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Administrative

» HW?2 out tonight

Differential privacy and deanonymization

» Project proposals

If you got marked down for your project, you can share new
project idea with staff for feedback



Definition from last time...

» What is the support of a probability distribution?

» A:Set of values with nonzero probability mass

{1,2,4,5}




Canvas Quiz

» 10 minutes



Last time:

Differentially Private Recommender Systems:
Building Privacy into the Netflix Prize Contenders

Frank McSherry and llya Mironov

KDD 2019



Netflix Predictions — High Level

Q(i,j) —“How would user i rate movie j?”

Predicted rating may typically depend on
Global average rating over all movies and all users
Average movie rating of user i
Average rating of movie |
Ratings user i gave to similar movies

Ratings similar users gave to movie j

» Sensitivity may be small for many of these queries



What do we need to make predictions?

For a large class of prediction algorithms it suffices to have:
Gavg — average rating for all movies by all users

Mavg — average rating for each movie by all users
Average Movie Rating for each user

Movie-Movie Covariance Matrix (COV)



Differentially Private Recommender Systems
(High Level)

To respect approximate differential privacy publish
» Gavg + NOISE
» Mavg + NOISE
» COV + NOISE

» GS(Gavg), GS(Mavg) are very small so they can be published with
little noise (e.g., Laplacian)

» GS(COV) requires more care (our focus)

» Don’t publish average ratings for users (used in per-user
prediction phase using k-NN or other algorithms)

Source: Differentially Private Recommender Systems(McSherry and Mironov) 8



Movie-Movie Covariance Matrix
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Movie-Movie Covariance Matrix
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Movie-Movie Covariance Matrix
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Goal

» Come up with differentially-private method of computing
these covariance matrices

» How should we do this?



Covariance Matrix Sensitivity
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» Prove this with a neighbor

» Could be large if a user’s rating has large spread or if a
user has rated many movies



Covariance Matrix Trick I

» Center and clamp all ratings around averages. If we use
clamped ratings then we reduce the sensitivity of our
function.

_B, if Tu: — Fu < _B,
B, ifB S Tui _Fu.



min{B, 4.2 — 3.07}
max{—B, 2 — 3.07}



Covariance Matrix Trick II

» Carefully weight the contribution of each user to reduce
the sensitivity of the function. Users who have rated
more movies are assigned lower weight.

~ T . dXxd
Cov = E Wy TuT, + Noise
u

» Where ¢e,; is 1 if user u rated movie i
1

and W, = m



Publishing the Covariance Matrix

» Theorem 5 from paper: If ratings vectors 7% and 72 have
at most one rating different, then for appropriate
parameter settings, we have:

Jwersre” — wiART 2 < (1+2V2)B°

» Add independent Gaussian noise proportional to this
sensitivity bound to each entry in covariance matrix



Experimental Results
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Privacy decreases

» Source: Differentially Private Recommender Systems(McSherry and Mironov) 20



Note About Results

» Granularity: One rating present in D, but not in D,

Accuracy is much lower when one user is present in D, but
not in D,

Intuition: Given query Q(i, j) the database D-u[i] gives us no
history about user i.

» Approximate Differential Privacy
Gaussian Noise added according to L, Sensitivity
Clamped Ratings (B = |) to further reduce noise

21



Summary

» Why did we talk about this paper?
Takes a complicated task (DP recommendation system)
Turns it into well-defined simpler task (DP covariance matrix)

» In general, you need to either
Bound the sensitivity of your desired function
Change the model to have bounded sensitivity

» What was their approach!?
Use a bound on the sensitivity of covariance
Use the bound to design tools for limiting sensitivity



I Next: Local Differential Privacy




Different models

» Global (database) differential privacy

Query £ (") ‘
Sensitive
) Database
f(D) + noise
Analyst
» Local differential privacy
Output statistics
fUy,...,U,)




Local Differential Privacy

Xex ;U

» We say mechanism @ is e-locally differentially private if

QSIX=x) _
sup ~=e",
Sxx'ex Q(S|X — x)



Example: Measuring Drug Use

Question: Have you consumed illegal drugs in the last week!?
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e Uz =N
X, =N (Z — Output statistics
U;=Y Database F(U U.)
XS — N 1, [EL) n
Users Aggregator

» Randomized response (Warner):
If heads, answer truth

If tails, random answer PU=Y|X=Y)=0.75

P(U=Y|X=N)=025

— plog3




Local Differential Privacy

» Widely used in practice
Google
Apple

» Mechanism is applied to privatize data itself
l.e., query function f(x) = x

» No notion of neighboring databases anymore
Compare P(output | input)

» Plausible deniability protects users from:
aggregator
hackers
surveillance



