Secure Two-Party Computation

Anupam Datta
CMU
Fall 2015
Secure Two-Party Computation

Bob’s Genome: ACTG...
Markers (~1000): [0,1, ..., 0]

Alice’s Genome: ACTG...
Markers (~1000): [0, 0, ..., 1]

Can Alice and Bob compute a function of their private data, without exposing anything about their data besides the result?

\[x = f(g_A, g_B) \]
Roadmap

◆ Yao’s Classic Garbled Circuits
◆ Recent advances in practical secure two party computations
Yao’s Protocol

- **Compute** any function securely
 - ... in the semi-honest model
- **First,** convert the function into a **boolean circuit**

Truth table for AND:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth table for OR:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
1: Pick Random Keys For Each Wire

- Next, evaluate **one gate** securely
 - Later, generalize to the entire circuit

- Alice picks two **random keys** for each wire
 - One key corresponds to “0”, the other to “1”
 - 6 keys in total for a gate with 2 input wires
2: Encrypt Truth Table

Alice encrypts each row of the truth table by encrypting the output-wire key with the corresponding pair of input-wire keys.

Original truth table:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Encrypted truth table:

\[
\begin{align*}
E_{k_{0x}}(E_{k_{0y}}(k_{0z})) \\
E_{k_{0x}}(E_{k_{1y}}(k_{0z})) \\
E_{k_{1x}}(E_{k_{0y}}(k_{0z})) \\
E_{k_{1x}}(E_{k_{1y}}(k_{1z}))
\end{align*}
\]
3: Send Garbled Truth Table

Alice randomly permutes ("garbles") encrypted truth table and sends it to Bob.

Garbled truth table:

- $E_{k_0x}(E_{k_0y}(k_{0z}))$
- $E_{k_0x}(E_{k_1y}(k_{0z}))$
- $E_{k_1x}(E_{k_0y}(k_{0z}))$
- $E_{k_1x}(E_{k_1y}(k_{1z}))$

Does not know which row of garbled table corresponds to which row of original table.
4: Send Keys For Alice’s Inputs

- Alice sends the key corresponding to her input bit
 - Keys are random, so Bob does not learn what this bit is

Garbled truth table:

- $E_{k_1x}(E_{k_0y}(k_{0z}))$
- $E_{k_0x}(E_{k_1y}(k_{0z}))$
- $E_{k_1x}(E_{k_1y}(k_{1z}))$
- $E_{k_0x}(E_{k_0y}(k_{0z}))$

If Alice’s bit is 1, she simply sends k_{1x} to Bob; if 0, she sends k_{0x}

Learns $K_{b'x}$ where b' is Alice’s input bit, but not b' (why?)
5: Use OT on Keys for Bob’s Input

- Alice and Bob run oblivious transfer protocol
 - Alice’s input is the two keys corresponding to Bob’s wire
 - Bob’s input into OT is simply his 1-bit input on that wire

Garbled truth table:

\[
\begin{align*}
E_{k_1x}(E_{k_0y}(k_{0z})) \\
E_{k_0x}(E_{k_1y}(k_{0z})) \\
E_{k_1x}(E_{k_1y}(k_{1z})) \\
E_{k_0x}(E_{k_0y}(k_{0z}))
\end{align*}
\]

Bob learns \(k_{by} \)

What does Alice learn?

Knows \(K_{b’x} \) where \(b’ \) is Alice’s input bit and \(K_{by} \) where \(b \) is his own input bit

Run oblivious transfer

Alice’s input: \(k_{0y}, k_{1y} \)

Bob’s input: his bit \(b \)
6: Evaluate Garbled Gate

- Using the two keys that he learned, Bob decrypts exactly one of the output-wire keys
 - Bob does not learn if this key corresponds to 0 or 1
 - Why is this important?

Alice \(k_{0x}, k_{1x} \)

\(k_{0y}, k_{1y} \)

Bob \(k_{0z}, k_{1z} \)

Garbled truth table:

\[
\begin{align*}
E_{k_0x}(E_{k_0y}(k_{0z})) & \quad E_{k_1x}(E_{k_0y}(k_{0z})) \\
E_{k_0x}(E_{k_1y}(k_{1z})) & \quad E_{k_1x}(E_{k_1y}(k_{1z}))
\end{align*}
\]

Knows \(K_{b'}x \) where \(b' \) is Alice’s input bit and \(K_{by} \) where \(b \) is his own input bit

Suppose \(b'=0, b=1 \)

This is the only row Bob can decrypt. He learns \(k_{0z} \)
In this way, Bob evaluates entire garbled circuit

- For each wire in the circuit, Bob learns only one key
- It corresponds to 0 or 1 (Bob does not know which)
 - Therefore, Bob does not learn intermediate values

Bob tells Alice the key for the final output wire and she tells him if it corresponds to 0 or 1

- Bob does not tell her intermediate wire keys
Brief Discussion of Yao’s Protocol

◆ Function must be converted into a circuit
 • For many functions, circuit will be huge
◆ If m gates in the circuit and n inputs, then need 4m encryptions and n oblivious transfers
 • Oblivious transfers for all inputs can be done in parallel
◆ Yao’s construction gives a constant-round protocol for secure computation of any function in the semi-honest model
 • Number of rounds does not depend on the number of inputs or the size of the circuit!
Acknowledgments

◆ Slides 4-12 from Vitaly Shmatikov
Example OT Protocol

Even, Goldreich, Lempel

https://en.wikipedia.org/wiki/Oblivious_transfer