Administrative

• HW3 grades will be available this Sunday
 – Discussions will be posted on Piazza

• HW4 released
 – Due Nov 14

• Project deliverables I due Monday, Oct 31
 – 1-2 page report on what has been done so far, what else remains to do
 • Due 11:59pm, Oct 31 EST
 – In class presentation: 5 min to talk + 2 min Q&A
 • Due 3pm, Oct 31 EST
 – 14 groups in total, so please keep to time limits
18734 Recitation

Review of Statistical distance
Individual fairness

Classifier (eg. ad network)

Vendor (eg. capital one)

\[M: V \rightarrow O \]

\[F: O \rightarrow A \]

V: Individuals

O: outcomes

A: actions
Goal:
Achieve Fairness in the classification step

\[M : V \rightarrow O \]

\(V: \text{Individuals} \quad O: \text{outcomes} \)

Unknown, Untrusted, Un-auditable Vendor
The similarity metric

• The extent to which pairs of individuals should be regarded as similar for classification

• Expresses ground truth/ best approximation according to societal norms

• Example of a metric:
 – People with a credit scores of 310 are similar to those with credit scores of 300 and should be not be allowed to get a loan
Constructing a similarity metric for a classifier (e.g. ad network)
Formalizing similarity between individuals and outcomes

Think of V as space with metric $d(x,y)$

similar = small $d(x,y)$

How can we compare distributions $M(x)$ with $M(y)$?

V: Individuals O: outcomes
Distributional outcomes

How can we compare distributions $M(x)$ with $M(y)$?

V: Individuals

O: outcomes

$M : V \rightarrow \Delta(O)$

Statistical distance!
Metric \(d : V \times V \rightarrow \mathbb{R} \)

Lipschitz condition \(\| M(x) - M(y) \| \leq d(x, y) \)

Statistical distance between distributions in [0,1]

\(V: \text{Individuals} \quad O: \text{outcomes} \)
Statistical Distance

P, Q denote probability measures on a finite domain A. The statistical distance between P and Q is denoted by

$$D_{tv}(P, Q) = \frac{1}{2} \sum_{a \in A} |P(a) - Q(a)|.$$

Example: High D

$A = \{0, 1\}$
$P(0) = 1, P(1) = 0$
$Q(0) = 0, Q(1) = 1$
$D(P, Q) = 1$
Statistical Distance

\(P, Q \) denote probability measures on a finite domain \(A \). The \textit{statistical distance} between \(P \) and \(Q \) is denoted by

\[
D_{tv}(P, Q) = \frac{1}{2} \sum_{a \in A} |P(a) - Q(a)|.
\]

Example: Low D

\(A = \{0, 1\} \)

\(P(0) = 1, \ P(1) = 0 \)

\(Q(0) = 1, \ Q(1) = 0 \)

\(D(P, Q) = 0 \)
Statistical Distance

\(P, Q \) denote probability measures on a finite domain \(A \). The statistical distance between \(P \) and \(Q \) is denoted by

\[
D_{tv}(P, Q) = \frac{1}{2} \sum_{a \in A} |P(a) - Q(a)|.
\]

Example: Mid D

\(A = \{0, 1\} \)

\(P(0) = P(1) = \frac{1}{2} \)

\(Q(0) = \frac{3}{4}, \ Q(1) = \frac{1}{4} \)

\(D(P, Q) = \frac{1}{4} \)