
1© 2021 Philip Koopman

Safety Architecture
Patterns

Prof. Philip Koopman

These tutorials are a simplified
introduction, and are not sufficient on
their own to achieve system safety.
You are responsible for the safety of
your system.

Do not double-spend your redundancy.

– Me

2© 2021 Philip Koopman

 Anti-Patterns for Safety:
 Mixed-SIL software without isolation
 No redundancy for high criticality functions
 Fault detection vs. availability confusion

 Appropriate pattern depends on the system
 Cross-checked redundancy for fault detection
 Standby redundancy for availability
 Separation of Low SIL and High SIL functions

– Each SIL must have its own isolated CPU
– For discussion:

» SIL 1 & SIL 2 are low criticality (e.g., non-fatal injuries)
» SIL 3 & SIL 4 are life critical – requires same-SIL redundancy

Are You Using A Good Safety Pattern?

3© 2021 Philip Koopman

 Pattern: One Channel (1-of-1)
 Hardware: single CPU
 Software: no isolation

 Pro:
 Simplest pattern
 Least expensive hardware
 Suitable for SIL << hardware failure rate

 Con:
 All software promoted to higher SIL
 Only for low criticality (e.g., SIL 1, 2)

– Fails “active” (i.e., many failures are unsafe)
– HW failure rate has to be infrequent compared to SIL requirements

Low SIL

Single CPU at SIL 1 or SIL 2
(Inputs/Outputs Not Shown)

NOTE:
Solid Box is a Microcontroller Chip

4© 2021 Philip Koopman

 Pattern: One Channel (1-of-1) + Built-In-Self-Test
 Hardware: single CPU
 Software: additional self-test libraries

 Pro:
 Least expensive hardware
 Suitable for SIL < hardware failure rate

– Permitted by IEC 60730 with self-test library

 Con:
 All software promoted to higher SIL
 Only for low criticality (e.g., SIL 1, 2)
 Self-test does not provide high-criticality safety (e.g., SIL 3,4)

– Fails “active” (i.e., many failures are unsafe)

Self-Diagnosis

Single CPU at SIL 1 or SIL 2

Single CPU at SIL 3 or SIL 4

5© 2021 Philip Koopman

 Pattern: One Channel with Software Isolation
 Hardware: single CPU
 Software: partitioned Low SIL / Higher SIL

 Pro:
 Simplest mixed-SIL pattern

– More or less this is an RTOS for task isolation
 Relatively inexpensive hardware

 Con:
 Requires SIL “isolation argument”

– e.g., RTOS memory protection, task timing, I/O isolation, …
 Only for low criticality (e.g., SIL 1, 2)

– Fails “active” (i.e., some failures are unsafe)

Partitioned Low SIL

Single CPU
Software Isolation

(e.g., mirrored variables)

NOTE:
Dotted Box is on-Chip Partitioning

6© 2021 Philip Koopman

 Pattern: Two Channel Failover (1-of-2)
 Hardware: primary CPU and backup CPU
 Software: no isolation

 Pro:
 Simplest high-availability pattern
 Failover for simple failure modes (low SIL)

– e.g., loss of heartbeat from Primary

 Con:
 All software promoted to higher SIL
 Requires standby diagnosis

– E.g., via periodic role reversal and self-test
 Standby component does not improve SIL

– Redundancy for availability, not fault detection

Low SIL, Fail Operational

Primary
Low SIL

CPU

Backup
Low SIL

CPU

Both CPUs at same SIL
running same computation

7© 2021 Philip Koopman

 Pattern: Triplex Modular Redundancy (2-of-3)
 Hardware: Three Primary CPUs plus HW majority voter
 Software: High SIL Primary

 Pro:
 Improves availability without internal testing

– Any fault gets voted out of the majority voter
– Mismatching unit is most likely the faulty unit

 This pattern is about improving availability
– Avoids diagnostic loopholes in failover pattern

 Con:
 The voter is a single point of failure

– High SIL fail-operational voter is challenging!

