Security and Fairness o f Deep Learning

Stochastic Gradient Descent

Anupam Datta
CMU

Spring 2019

Image Classification

\ f) \jgl
\1./;"1

6
iy 8l 49 49 13
4 3 70 37 Q92
22 66 33
24 35 17
21 67 1 18 38 64 70
26 20 68 02 62 12 20 9% 66 49 94 21
24 35 30 05 66 7Y 99 26 97 3§ 99 63 72
23 36 33 09 75 00 7€ 44 20 34 31 33 9%
78 47 53 28 22 75 31 67 1S 09 53 S¢€ 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
i’ 86 56 0D 48 35 T1 89 07 05 44 44 37 44 €0 21 SB 51 54 17 S8
19 80 81 60 Q05 94 47 63 20 73 92 13 86 32 17 77 04 89 55 40
04 32 00 23 97 35 99 1€ 07 97 57 32 16 26 26 79 33 27 90 ¢¢
8 27 57 €2 20 72 03 4€ 33 €7 4€ 55 12 32 €3 93 5% @
16 7 124 94 M2 0% 4€ 295 32 40 €2 7€ 3¢
36 41 72 T4 04 36 16
20 73 35 239 78 N1 74 31 49
03 70 54 71 83 41 34 €9 16 92 33

What the computer sees

image classification

» 82% cat

15% dog
2% hat
1% mug

Linear model

 Score function
* Maps raw data to class scores

e Loss function

 Measures how well predicted classes agree with ground truth labels
e Multiclass Support Vector Machine loss (SVM loss)
» Softmax classifier (cross-entropy loss)

* Learning

* Find parameters of score function that minimize loss function
* Multiclass Support Vector Machine loss (SVM loss)

Recall: Linear model with SVM loss

* Score function
* Maps raw data to class scores

* Loss function
* Measures how well predicted classes agree with ground truth labels

L= % SN max(0, fas W), — Flas W)y + A+ 23S W,

i JAY:

SVM loss: equivalent formulation

* Loss function
* Measures how well predicted classes agree with ground truth labels

L = %Z Z max (0, f(z;;W),; — f(xi; W)y, +A)] +)‘ZZWE,Z
ko1

v JFYq

Are /\ and \ independent parameters?
Set A =1

Today

* Learning model parameters with Stochastic Gradient Descent that
minimize loss

* Later
e Different score functions: deep networks
e Same loss functions and learning algorithm

Outline

* Visualizing the loss function

* Optimization
e Random search
e Random local search

* Gradient descent
* Mini-batch gradient descent

Visualizing SVM loss function

* Difficult to visualize fully

* CIFAR-10 a linear classifier weight matrix is of size [10 x 3073] for a total of
30,730 parameters

e Can gain intuition by visualizing along rays (1 dimension) or planes (2
dimensions)

Visualizing in 1-D

* Generate random weight matrix W
* Generate random direction TV,
 Compute loss along this direction L(W + aW)

Where is the minima?

—
-\-.______--
— |

Loss for single example

Visualizing in 2-D

 Compute loss along plane L(W + aW; + bW5)

Loss for single example Average loss for 100 examples
(convex function)

How do we find weights that minimize loss?

e Random search

* Try many random weight matrices and pick the best one
e Performance: poor

e Random local search

e Start with random weight matrix
* Try many local perturbations, pick the best one, and iterate
* Performance: better but still quite poor

e Useful idea: iterative refinement of weight matrix

Optimization basics

w . ..B

SR
S0,
Nttt 4

The problem of optimization

15 ~ \;\ '
LAY X%
h X %,
W) ‘\‘_,’ XS 0%
N e % Wertpres
RS 'y

f(x)

X

Find the value of X where f(X) is minimum
Our setting: X represents weights, f(X) represents loss function

In two stages

* Function of single variable

* Function of multiple variables

Derivative of a function of single variable

i) [== .

secant line

f (X) -------------- !

