

Prof. Philip Koopman

Carnegie Mellon University

Driver Assistance vs. Automated Vehicle Safety

August 2021

Overview

Driver Assistance:

- Help human drivers be better & safer
- Driver Automation:
 - Vehicle actually drives
- Compare & contrast
 - Safety argument implications
 - Technology challenges

Start with:

Automation modes for non-engineers

Vehicle Automation Modes

Assistive: Help the Driver Drive

- Better execute driver commands
 - Anti-lock brakes
 - Electronic stability control
- Momentarily intervene for safety
 - Automated emergency braking
- The driver is responsible for safety
 - The vehicle obeys driver intent
 - Interventions to improve driver performance
 - Functional safety covers equipment failures (ISO 26262)

Carnegie

University

Supervised: Driver Monitors for Safety

- Vehicle (mostly) does the driving
 - Speed control & lane keeping
- Human driver responsible for safety
 - Intervene to handle edge cases

- Driver monitors and intervenes
 - Vehicle must let driver intervene when needed (ISO 26262)
 - Effective driver monitoring required for automation complacency
 - Safety Of The Intended Function (SOTIF) (ISO 21448) helpful

Carnegie

Jniversity

ADAS Safety – Helping the Driver

- Proper functionality helps driver
 - Reduce driver stress, control mistakes

Active safety can help

- Helps avoid crashes
- Tune to avoid false activations

Arguably, good enough active safety

- ADAS claims credit for safety; human blamed for crashes
- BUT: avoid unreasonable demands on human drivers
 - Unaided humans are terrible at monitoring boring automation

Carnegie

University

Automated: The Car Drives

- Vehicle drives & handles safety
 - Driver need not pay attention to driving
 - Driving problems <u>not</u> dumped onto driver
- The vehicle responsible for driving safety
 - By definition: collisions are not fault of a human driver
- Tension between safety and permissiveness
 - False non-detections (false negatives) generally hurt safety
 - False detections (false positives) generally hurt permissiveness

Autonomous: No Human Oversight

- Vehicle handles driving & vehicle safety
 - There is no driver; no human supervision
 - Ensures passenger & cargo safety
 - Handles non-driving issues (e.g., post-crash)

Carnegie

Jniversity

- The vehicle is responsible safe operation
 - Human does not help with safety
 - OK for vehicle to get help if it initiates request all on its own
- Adds requirement for non-driving sensing (UL 4600)
 - Passenger safety; cargo safety; vehicle equipment status
 - Beyond scope of Automated Driving System Levels in J3016

Driver Roles Contrasted

Assistive & Supervised

- Driver attention required
- Vehicle responds to driver
- Vehicle blame for unsafe intervention
 - Incentive for vehicle to under-perform

Automated & Autonomous

- No human attention on driving
 - Vehicle cannot count on human intervention for driving safety
- Mode changes are requests, not demands by vehicle
 - Human actively confirms responsibility

Driver Mode Transitions

Carnegie Mellon University

- Mode confusion is a problem
 - Driver positive acknowledgment
 - Request user attention, not "demand"
- Example issues:
 - Supervised changes to Assistive
 - Driver thinks vehicle is still steering
 - Automated changes to Supervised
 - Driver takes extended time to regain situational awareness
 - "Captain of ship" does not have a full driving license
 - Autonomous changes to Automated
 - Attendant rouses then falls back asleep (sleeps through alarm)

Automation Safety Challenges

Assistive

- More uniform adoption of ISO 26262
- Supervised
 - Safety credit if low false positives
 - Effective driver monitoring
- Automated
 - SOTIF, scenario completeness & coverage
 - Sensor fusion, perception, prediction
 - Blamed for false negatives
- Autonomous
 - UL 4600 coverage: drivers do more than drive

Carnegie

University

AV GETS

THE BLAME

ADAS GETS

SAFETY CREDIT

Component Safety Challenges

- Positive Trust Balance:
 - Engineering Rigor, Validation, Feedback, Safety Culture
 - Standards-driven safety
- Safety Performance Indicators (SPIs)
 - Integrators asking for component safety cases
 - Field feedback: development; deployed
- Scalability past pilot vehicles
 - Accurate perception/prediction is still work in progress
 - Transition from brute force data to safety case
 - Key point: avoiding multi-sensor correlated failures

Carnegie

Jniversity

Organizational Safety Challenges

- Significant pressure to deploy
 - Flurry of empty driver seat demos in 2020
 - Can teams take the time needed for safety?
- Industry transparency needed
 - Safety collaboration rather than competition
 - Public trust in face of an adverse news event
- Ensuring robust safety cultures
 - Robotics meets automotive engineering
 - Silicon Valley culture + automotive culture + no human driver

Carnegie

Mellon University

https://youtu.be/nhqyrze30bk Yandex demo video, Ann Arbor, Aug 2020