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Key insight

Leverage second-order derivatives (gradient) in addition to first-order
derivatives to converge faster to minima



Newton’s method for convex functions

* [terative update of model parameters like gradient descent

* Key update step

it = ok — f(z"*)

* Compare with gradient descent
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In two steps

* Function of single variable

* Function of multiple variables



Derivative at minima
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Turning Points
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* Both maxima and minima have zero derivative

* Both are turning points



Derivatives of a curve
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* Both maxima and minima are turning points

* Both maxima and minima have zero derivative



Derivative of the derivative of the curve
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* The second derivative f”(x) is —ve at maxima and +ve at minima



Summary
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1o All locations with zero

derivative are critical points

~1* The second derivative is

e > (0 at minima
e < (0 at maxima

e Zero at inflection points



In two steps

* Function of single variable

* Function of multiple variables



Gradient of function with multi-variate inputs
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Note: Scalar function of multiple variables



The Hessian

* The Hessian of a function f (x4, x3, ..., X5)
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Unconstrained minimization of multivariate
function

1. Solve forthe X where the gradient equation equals to zero

VIi(X)=0

2. Compute the Hessian Matrix V2 f(X) at the candidate solution and
verify that

* Hessian is positive definite (eigenvalues positive) ->to identify local minima

* Hessian is negative definite (eigenvalues negative) -> to identify local
maxima




Catch

* Closed form solutions not always available

* Instead use an iterative refinementapproach
* (Stochastic) gradient descent makes use of first-order derivatives (gradient)
* Can we do better with second-order derivatives (Hessian)?



Newton’s method for convex functions

* [terative update of model parameters like gradient descent

* Key update step

it = ok — f(z"*)

* Compare with gradient descent
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Taylor series

The Taylor series of a function f (x) that is infinitely differentiable at the
pointa is the power series
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Taylor series second-order approximation

The Taylor series second-order approximation of a function f(x) that
is infinitely differentiable at the point a is



Local minimum of Taylor series second-order
approximation

f(a) + (a)(w — @) + 5 f"(a)(x — a)

1
(@)

f'(a) if f"(a) > 0
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Newton’s method approach

Take step to local minima of second-order Taylor approximation of loss
function



Example
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Murphy, Machine Learning, Fig 8.4



Taylor series second-order approximation for
multivariate function

f(a) + VH (@)@~ a) + 5 7 f(a)(z —a)

Fah) + 9 f(ah) + S H ) - ah)?



Deriving update rule

Local minima of this function

Fa) + TF ) + S H) (@ - o+

r=2"—H(z")"' v f(z")



Weakness of Newton’s method (1)

* Appropriate when function is strictly convex
* Hessian always positive definite

s (X))

- -fquad(x)

Murphy, Machine Learning, Fig 8.4



Weakness of Newton’s method (2)

 Computinginverse Hessian explicitly is too expensive
* O(k~"3)if there are k model parameters: inverting a k x k matrix



Quasi-Newton methods address weakness

* [teratively build up approximationto the Hessian

* Popular method for training deep networks
 Limited memory BFGS (L-BFGS)
e Will discuss in a later lecture
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Example

* Minimize

f(x,x,,x;)= (xl)2 +xl(1—x2)—(x2)2 — X, X, +(x3)2 + X,

* Gradient

[ 2x, +1-x, ]

\Z

- X, +2x, — x,




Example

 Set the gradient to null

2x, +1-x, | T 0 |
Vf=0=| —x,+2x,-x;, |=| O
—X, +2x,+1 0

e Solving the 3 equations system with 3 unknowns




Example

2 -1 0
* Compute the Hessianmatrix v’f=| -1 2 -1
0o -1 2

* Evaluate the eigenvalues of the Hessian matrix
A =3414, A, =0.586, A, =2

* All the eigenvalues are positive => the Hessian matrix is positive
definite

* This pointisa minimum




