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Image Classification



Linear model

• Score function
• Maps raw data to class scores

• Loss function
• Measures how well predicted classes agree with ground truth labels

• Multiclass Support Vector Machine loss (SVM loss)
• Softmax classifier (cross-entropy loss)

• Learning
• Find parameters of score function that minimize loss function

• Multiclass Support Vector Machine loss (SVM loss)



Recall: Linear model with SVM loss

• Score function
• Maps raw data to class scores

• Loss function
• Measures how well predicted classes agree with ground truth labels



SVM loss: equivalent formulation

• Loss function
• Measures how well predicted classes agree with ground truth labels

Are       and     independent parameters?



Today

• Learning model parameters with Stochastic Gradient Descent that 
minimize loss

• Later
• Different score functions: deep networks

• Same loss functions and learning algorithm



Outline

• Visualizing the loss function

• Optimization
• Random search

• Random local search

• Gradient descent
• Mini-batch gradient descent



Visualizing SVM loss function

• Difficult to visualize fully 
• CIFAR-10 a linear classifier weight matrix is of size [10 x 3073] for a total of 

30,730 parameters

• Can gain intuition by visualizing along rays (1 dimension) or planes (2 
dimensions)



Visualizing in 1-D

• Generate random weight matrix

• Generate random direction

• Compute loss along this direction  

Loss for single example

Where is the minima?



Visualizing in 2-D

• Compute loss along plane

Loss for single example Average loss for 100 examples 
(convex function)



How do we find weights that minimize loss?

• Random search
• Try many random weight matrices and pick the best one
• Performance: poor

• Random local search
• Start with random weight matrix
• Try many local perturbations, pick the best one, and iterate
• Performance: better but still quite poor

• Useful idea: iterative refinement of weight matrix



Optimization basics



The problem of optimization

Find the value of x where f(x) is minimum

Our setting: x represents weights, f(x) represents loss function

x

f(x)



In two stages

• Function of single variable

• Function of multiple variables



Derivative of a function of single variable



Derivatives



Finding minima

Increase x if derivative negative, decrease if positive

i.e., take step in direction opposite to sign of gradient

(key idea of gradient descent)
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Doesn’t always work

• Theoretical and empirical evidence that gradient descent works quite 
well for deep networks

f(x)

x

global minimum

inflection point

local minimum

global maximum



In two stages

• Function of single variable

• Function of multiple variables



Partial derivatives

The partial derivative of an n-ary function f(x1,...,xn) in the 
direction xi at the point (a1,...,an) is defined to be:



Partial derivative example

By IkamusumeFan - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=42262627

At (1, 1), the slope is 3



The gradient of a scalar function

• The gradient 𝛻𝑓(𝑋) of a scalar function 

𝑓(𝑋) of a multi-variate input 𝑋 is a 

multiplicative factor that gives us the 

change in 𝑓(𝑋) for tiny variations in 𝑋

𝑑𝑓(𝑋) = 𝛻𝑓(𝑋)𝑑𝑋

𝑑𝑓(𝑋)

𝑑𝑋



Gradients of scalar functions with multi-
variate inputs

•Consider 𝑓 𝑋 = 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛

•𝛻𝑓(𝑋) =
𝜕𝑓 𝑋

𝜕𝑥1

𝜕𝑓 𝑋

𝜕𝑥2
⋯

𝜕𝑓 𝑋

𝜕𝑥𝑛



Computing gradients analytically



Derivatives measure sensitivity

If we were to increase     by a tiny amount, the effect on the 
whole expression would be to decrease it (due to the negative 
sign), and by three times that amount.



Computing gradients analytically



Finding minima

Take step in 
direction 
opposite to sign 
of gradient

Gradient
vector 𝛻𝑓(𝑋)

Moving in this 
direction increases 

𝑓(𝑋) fastest
−𝛻𝑓(𝑋)

Moving in this 
direction decreases 

𝑓 𝑋 fastest



Gradient descent algorithm

• Initialize: 
• 𝑥0

• 𝑘 = 0

• While 𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘 > 𝜀

• 𝑥𝑘+1 = 𝑥𝑘 − 𝜂𝑘𝛻𝑓 𝑥𝑘 𝑇

• 𝑘 = 𝑘 + 1

Average gradient 
across all training 

examples



Step size affects convergence of gradient 
descent 

Murphy, Machine Learning, Fig 8.2



Gradient descent algorithm

• Initialize: 
• 𝑥0

• 𝑘 = 0

• While 𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘 > 𝜀

• 𝑥𝑘+1 = 𝑥𝑘 − 𝜂𝑘𝛻𝑓 𝑥𝑘 𝑇

• 𝑘 = 𝑘 + 1

Challenge to discuss later: How to choose step size?

Average gradient 
across all training 

examples

Challenge: Not scalable for very large data sets



Mini-batch gradient descent

• Initialize: 
• 𝑥0

• 𝑘 = 0

• While 𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘 > 𝜀

• 𝑥𝑘+1 = 𝑥𝑘 − 𝜂𝑘𝛻𝑓 𝑥𝑘 𝑇

• 𝑘 = 𝑘 + 1

Faster 
convergence

Average gradient 
over small batches 

of training 
examples (e.g., 
sample of 256 

examples)

Special case: Stochastic or online  gradient descent 
use single training example in each update step



Stochastic gradient descent convergence

Murphy, Machine Learning, Fig 8.8



SVM loss visualization

Challenge: Gradient does not exist



Computing subgradients analytically

The set of subderivatives at x0 for a convex function is 

a nonempty closed interval [a, b], where a and b are 

the one-sided limits:



Computing subgradients analytically

The (sub)gradient is 1 on the input that is larger and 0 on the other input



Subgradient of SVM loss

Number of classes that didn’t meet the desired margin

j-th class didn’t meet the desired margin



Review derivatives

• Please review rules for computing derivatives and partial derivatives 
of functions, including the chain rule

• https://www.khanacademy.org/math/multivariable-calculus/multivariable-
derivatives

• You will need to use them in HW1!

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives


Summary
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