X x+h

Derivatives

d

%(332) = 27

d

)=

d 1 .
%(lnx) == ifx >0

Finding minima

f(X)

Increase x if derivative negative, decrease if positive
i.e., take step in direction opposite to sign of gradient
(key idea of gradient descent)

Doesn’t always work

f(X) 4

global maximum

inflection point

local minimum

global minimum

><V

* Theoretical and empirical evidence that gradient descent works quite
well for deep networks

In two stages

* Function of single variable
* Function of multiple variables

Partial derivatives

The partial derivative of an n-ary function f(x,,...,x,) in the
direction x; at the point (a,,...,a,) is defined to be:

of flag,...,@i +B...,a,) — flas,...,ai,...,

oz, {{111'*--?'51?1} — }J]E%' B

Partial derivative example

z= f(z,y) = 2° + zy + . .
Oz
—_— =1 4
O TTY

At (1, 1), the slopeis 3

By lkamusumeFan - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=42262627

The gradient of a scalar function

* The gradient Vf(X) of a scalar function
f (X) of a multi-variate input X is a
multiplicative factor that gives us the
change in f(X) for tiny variations in X

df (X) = VF(X)dX

X X
)
U £
\\\\\“‘\s,‘:‘.‘,‘;?‘ﬁ?

{/
P99, 0l
St

| ‘ |

¢ T
' o ar i A
e df (X)
05 0 p il
B22ss,,
0 =4 ': """"" T
1 i
05 dX : e

Gradients of scalar functions with multi-
variate inputs

eConsider f(X) = f(xq, x5, ..., Xp) .

§
SN

of(X) (X af (X)
’ Vf (X) | 0xgq 0x5 0xn

Computing gradients analytically

of _ 0 _
or oy

flz,y) = zy — x

of of
axvay]_ [y,.CE]

Vf

| — |

Derivatives measure sensitivity

r=4,y=—3 flx,y) = —12 %:_3

If we were to Increase by a tiny amount, the effect on the
whole expression would be to decrease it (due to the negative
sign), and by three times that amount.

Computing gradients analytically

o _

Finding minima

Take step in
direction
opposite to sign
of gradient

2
16 L.—"
e
..... o ‘/
12 Lo
03
04 L 1

0 —Vf(X) -

Moving in this
direction decreases

f(X) fastest

: .'}
~ ——
L = 4
e ~
. -_';q;_
! e

~ vector Vf(X)

Gradient

Moving in this
direction increases
f(X) fastest

Gradient descent algorithm

* Initialize:
[) xO
e k=0

» While |f(x**1) — f(x*)| > ¢
. xk+1 — xk . nka(xk)T
ck=k+1

Average gradient
across all training

examples

Step size affects convergence of gradient
descent

Murphy, Machine Learning, Fig 8.2

Gradient descent algorithm

* Initialize:
° xO
e k=0

Average gradient
across all training
examples

» While |f(x**1) — f(x*)| > ¢
. xk+1 — xk . T]ka(Xk)T
ck=k+1

Challenge: Not scalable for very large data sets

Challenge to discuss later: How to choose step size?

Mini-batch gradient descent

* Initialize: Average gradient
e x0 over small batches
. . Faster
k=0 of training convergence
examples (e.g.,
e While ‘f(xk"'l) _ f(xk)‘ > sample of 256

o xk+1 — 4k _ nkvf(xk)T examples)

ck=k+1

Special case: Stochastic or online gradient descent 2>
use single training example in each update step

Stochastic gradient descent convergence

black line = LMS trajectory towards LS soln (red cross)

T T T
» ;
-1 0 1 2 3

Murphy, Machine Learning, Fig 8.8

SVM loss visualization

N2

Challenge: Gradient does not exist

Computing subgradients analytically

The set of subderivatives at x, for a convex function is A
a nonempty closed interval [a, b], where a and b are
the one-sided limits:

4 — lim flz) — flzo)

w—'.-;rr}_ -:.E - :I:U

L

T 0
@)~ f) g

Ty £— Iy

Computing subgradients analytically

0 0
fay=mx(ey) o Gh=Tes—y P -Ty>—a)

The (sub)gradient is 1 on the input that is larger and 0 on the other input

Subgradient of SVM loss

L; = Z [max((), wir, — wyszz + A)]

J
JF#Yi

Vaw, Li = — Z I(w]T:CZ — wia:@ +A>0) | x;

J7Yi
Number of classes that didn’t meet the desired margin

Vi, L; = Z(w;pxz- — wyTia:'i + A > 0)x;

J-th class didn't meet the desired margin

Review derivatives

* Please review rules for computing derivatives and partial derivatives
of functions, including the chain rule

* https://www.khanacademy.org/math/multivariable-calculus/multivariable-
derivatives

* You will need to use them in HW1!

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives

Summary

regulari?_'atic:n loss

_‘ score function

e

Acknowledgment

Based in part on material from Stanford CS231n
http://cs231n.github.io/ and CMU 11-785

http://cs231n.github.io/

