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Safety Architecture
Patterns

Prof. Philip Koopman

These tutorials are a simplified 
introduction, and are not sufficient on 
their own to achieve system safety.
You are responsible for the safety of 
your system.

Do not double-spend your redundancy. 

– Me 
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 Anti-Patterns for Safety:
 Mixed-SIL software without isolation
 No redundancy for high criticality functions
 Fault detection vs. availability confusion

 Appropriate pattern depends on the system
 Cross-checked redundancy for fault detection
 Standby redundancy for availability
 Separation of Low SIL and High SIL functions

– Each SIL must have its own isolated CPU
– For discussion:

» SIL 1 & SIL 2 are low criticality (e.g., non-fatal injuries)
» SIL 3 & SIL 4 are life critical – requires same-SIL redundancy

Are You Using A Good Safety Pattern?
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 Pattern: One Channel (1-of-1)
 Hardware: single CPU
 Software: no isolation

 Pro:
 Simplest pattern
 Least expensive hardware
 Suitable for SIL << hardware failure rate

 Con:
 All software promoted to higher SIL
 Only for low criticality (e.g., SIL 1, 2)

– Fails “active” (i.e., many failures are unsafe)
– HW failure rate has to be infrequent compared to SIL requirements

Low SIL

Single CPU at SIL 1 or SIL 2
(Inputs/Outputs Not Shown)

NOTE:
Solid Box is a Microcontroller Chip
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 Pattern: One Channel (1-of-1) + Built-In-Self-Test
 Hardware: single CPU
 Software: additional self-test libraries

 Pro:
 Least expensive hardware
 Suitable for SIL < hardware failure rate

– Permitted by IEC 60730 with self-test library

 Con:
 All software promoted to higher SIL
 Only for low criticality (e.g., SIL 1, 2)
 Self-test does not provide high-criticality safety (e.g., SIL 3,4)

– Fails “active” (i.e., many failures are unsafe)

Self-Diagnosis

Single CPU at SIL 1 or SIL 2

Single CPU at SIL 3 or SIL 4
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 Pattern: One Channel with Software Isolation
 Hardware: single CPU
 Software: partitioned Low SIL / Higher SIL

 Pro:
 Simplest mixed-SIL pattern

– More or less this is an RTOS for task isolation
 Relatively inexpensive hardware

 Con:
 Requires SIL “isolation argument”

– e.g., RTOS memory protection, task timing, I/O isolation, …
 Only for low criticality (e.g., SIL 1, 2)

– Fails “active” (i.e., some failures are unsafe)

Partitioned Low SIL

Single CPU
Software Isolation

(e.g., mirrored variables)

NOTE:
Dotted Box is on-Chip Partitioning
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 Pattern: Two Channel Failover (1-of-2)
 Hardware: primary CPU and backup CPU
 Software: no isolation

 Pro:
 Simplest high-availability pattern
 Failover for simple failure modes (low SIL)

– e.g., loss of heartbeat from Primary

 Con:
 All software promoted to higher SIL
 Requires standby diagnosis

– E.g., via periodic role reversal and self-test
 Standby component does not improve SIL

– Redundancy for availability, not fault detection

Low SIL, Fail Operational

Primary
Low SIL

CPU

Backup
Low SIL

CPU

Both CPUs at same SIL
running same computation



7© 2021 Philip Koopman

 Pattern: Triplex Modular Redundancy (2-of-3)
 Hardware: Three Primary CPUs plus HW majority voter
 Software: High SIL Primary

 Pro:
 Improves availability without internal testing

– Any fault gets voted out of the majority voter
– Mismatching unit is most likely the faulty unit

 This pattern is about improving availability
– Avoids diagnostic loopholes in failover pattern

 Con:
 The voter is a single point of failure

– High SIL fail-operational voter is challenging!

Voting Architecture

Three Identical Primary CPUs

Single Point
of Failure
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 Pattern: Two Channel (2-of-2)
 Hardware: two cross-checked CPUs

– Includes redundant, cross-checked I/O
 Software: no isolation

 Pro:
 Simplest High-SIL pattern

– Suitable for life-critical SIL (e.g., SIL 3, 4)

 Con:
 All software promoted to higher SIL

– E.g., if one function is SIL 4, all software must be SIL 4
– Potentially expensive software development

 Fails “silent” (stops operation)

High SIL, Fail Silent

Both CPUs at same SIL
running same computation

Second
SIL 3
CPU

First
SIL 3
CPU
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 Pattern: Dual Two Channel (Dual 2-of-2)
 Hardware: two pairs of cross-checked CPUs
 Software: no isolation

 Pro:
 Simplest high-SIL availability pattern

– Suitable for life-critical SIL (e.g., SIL 3, 4)
 Fails operational via hot standby

 Con:
 All software promoted to higher SIL

– Potentially expensive software development
 Requires ensuring standby is ready to go

– E.g., via periodic role reversal
– Periodic off-line self test improves reliability (proof testing)

High SIL, Fail Operational

High SIL
CPU #1

High SIL
CPU #2

High SIL
CPU #3

High SIL
CPU #4

All CPUs at same SIL
running same computation
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 June, 1996 loss of inaugural flight
 Also lost $400 million scientific payload

 Primary/Backup Inertial Reference System
 Reused from Ariane 4

– But, Ariane 5 had higher horizontal velocity
– 64-bit float to 16-bit integer overflow in backup

