GETTING TO DEPLOYED + SAFE

Carnegie Mellon University

© 2021 Philip Koopman 84

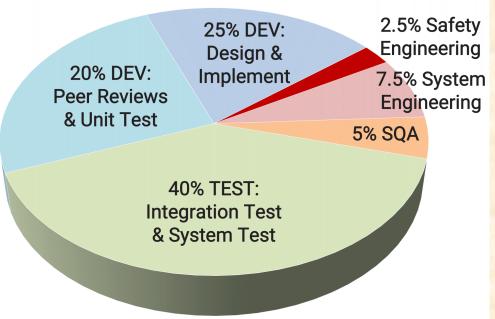
System Engineering

- When the pieces are put together, will system work?
- System-level design
 - Requirements management
 - Architecture (hardware, software, power, ...)
- System integration
 - Component interfaces (sensors, software, hardware, ...)
- Complexity & supplier management
 - Internal + external suppliers
 - Requirements to test plan linkage

Computer-Based System Safety Engineering

- Will the result be acceptably safe?
- Safety engineering:
 - Identifying hazards & mitigation strategies
 - Hazard analysis & safety concepts
 - Mitigations and safety validation
 - Ensuring acceptable safety
 - Safety requirements
 - Safety qualification (components, tools)
- Safety culture:
 - Safety Management System (SMS) & standards conformance
 - Safety practices across design, deployment, operations

Carnegie


University

Typical Staffing Profile

Rough approximation of staffing proportions

Deep supply chain → more system & safety engineers at interfaces

PROJECT EFFORT

(security assumed to be part of system engineering)

© 2021 Philip Koopman 87

Carnegie

Mellon University

Technical Safety Challenges

Perception & prediction

- Safety of machine learning-based functions
- Need more than object motion tracking
- Safety of Intended Function (SOTIF)
 - Drive/Fix/Drive iteration with lots of testing
 - Waymo: 6M test miles; 65K deployed miles
 - How will safety be argued for larger fleets?
 - Likely will involve UL 4600 concepts and safety cases
- Getting from "works OK" to "safe"
 - You can brute force the first few "nines" ... but not all of them.
 - Field feedback into safety cases

Carnegie

Vlellon University

Organizational Safety Challenges

- Significant pressure to deploy
 - Flurry of empty driver seat demos in 2020
 - Can teams take the time needed for safety?

Industry transparency needed

- Safety collaboration rather than competition
- Public trust in face of an adverse news event

Ensuring robust safety cultures

- Robotics meets automotive engineering
- Silicon Valley culture + automotive culture + no human driver

Carnegie

Mellon University

https://youtu.be/nhqyrze30bk Yandex demo video, Ann Arbor, Aug 2020

Getting To Deployed + Safe

10% System & Safety Engineering staff

- Resolve open technical safety challenges
- Robust safety culture is crucial

Carnegie Mellon University