
1© 2020 Philip Koopman

Safety Requirements

“I cannot conceive of any vital disaster
happening to this vessel. Modern
shipbuilding has gone beyond that.”

– EJ Smith (Captain of the RMS Titanic)

Prof. Philip Koopman

These tutorials are a simplified
introduction, and are not sufficient on
their own to achieve system safety.
You are responsible for the safety of
your system.

2© 2020 Philip Koopman

 Anti-Patterns for Safety Requirements:
 No specifically identified safety requirements
 All functional requirements are safety critical
 Safety requirements can’t be validated

 Specifying safety:
 Safety goals: “working” is not the same as “safe”

– How hazards are avoided at system level
– Can involve correctness, backup systems, failsafes, …
– Often what the system does not do is as important as what it does

 Safety requirements:
– More detailed safety-specific requirements allocated to subsystems

Safety Requirements

3© 2020 Philip Koopman

Overly-simplistic approach:
 Start with system requirements
 Annotate critical system requirements
 Then, annotate supporting requirements
 Problem:

Most requirements can become critical

 Too many system components
promoted to highest criticality level
 Allocating even one critical requirement

to component makes whole thing critical

Identifying Safety-Related Requirements
Requirement Annotation Approach:

4© 2020 Philip Koopman

 Safety Envelope:
 Specify unsafe regions for safety
 Specify safe regions for functionality

– Deal with complex boundary via:
» Under-approximate safe region

(reduces permissiveness)
» Over-approximate unsafe region

 Trigger system safety response
upon transition to unsafe region

Partition the requirements:
 Operation: functional requirements
 Failsafe: safety requirements (safety functions)

Safety Envelope Requirements Approach

5© 2020 Philip Koopman

 “Doer” subsystem
 Implements normal functionality
 Allocate functional requirements to Doer

 “Checker” subsystem
 Implements failsafes (safety functions)
 Allocate safety requirements to Checker

 Checker is entirely responsible for safety
 Doer can be at low SIL (failure is lack of availability)
 Checker must be at high SIL (failure is unsafe)

– Often, Checker can be much simpler than Doer

Architecting A Safety Envelope System
Doer/Checker Pair

Low SIL

High SIL
Simple
Safety
Envelope
Checker

6© 2020 Philip Koopman

 Doer/Checker pattern
 Functional requirements allocated to low-SIL Doer
 Safety requirements allocated to high-SIL Checker

 Good safety requirements
 Trace to system-level safety goals

– Orthogonal to normal functional operation if possible
 Make safety simple to validate (test, peer review)

– Safety testing mostly exercises the Checker box

 Pitfalls:
 Tradeoff between simplicity and permissiveness

– Doer optimality costs Checker validation effort
 Fail-operational functions may require multiple Doer/Checker pairs

Safety Requirements Best Practices

Do
er

 R
eq

ui
re

m
en

ts
Ch

ec
ke

r
Re

qu
ire

m
en

ts

Low SIL

High SIL

https://xkcd.com/1992/

	��Safety Requirements�� ��
	Safety Requirements
	Identifying Safety-Related Requirements
	Safety Envelope Requirements Approach
	Architecting A Safety Envelope System
	Safety Requirements Best Practices
	Slide Number 7
	Historical Perspective: Apollo 11 Lunar Landing
	Video of Apollo 11 Landing
	Slide Number 10
	Slide Number 11
	Slide Number 12

