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Key	insight

Leverage	second-order	derivatives	(gradient)	in	addition	to	first-order	
derivatives	to	converge	faster	to	minima	



Newton’s	method	for	convex	functions

• Iterative	update	of	model	parameters	like	gradient	descent

• Key	update	step

• Compare	with	gradient	descent

x
k+1 = x

k �H(xk)�1 5 f(xk)

xk+1 = xk � ⌘k 5 f(xk)



In	two	steps

• Function	of	single	variable
• Function	of	multiple	variables



Derivative	at	minima

x

f(x)
𝑑𝑦
𝑑𝑥 = 0



Turning	Points

• Both	maxima	and	minima	have	zero	derivative

• Both	are	turning	points
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Derivatives	of	a	curve

• Both	maxima	and	minima	are	turning	points

• Both	maxima	and	minima	have	zero	derivative
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xf(x)
f’(x)



Derivative	of	the	derivative	of	the	curve

• The	second	derivative	f’’(x)	is	–ve at	maxima	and	+ve at	minima
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Summary
• All	locations	with	zero	
derivative	are	critical	points

• The	second	derivative	is	
• ≥ 0 at	minima

• ≤ 0 at	maxima

• Zero	at	inflection	points
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In	two	steps

• Function	of	single	variable
• Function	of	multiple	variables



Gradient	of	function	with	multi-variate	inputs

•Consider	𝑓 𝑋 = 𝑓 𝑥-, 𝑥+, … , 𝑥0

•𝛻𝑓(𝑋) = 34 5
367

34 5
368

⋯ 34 5
36:

Note:	Scalar	function	of	multiple	variables	



The	Hessian

• The	Hessian	of	a	function	𝑓(𝑥-, 𝑥+, … , 𝑥0)
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Unconstrained	minimization	of	multivariate	
function
1. Solve	for	the	𝑋 where	the	gradient	equation	equals	to	zero

2. Compute	the	Hessian	Matrix	𝛻+𝑓(𝑋) at	the	candidate	solution	and	
verify	that
• Hessian	 is	positive	definite	(eigenvalues	positive)		->	to	identify	local	minima	
• Hessian	 is	negative	definite	(eigenvalues	negative)	->	to	identify	local	

maxima
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Catch

• Closed	form	solutions	not	always	available

• Instead	use	an	iterative	refinement	approach
• (Stochastic)	gradient	descent	makes	use	of	first-order	derivatives	(gradient)
• Can	we	do	better	with	second-order	derivatives	(Hessian)?



Newton’s	method	for	convex	functions

• Iterative	update	of	model	parameters	like	gradient	descent

• Key	update	step

• Compare	with	gradient	descent

x
k+1 = x

k �H(xk)�1 5 f(xk)

xk+1 = xk � ⌘k 5 f(xk)



Taylor	series	

The	Taylor	series	of	a function f (x) that	is infinitely	differentiable at	the	
point a is	the power	series



Taylor	series	second-order	approximation	

f(a) + f 0(a)(x� a) +
1

2
f 00(a)(x� a)2

The	Taylor	series	second-order	approximation	of	a function f (x) that	
is infinitely	differentiable at	the	point a is



Local	minimum	of	Taylor	series	second-order	
approximation	

f(a) + f 0(a)(x� a) +
1

2
f 00(a)(x� a)2

xm = a� 1

f 00(a)
f 0(a) if f 00(a) > 0



Newton’s	method	approach

Take	step	to	local	minima	of	second-order	Taylor	approximation	of	loss	
function



Example

Murphy,	 Machine	Learning,	 Fig	8.4



Taylor	series	second-order	approximation	for	
multivariate	function	

f(a) +5f(a)(x� a) +
1

2
5 f2(a)(x� a)2

f(xk) +5f(xk) +
1

2
H(xk)(x� x

k)2



Deriving	update	rule

Local	minima	of	this	function

is	

x = x
k �H(xk)�1 5 f(xk)

f(xk) +5f(xk) +
1

2
H(xk)(x� x

k)2



Weakness	of	Newton’s	method	(1)

• Appropriate	when	function	is	strictly	convex
• Hessian	always	positive	definite	

Murphy,	 Machine	Learning,	 Fig	8.4



Weakness	of	Newton’s	method	(2)

• Computing	inverse	Hessian	explicitly	is	too	expensive
• O(k^3)	if	there	are	k	model	parameters:	inverting	a	k	x	k	matrix



Quasi-Newton	methods	address	weakness

• Iteratively	build	up	approximation	to	the	Hessian

• Popular	method	for	training	deep	networks
• Limited	memory	BFGS	(L-BFGS)
• Will	discuss	 in	a	later	lecture
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Example

• Minimize

• Gradient	
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Example

• Set	the	gradient	to	null

• Solving	the	3	equations	system	with	3	unknowns
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Example

• Compute	the	Hessian	matrix

• Evaluate	the	eigenvalues	of	the	Hessian	matrix

• All	the	eigenvalues	are	positive	=>	the	Hessian	matrix	is	positive	
definite

• This	point	is	a	minimum
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