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Image Classification
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What the computer sees

image classification

» 82% cat

15% dog
2% hat
1% mug



Linear model

 Score function
* Maps raw data to class scores

e Loss function

 Measures how well predicted classes agree with ground truth labels
e Multiclass Support Vector Machine loss (SVM loss)
» Softmax classifier (cross-entropy loss)

* Learning

* Find parameters of score function that minimize loss function
* Multiclass Support Vector Machine loss (SVM loss)



Recall: Linear model with SVM loss

* Score function
* Maps raw data to class scores

* Loss function
* Measures how well predicted classes agree with ground truth labels

L= % SN max(0, fas W), — Flas W)y + A+ 23S W,
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SVM loss: equivalent formulation

* Loss function
* Measures how well predicted classes agree with ground truth labels

L = %Z Z max (0, f(z;;W),; — f(xi; W)y, +A)] + )‘ZZWE,Z
ko1

v JFYq

Are /\ and \ independent parameters?
Set A =1



Today

* Learning model parameters with Stochastic Gradient Descent that
minimize loss

* Later
e Different score functions: deep networks
e Same loss functions and learning algorithm



Outline

* Visualizing the loss function

* Optimization
e Random search
e Random local search

* Gradient descent
* Mini-batch gradient descent



Visualizing SVM loss function

* Difficult to visualize fully

* CIFAR-10 a linear classifier weight matrix is of size [10 x 3073] for a total of
30,730 parameters

e Can gain intuition by visualizing along rays (1 dimension) or planes (2
dimensions)



Visualizing in 1-D

* Generate random weight matrix W
* Generate random direction TV,
 Compute loss along this direction L(W + aW)

Where is the minima?
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Loss for single example



Visualizing in 2-D

 Compute loss along plane L(W + aW; + bW5)

Loss for single example Average loss for 100 examples
(convex function)



How do we find weights that minimize loss?

e Random search

* Try many random weight matrices and pick the best one
e Performance: poor

e Random local search

e Start with random weight matrix
* Try many local perturbations, pick the best one, and iterate
* Performance: better but still quite poor

e Useful idea: iterative refinement of weight matrix



Optimization basics
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The problem of optimization
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X

Find the value of X where f(X) is minimum
Our setting: X represents weights, f(X) represents loss function




In two stages

* Function of single variable

* Function of multiple variables



Derivative of a function of single variable
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Derivatives
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Finding minima

f(X)

Increase x if derivative negative, decrease if positive
i.e., take step in direction opposite to sign of gradient
(key idea of gradient descent)



Doesn’t always work

f(X) 4

global maximum

inflection point

local minimum

global minimum
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* Theoretical and empirical evidence that gradient descent works quite
well for deep networks



In two stages

* Function of single variable
* Function of multiple variables



Partial derivatives

The partial derivative of an n-ary function f(x,,...,x,) in the
direction x; at the point (a,,...,a,) is defined to be:

of flag,...,@i +B...,a,) — flas,...,ai,...,
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Partial derivative example

z= f(z,y) = 2° + zy + . .
Oz
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At (1, 1), the slopeis 3

By lkamusumeFan - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=42262627



The gradient of a scalar function

* The gradient Vf(X) of a scalar function
f (X) of a multi-variate input X is a
multiplicative factor that gives us the
change in f(X) for tiny variations in X

df (X) = VF(X)dX
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Gradients of scalar functions with multi-
variate inputs

eConsider f(X) = f(xq, x5, ..., Xp) .
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Computing gradients analytically

of _ 0 _
or oy

flz,y) = zy — x

of of
axvay]_ [y,.CE]
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Derivatives measure sensitivity

r=4,y=—3 flx,y) = —12 %:_3

If we were to Increase by a tiny amount, the effect on the
whole expression would be to decrease it (due to the negative
sign), and by three times that amount.



Computing gradients analytically
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Finding minima

Take step in
direction
opposite to sign
of gradient
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Moving in this
direction decreases

f(X) fastest
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~ vector Vf(X)

Gradient

Moving in this
direction increases
f(X) fastest




Gradient descent algorithm

* Initialize:
[ ) xO
e k=0

» While |f(x**1) — f(x*)| > ¢
. xk+1 — xk . nka(xk)T
ck=k+1

Average gradient
across all training

examples



Step size affects convergence of gradient
descent

Murphy, Machine Learning, Fig 8.2



Gradient descent algorithm

* Initialize:
° xO
e k=0

Average gradient
across all training
examples

» While |f(x**1) — f(x*)| > ¢
. xk+1 — xk . T]ka(Xk)T
ck=k+1

Challenge: Not scalable for very large data sets

Challenge to discuss later: How to choose step size?



Mini-batch gradient descent

* Initialize: Average gradient
e x0 over small batches
. . Faster
k=0 of training convergence
examples (e.g.,
e While ‘f(xk"'l) _ f(xk)‘ > sample of 256

o xk+1 — 4k _ nkvf(xk)T examples)

ck=k+1

Special case: Stochastic or online gradient descent 2>
use single training example in each update step




Stochastic gradient descent convergence

black line = LMS trajectory towards LS soln (red cross)
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Murphy, Machine Learning, Fig 8.8



SVM loss visualization
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Challenge: Gradient does not exist




Computing subgradients analytically

The set of subderivatives at x, for a convex function is A
a nonempty closed interval [a, b], where a and b are
the one-sided limits:
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Computing subgradients analytically

0 0
fay=mx(ey) o Gh=Tes—y P -Ty>—a)

The (sub)gradient is 1 on the input that is larger and 0 on the other input



Subgradient of SVM loss

L; = Z [max((), wir, — wyszz + A)]

J
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Vaw, Li = — Z I(w]T:CZ — wia:@ +A>0) | x;

J7Yi
Number of classes that didn’t meet the desired margin

Vi, L; = Z(w;pxz- — wyTia:'i + A > 0)x;

J-th class didn't meet the desired margin



Review derivatives

* Please review rules for computing derivatives and partial derivatives
of functions, including the chain rule

* https://www.khanacademy.org/math/multivariable-calculus/multivariable-
derivatives

* You will need to use them in HW1!


https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives

Summary

regulari?_'atic:n loss

_‘ score function
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