Voting Architecture

Three Identical Primary CPUs

Single Point
of Failure

8© 2021 Philip Koopman

 Pattern: Two Channel (2-of-2)
 Hardware: two cross-checked CPUs

– Includes redundant, cross-checked I/O
 Software: no isolation

 Pro:
 Simplest High-SIL pattern

– Suitable for life-critical SIL (e.g., SIL 3, 4)

 Con:
 All software promoted to higher SIL

– E.g., if one function is SIL 4, all software must be SIL 4
– Potentially expensive software development

 Fails “silent” (stops operation)

High SIL, Fail Silent

Both CPUs at same SIL
running same computation

Second
SIL 3
CPU

First
SIL 3
CPU

9© 2021 Philip Koopman

 Pattern: Dual Two Channel (Dual 2-of-2)
 Hardware: two pairs of cross-checked CPUs
 Software: no isolation

 Pro:
 Simplest high-SIL availability pattern

– Suitable for life-critical SIL (e.g., SIL 3, 4)
 Fails operational via hot standby

 Con:
 All software promoted to higher SIL

– Potentially expensive software development
 Requires ensuring standby is ready to go

– E.g., via periodic role reversal
– Periodic off-line self test improves reliability (proof testing)

High SIL, Fail Operational

High SIL
CPU #1

High SIL
CPU #2

High SIL
CPU #3

High SIL
CPU #4

All CPUs at same SIL
running same computation

10© 2021 Philip Koopman

 June, 1996 loss of inaugural flight
 Also lost $400 million scientific payload

 Primary/Backup Inertial Reference System
 Reused from Ariane 4

– But, Ariane 5 had higher horizontal velocity
– 64-bit float to 16-bit integer overflow in backup

… followed by …
The exact same numeric overflow in primary

 Both processors failed loss of control

 Software is a single point of failure
 Redundant SW fails the same way

Ariane 5 Flight 501 Failure

X
X

youtu.be/gp_D8r-2hwk

11© 2021 Philip Koopman

https://youtu.be/5tJPXYA0Nec

12© 2021 Philip Koopman

 Pattern: Same-CPU Doer/Checker Pair (mostly fail silent)
 Hardware: single CPU
 Software: Doer=Low SIL; Checker=Low SIL

 Pro:
 RTOS can provide some Doer/Checker Isolation

– Perhaps Checker at SIL 2, Doer at SIL 1
– Permitted by IEC 60730

 Might be able to take credit for higher SIL checker
 Con:
 Requires Doer/Checker isolation argument

– Or, Doer and Checker both need to be at the same, higher SIL
 Only for low criticality (e.g., SIL 1, 2)

– Fails “active” (i.e., some failures are unsafe)

Low SIL Doer-Checker

SIL 1
Doer

SIL 2
Checker

Single CPU
Software Isolation

(e.g., mirrored variables)

13© 2021 Philip Koopman

 Pattern: Low SIL Doer/Checker Pair
 Hardware: Primary plus Checker CPU pair

– Sometimes called an “E-quizzer” pattern; needs I/O checking!
 Software: Doer=Low SIL; Checker=Low SIL

 Pro:
 Hardware isolation between Doer/Checker

– E.g., SIL 1 Doer, SIL 2 Checker with some SW diversity
 Can lock down checker image despite Doer updates
 Non-Desktop OS in Checker could help with security

 Con:
 Requires self-test for Checker to ensure it’s alive
 Only for low criticality (e.g., SIL 1, 2)

– Checker self-test can’t be perfect; Fails “active”

Low SIL, Fail Silent Hardware

SIL 1
Doer

SIL 2
Checker

14© 2021 Philip Koopman

 Pattern: Attempted High SIL Doer/Checker Pair
 Hardware: Primary plus Checker CPU pair

– Sometimes called a High SIL “E-quizzer” pattern
 Software: Doer=High SIL; Checker=High SIL

 Con: Checker can’t be trusted
 Checker self-test will not find all faults

– Single fault containment region cannot
self-diagnose 100% at SIL 3 or SIL 4

 Doer cannot detect all possible Checker faults
– “Sanity checks” and “quizzing” will only find some faults
– Doer & Checker have different SW – NOT a 2-of-2 pattern!

