
1© 2020 Philip Koopman

Data Integrity
Prof. Philip Koopman

These tutorials are a simplified
introduction, and are not sufficient on
their own to achieve system safety.
You are responsible for the safety of
your system.

~“I have a bad feeling about this.”~
― Star Wars, Episode k {k=1..9}

2© 2020 Philip Koopman

 Anti-Patterns for Data Integrity:
 No checks on memory data

– Program image and configuration
– RAM and other data integrity

 No end-to-end message checks
 Using checksum instead of CRC

 Memory & data integrity
 Detecting data corruption:

– Mirroring, Parity & SECMED codes, Checksum, CRC
– If data word consistent with error code, then no detectable error
– Random hash as a starting point: random k-bit error code by chance misses 1/2k errors

 Malicious faults require cryptographically strong integrity check
– All error codes discussed here are easy to attack

Data, Message & Memory Integrity
Codeword =
Dataword +
Error Code

3© 2020 Philip Koopman

 Hardware faults
 Network message bit flips
 Bad EEPROM/Flash writes
 “Bit rot” (storage degrades over

time)

 Single event upsets: Soft Errors
 Affect both memory & CPU logic
 Error detecting codes usually don’t

help with CPU logic faults!

 Software corruption
 Bad pointers, buffer overflow, etc.

Sources of Data Faults
Soft Errors
Simplified

4© 2020 Philip Koopman

 Key term: Hamming Distance (HD)
 Smallest # of bit flips possibly undetected
 Flips across data value and error code
 Higher HD is better (more errors detected)

 Parity: detects single bit errors (HD=2)
 Store one bit that holds XOR of all bits

 Mirroring (HD=2, but cheap computation)
 Store data twice: plain and inverted bits

– E.g.: 0x55 {0x55, 0xAA} two-byte pair

 SEC: (Hamming Code) correct single bit errors
 SECDED:

Single Error Correction, Double Error Detection
 Use a Hamming Code + parity bit to give HD=4
 Size approximately 1 + log2 (number of data bits)

Overview of Data Integrity Mechanisms
HD Flips

Detected
Flips

Undetected
Examples

1 None 1+ No Error
Code

HD Flips
Detected

Flips
Undetected

Examples

1 None 1+ No Error
Code

2 1 2+ Parity,
Checksum,
Mirroring,
Any CRC

HD Flips
Detected

Flips
Undetected

Examples

1 None 1+ No Error
Code

2 1 2+ Parity,
Checksum,
Mirroring,
Any CRC

3 1-2 3+ Hamming
(SEC),

Some CRCs,
Short

Fletcher

HD Flips
Detected

Flips
Undetected

Examples

1 None 1+ No Error
Code

2 1 2+ Parity,
Checksum,
Mirroring,
Any CRC

3 1-2 3+ Hamming
(SEC),

Some CRCs,
Short

Fletcher

4 1-3 4+ Some CRCs,
SECDED

HD Flips
Detected

Flips
Undetected

Examples

1 None 1+ No Error
Code

2 1 2+ Parity,
Checksum,
Mirroring,
Any CRC

3 1-2 3+ Hamming
(SEC),

Some CRCs,
Short

Fletcher

4 1-3 4+ Some CRCs,
SECDED

5+ HD-1 HD+ Good CRC

5© 2020 Philip Koopman

 “Add” up all the data bits
 XOR all data words (HD=2)

– Detects 1-bit errors
 2’s complement addition (HD=2)

– Detects 1-bit and most 2-bit errors
 1’s complement addition (HD=2)

– Wraps carry bit, so slightly better

 Complex checksums:
 Fletcher checksum (HD=2, HD=3)

– Keeps two running 1’s comp. sums
– HD=3 at short lengths, HD=2 at long lengths

 Adler checksum (HD=2, HD=3)
– Uses prime moduli counters
– Fletcher is typically a better & faster choice

Checksum Techniques Compared

Maxino, T., & Koopman, P. "The Effectiveness of
Checksums for Embedded Control Networks,"
IEEE Trans. on Dependable and Secure
Computing, Jan-Mar 2009, pp. 59-72.
Error rate BER = 10-6

D

ow
n

Is
 G

o o
d

6© 2020 Philip Koopman

 The mechanism:
 Shift and XOR of

selected feedback bits
 Accumulated residue in

shift register is the CRC
“checksum” value

 The math:
 The data and the feedback bit pattern are both binary coefficient polynomials
 Error code is remainder from polynomial division of data by feedback over GF(2)

 Feedback polynomial selection matters
 Some popular polynomials are poor choices, including international standards(!)
 Some rules of thumb are misguided (e.g., (x+1) divisibility for high HD)
 Best polynomials are found via brute force search of exact evaluations

Cyclic Redundancy Check (CRC)

Example Feedback Polynomial:
0xB41 = x12+x10+x9+x7+x+1 (“+1” is implicit in hex value)

= (x+1)(x3 +x2 +1) (x8 +x4 +x3 +x2 +1)
Factor of (x+1) implicit parity (detects all odd errors)

11
1 1 1 1 1

1 1 1

7© 2020 Philip Koopman

https://users.ece.cmu.edu/~koopman/crc/
 Example: HD=4 for 256 bit data word 0x247 (10 bit CRC)
 Example: HD=6 for 128 bit data word 0x9eb2 (16 bit CRC)

Finding “Good” Polynomials

https://users.ece.cmu.edu/%7Ekoopman/crc/

8© 2020 Philip Koopman

 Ensure sufficient data integrity
 CRC on network packets
 Periodic CRC on flash/EEPROM data
 Appropriate memory integrity check on RAM

 Pitfalls:
 Assuming mirroring is enough

– What about data on stack?
– What about data inside operating system?

 Assuming memory data integrity is all you need
– What about corrupted calculations?

 Using a checksum when you should use a CRC
 Many subtle pitfalls for the unwary. See FAA report: https://goo.gl/uKFmHr

Best Practices For Data Integrity

9© 2020 Philip Koopman

https://www.xkcd.com/378/

10© 2020 Philip Koopman

https://www.explainxkcd.com/wiki/index.php/1683:_Digital_Data

	��Data Integrity��
	Data, Message & Memory Integrity
	Sources of Data Faults
	Overview of Data Integrity Mechanisms
	Checksum Techniques Compared
	Cyclic Redundancy Check (CRC)
	Finding “Good” Polynomials
	Best Practices For Data Integrity
	Slide Number 9
	Slide Number 10
	Slide Number 11

