Fig 8.4

Taylor series second-order approximation for multivariate function

$$
\begin{gathered}
f(a)+\nabla f(a)(x-a)+\frac{1}{2} \nabla f^{2}(a)(x-a)^{2} \\
f\left(x^{k}\right)+\nabla f\left(x^{k}\right)+\frac{1}{2} H\left(x^{k}\right)\left(x-x^{k}\right)^{2}
\end{gathered}
$$

Deriving update rule

Local minima of this function

$$
f\left(x^{k}\right)+\nabla f\left(x^{k}\right)+\frac{1}{2} H\left(x^{k}\right)\left(x-x^{k}\right)^{2}
$$

is

$$
x=x^{k}-H\left(x^{k}\right)^{-1} \nabla f\left(x^{k}\right)
$$

Weakness of Newton's method (1)

- Appropriate when function is strictly convex
- Hessian always positive definite

Murphy, Machine Learning, Fig 8.4

Weakness of Newton's method (2)

- Computing inverse Hessian explicitly is too expensive
- $\mathrm{O}\left(\mathrm{k}^{\wedge} 3\right)$ if there are k model parameters: inverting a kx k matrix

Quasi-Newton methods address weakness

- Iteratively build up approximation to the Hessian
- Popular method for training deep networks
- Limited memory BFGS (L-BFGS)
- Will discuss in a later lecture

Acknowledgment

Based in part on material from CMU 11-785

Example

- Minimize

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}\right)^{2}+x_{1}\left(1-x_{2}\right)-\left(x_{2}\right)^{2}-x_{2} x_{3}+\left(x_{3}\right)^{2}+x_{3}
$$

- Gradient

$$
\nabla f=\left[\begin{array}{c}
2 x_{1}+1-x_{2} \\
-x_{1}+2 x_{2}-x_{3} \\
-x_{2}+2 x_{3}+1
\end{array}\right]^{T}
$$

Example

- Set the gradient to null

$$
\nabla f=0 \Rightarrow\left[\begin{array}{c}
2 x_{1}+1-x_{2} \\
-x_{1}+2 x_{2}-x_{3} \\
-x_{2}+2 x_{3}+1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- Solving the 3 equations system with 3 unknowns

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right]
$$

Example

- Compute the Hessian matrix $\nabla^{2} f=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$
- Evaluate the eigenvalues of the Hessian matrix

$$
\lambda_{1}=3.414, \lambda_{2}=0.586, \lambda_{3}=2
$$

- All the eigenvalues are positive $=>$ the Hessian matrix is positive definite
- This point is a minimum

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right]
$$

