A Quick Tour of Cryptographic Primitives

Anupam Datta
CMU
Fall 2016
Basic Cryptographic Concepts

- Encryption scheme (symmetric and public key)
- Signature scheme
- Message authentication code
- Hash function
Symmetric Encryption Scheme

- **Key generation algorithm**
 - Produces a key that is used for encryption and decryption

- **Algorithm to encrypt a message**

- **Algorithm to decrypt a ciphertext**

- **Correctness:**
 - Decrypting a ciphertext obtained by encrypting message \(m \) with the corresponding key \(k \) returns \(m \)
 \[
 \text{dec(\text{enc}(m,k),k)} = m
 \]

- **(Symbolic) Security:**
 - A ciphertext cannot be decrypted without access to the key

Can you think of a stronger security property?
Public-Key Encryption Scheme

- **Key generation algorithm**
 - Produces private decryption & public encryption key pair

- Algorithm to *encrypt* a message

- Algorithm to *decrypt* a ciphertext

- **Correctness:**
 - Decrypting a ciphertext obtained by encrypting message \(m \) with the corresponding encryption key returns \(m \)

 \[
 \text{dec}(\text{enc}(m, pk(A)), sk(A)) = m
 \]

- **(Symbolic) Security:**
 - A ciphertext cannot be decrypted without access to the private decryption key

Why would you want public key encryption?
Signature Scheme

- **Key generation algorithm**
 - Produces private signing & public verification key pair
- Algorithm to **sign** data
- Algorithm to **verify** signature
- **Correctness:**
 - Message signed with a signing key verifies with the corresponding verification key
 \[
 \text{verify}(m, \text{sign}(m, \text{sk}(A)), \text{pk}(A)) = \text{ok}
 \]
- **Security:**
 - A signature cannot be produced without access to the private signing key

Can you think of a scenario where you may not want non-repudiation?
Message Authentication Code (MAC)

- Key generation algorithm
 - Produces a key
- Algorithm to \textit{mac} a message
- Algorithm to \textit{verify} a mac on a message
- Correctness:
 - Message mac-ed with key verifies with the same key
 \[
 \text{verify}(k, m, \text{mac}(k,m)) = \text{ok}
 \]
- Security:
 - A MAC cannot be produced without access to the key

Similar to signature, but uses symmetric key

\textit{What property does a signature have, but a MAC does not?}
Hash Functions

- **Key generation algorithm**
 - Produces a key
- **Algorithm to hash a message m, given a key k to a fixed length output** $\text{hash}(k, m)$

- **Security (Collision resistance)**

Given hash function $\text{hash}: X \rightarrow Y$ and key k, cannot find a collision, i.e. $x, x' \in X$ s.t. $x \neq x'$ and $\text{hash}(k,x) = \text{hash}(k,x')$

What is the difference between a MAC and a hash function?
Cryptographic Constructions

- **Signature scheme**
 - DSS, RSA-FDH,…

- **Hash function**
 - SHA-1, MD5,…

- **Message Authentication Code (MAC)**
 - HMAC, CBC-MAC, NBAC,…

- **Encryption scheme**
 - Asymmetric (public key): RSA, Diffie-Hellman, El Gamal,… (distinct keys for encryption and decryption)
 - Symmetric: DES, 3DES, AES, RC4,… (same key for encryption and decryption)

Want to know more? 18-733: Applied Cryptography