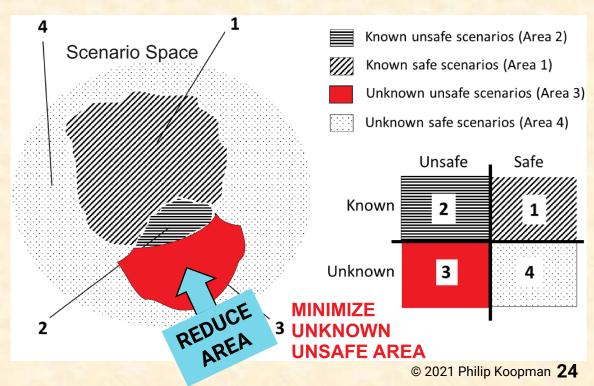
SOTIF & Edge Cases

Carnegie Mellon University


Identifying & Mitigating Hazards

ISO 26262: Hazard and Risk Analysis (HARA)

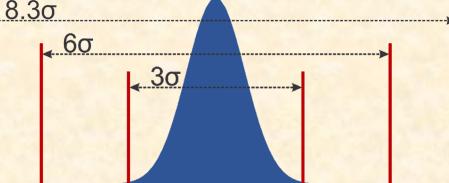
Identify and mitigate risks in accordance with ASIL requirements

ISO 21448: Identify and mitigate unsafe scenarios

- Safety of the Intended Function (SOTIF)
- Reduce "unknown unsafe" area
 - Restrict ODD if needed
- Deploy at acceptable residual risk

Carnegie

Mellon University


Six Sigma Isn't Enough for Safety

Key Performance Indicators (KPIs) help with quality

- Are all functions working?
- Is the functionality improving?
- Is the fault rate decreasing?

Good KPIs are just a start

- Six Sigma Quality: 99.99966% (five nines)
 - Better, but not enough for life critical functions
- Fatal Crash Avoidance: 99.999999996% (eleven nines)
 - - » (example: 1000 opportunities/mile, 250M miles/fatal crash, 1.5o shift)

It's All About The Edge Cases

- Gaps in training data can lead to perception failure
 - Safety needs to know: "Is that a person?"
 - Machine learning provides: "Is that thing like the people already in my training data?"

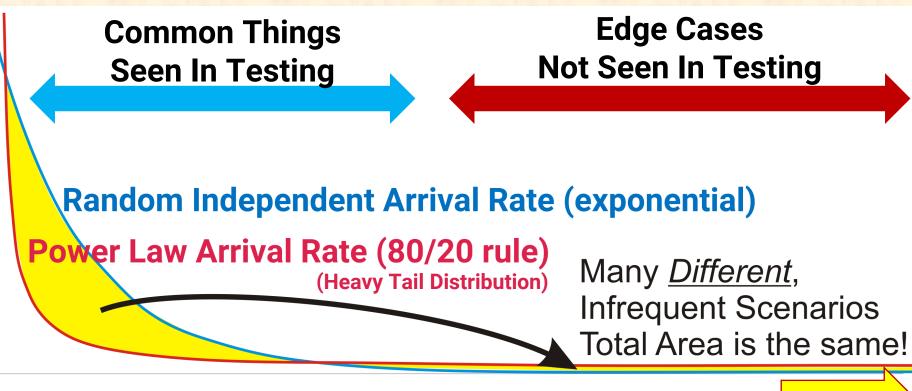
Edge Case are surprises

- You won't see these in training or testing
 - → Edge cases are the stuff you didn't think of!

PREDICTED CONCEPT	PROBABILITY
bird	0.997
no person	0.990
one	0.975
feather	0.970
nature	0.963
poultry	0.954
outdoors	0.936
color	0.910
animal	0.908

https://www.clarifai.com/demo

Why Edge Cases Matter


- Where will you be after 1 Billion miles of drive-fix-drive?
- Assume 1 Million miles between unsafe "surprises"
 - Example #1: 100 "surprises" @ 100M miles / surprise
 - All surprises seen about 10 times during testing
 - With luck, all bugs are fixed
 - Example #2: 100,000 "surprises" @ 100<u>B</u> miles / surprise
 - Only 1% of surprises seen during 1B mile testing
 - Bug fixes give no real improvement (1.01M miles / surprise)

Carnegie

Mellon University

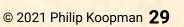
Real World: Heavy Tail Distribution

TOTAL TESTING TIME

Humans are good at heavy tail

© 2021 Philip Koopman 28

Carnegie


Mellon University

From Driver Assist to Automation

- Driver Assistance (Advanced Driver Assistance System/ADAS)
 - Effective driver monitoring
 - Safety credit if low false positives
 - Every activation can be a life saved
 - Non-activation was driver's fault anyway

Automated Vehicle (AV)

- Scenario completeness & coverage
- Sensor fusion, perception, prediction
- Blamed for false negatives in heavy tail
 - Every mistake can be a life lost

Carnegie

Mellon University

AV GETS

THE BLAME

ADAS GETS

SAFETY CREDIT

ADS Must Handle Unusual Situations

Carnegie Mellon University

CARS

Tesla Autopilot Mistakes Burger King for Stop Signs, and They Transform it into an Advertisement!

🖰 Florance Gold June 25, 2020 🔹 autopilot Burger King Tesla Autopilot

(Burger King owns this trademark. They have not endorsed this slide)

Human Intuition Isn't Enough

Some (perhaps most?) surprises are not obvious to humans

- Characteristics human test designers think shouldn't matter
- Rare events humans know are important but are underrepresented
 - High visibility clothing

How good is your ADS at knowing it doesn't know?

Carnegie

University

Changing Relevance of Perception Defects

❖ Functional safety → SOTIF & system safety
❖ Heavy tail/edge cases determine safety
❖ Need to do something safe for unknown unknowns