… followed by …
The exact same numeric overflow in primary

 Both processors failed  loss of control

 Software is a single point of failure
 Redundant SW fails the same way

Ariane 5 Flight 501 Failure

X
X

youtu.be/gp_D8r-2hwk
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https://youtu.be/5tJPXYA0Nec
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 Pattern: Same-CPU Doer/Checker Pair (mostly fail silent)
 Hardware: single CPU
 Software: Doer=Low SIL; Checker=Low SIL

 Pro:
 RTOS can provide some Doer/Checker Isolation

– Perhaps Checker at SIL 2, Doer at SIL 1
– Permitted by IEC 60730

 Might be able to take credit for higher SIL checker
 Con:
 Requires Doer/Checker isolation argument

– Or, Doer and Checker both need to be at the same, higher SIL
 Only for low criticality (e.g., SIL 1, 2)

– Fails “active” (i.e., some failures are unsafe)

Low SIL Doer-Checker

SIL 1
Doer

SIL 2
Checker

Single CPU
Software Isolation

(e.g., mirrored variables)
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 Pattern: Low SIL Doer/Checker Pair
 Hardware: Primary plus Checker CPU pair

– Sometimes called an “E-quizzer” pattern; needs I/O checking!
 Software: Doer=Low SIL; Checker=Low SIL

 Pro:
 Hardware isolation between Doer/Checker

– E.g., SIL 1 Doer, SIL 2 Checker with some SW diversity
 Can lock down checker image despite Doer updates
 Non-Desktop OS in Checker could help with security

 Con:
 Requires self-test for Checker to ensure it’s alive
 Only for low criticality (e.g., SIL 1, 2)

– Checker self-test can’t be perfect; Fails “active”

Low SIL, Fail Silent Hardware

SIL 1
Doer

SIL 2
Checker
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 Pattern: Attempted High SIL Doer/Checker Pair
 Hardware: Primary plus Checker CPU pair

– Sometimes called a High SIL “E-quizzer” pattern
 Software: Doer=High SIL; Checker=High SIL

 Con: Checker can’t be trusted
 Checker self-test will not find all faults

– Single fault containment region cannot
self-diagnose 100% at SIL 3 or SIL 4

 Doer cannot detect all possible Checker faults
– “Sanity checks” and “quizzing” will only find some faults
– Doer & Checker have different SW – NOT a 2-of-2 pattern!

 Therefore, Checker will have undetected faults
– Use for High SIL applications is likely to be unsafe

» Except for one special case …. see next slide

High SIL, Fail Silent  (Usually Unsafe)

SIL 1, 2, 3, 4
Doer

SIL 3, 4
Checker
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 Pattern: High SIL Doer/Checker with Isolated Checker
 Hardware: Primary Doer/Checker CPU plus Checker CPU
 Software: Doer=High SIL; Checker=High SIL

– Checker #1 exactly models Checker #2 behavior

 Pro:
 Fail-silent behavior with simpler checker CPU

– Potentially suitable for life-critical SIL (e.g., SIL 3)

 Con:
 Requires all High-SIL software; fail-silent

– Must do proof tests as with dual 2-of-2 architecture
– Must be careful with potentially coupled Doer/Checker #1 faults

 Requires Doer/Checker software architecture
– All software must be at the same SIL; mixed SIL is unsafe

High SIL, Fail Silent

SIL 3 Checker
+ SIL 3 Doer

SIL 3 Checker
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 Pattern: Mixed SIL Doer/Checker
 Hardware: Primary CPU plus 2-of-2 Checker CPU pair
 Software: Doer=Low SIL; Checker=High SIL

 Pro:
 Isolates High SIL software from Low SIL

– Suitable for life-critical SIL system (e.g., SIL 3, 4)
– Checker SIL responsible for system safety

 Only critical software developed at high SIL
– Enables Low SIL software updates to Doer
– Checker CPUs can often be small and cheap

 Con:
 Fail-Silent behavior
 3 CPUs instead of 2 for fail-silent system

Mixed SIL, Fail Silent

SIL 1, 2
Doer

SIL 3, 4
Checker
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 Pattern: Mixed SIL Dual Doer/Fail-Stop Checker
 Hardware: Dual Primary CPU plus 2-of-2 Checker CPU pair
 Software: Doer=Low SIL; Checker=High SIL

 Pro:
 Likely to be less expensive than dual 2-of-2

– Only critical software developed at high SIL
– Checker CPUs can often be small and cheap

 Suitable for life-critical SIL (e.g., SIL 3, 4)
– Less likely to have an outage due to Doer fault

 Con:
 Need to structure software as Doer/Checker pair
 Not fail operational!

– Low SIL Doer software fault can shut down system

Mixed SIL, High Availability

SIL 1, 2
Doer #1

SIL 1, 2
Doer #2

SIL 3
Checker #1

SIL 3
Checker #2
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 Consider both HW & SW redundancy
 Doer/checker provides some diversity

 Use building blocks as appropriate
 Failover for availability
 2-of-2 for same-SIL fault detection
 Doer/checker for mixed-SIL fault detection

 Pitfalls:
 Don’t double-spend redundancy
 “Clever” shortcuts usually don’t work
 Avoid single points of failure

– Don’t forget I/O connection redundancy issues!
 Acceptable patterns depend upon your safety argument

Best Practices For Safety Architecture

2-of-2

Failover

Doer/Checker
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https://xkcd.com/2038/
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