 Therefore, Checker will have undetected faults
– Use for High SIL applications is likely to be unsafe

» Except for one special case …. see next slide

High SIL, Fail Silent (Usually Unsafe)

SIL 1, 2, 3, 4
Doer

SIL 3, 4
Checker

15© 2021 Philip Koopman

 Pattern: High SIL Doer/Checker with Isolated Checker
 Hardware: Primary Doer/Checker CPU plus Checker CPU
 Software: Doer=High SIL; Checker=High SIL

– Checker #1 exactly models Checker #2 behavior

 Pro:
 Fail-silent behavior with simpler checker CPU

– Potentially suitable for life-critical SIL (e.g., SIL 3)

 Con:
 Requires all High-SIL software; fail-silent

– Must do proof tests as with dual 2-of-2 architecture
– Must be careful with potentially coupled Doer/Checker #1 faults

 Requires Doer/Checker software architecture
– All software must be at the same SIL; mixed SIL is unsafe

High SIL, Fail Silent

SIL 3 Checker
+ SIL 3 Doer

SIL 3 Checker

16© 2021 Philip Koopman

 Pattern: Mixed SIL Doer/Checker
 Hardware: Primary CPU plus 2-of-2 Checker CPU pair
 Software: Doer=Low SIL; Checker=High SIL

 Pro:
 Isolates High SIL software from Low SIL

– Suitable for life-critical SIL system (e.g., SIL 3, 4)
– Checker SIL responsible for system safety

 Only critical software developed at high SIL
– Enables Low SIL software updates to Doer
– Checker CPUs can often be small and cheap

 Con:
 Fail-Silent behavior
 3 CPUs instead of 2 for fail-silent system

Mixed SIL, Fail Silent

SIL 1, 2
Doer

SIL 3, 4
Checker

17© 2021 Philip Koopman

 Pattern: Mixed SIL Dual Doer/Fail-Stop Checker
 Hardware: Dual Primary CPU plus 2-of-2 Checker CPU pair
 Software: Doer=Low SIL; Checker=High SIL

 Pro:
 Likely to be less expensive than dual 2-of-2

– Only critical software developed at high SIL
– Checker CPUs can often be small and cheap

 Suitable for life-critical SIL (e.g., SIL 3, 4)
– Less likely to have an outage due to Doer fault

 Con:
 Need to structure software as Doer/Checker pair
 Not fail operational!

– Low SIL Doer software fault can shut down system

Mixed SIL, High Availability

SIL 1, 2
Doer #1

SIL 1, 2
Doer #2

SIL 3
Checker #1

SIL 3
Checker #2

18© 2021 Philip Koopman

 Consider both HW & SW redundancy
 Doer/checker provides some diversity

 Use building blocks as appropriate
 Failover for availability
 2-of-2 for same-SIL fault detection
 Doer/checker for mixed-SIL fault detection

 Pitfalls:
 Don’t double-spend redundancy
 “Clever” shortcuts usually don’t work
 Avoid single points of failure

– Don’t forget I/O connection redundancy issues!
 Acceptable patterns depend upon your safety argument

Best Practices For Safety Architecture

2-of-2

Failover

Doer/Checker

19© 2021 Philip Koopman

https://xkcd.com/2038/

	��Safety Architecture�Patterns� �
	Are You Using A Good Safety Pattern?
	Low SIL
	Self-Diagnosis
	Partitioned Low SIL
	Low SIL, Fail Operational
	Voting Architecture
	High SIL, Fail Silent
	High SIL, Fail Operational
	Ariane 5 Flight 501 Failure
	Slide Number 11
	Low SIL Doer-Checker
	Low SIL, Fail Silent Hardware
	High SIL, Fail Silent (Usually Unsafe)
	High SIL, Fail Silent
	Mixed SIL, Fail Silent
	Mixed SIL, High Availability
	Best Practices For Safety Architecture
	Slide Number 19

