
1© 2020 Philip Koopman

Software
Maintenance

“There is no code so big, twisted, or complex
that maintenance can't make it worse.”

- Gerald M. Weinberg

Prof. Philip Koopman

2© 2020 Philip Koopman

Anti-Patterns:
 Informal bug tracking
 Not allocating post-release staffing

– Bad prior release distracts team
 Not paying off technical debt

Code maintenance during and after development
 You need a process to identify bugs and track to resolution
 Most software is an update, not a clean-slate project
 Ongoing effort is required to repay “technical debt”

Software Maintenance
https://goo.gl/Crc1zq

3© 2020 Philip Koopman

 Map reported issue to an actual bug
 L1/L2/L3 support to capture bug report
 Sorting out duplicate reports takes effort

 Prioritize the bug fix (e.g., risk table)
 Combination of frequency, business cost

 Find someone with right skills to fix it
 Does this derail new development tasks?
 Quick and dirty? Or a solid re-engineer fix?

 Validate the fix
 Did you inject a new fault with the fix?

 Package the fix and deploy it
 Hot patch? Defer to future schedule release?

Managing Bugs

 Risk table example:
 High consequence defect
 With low probability of occurrence
Medium risk / medium priority bug

4© 2020 Philip Koopman

 Most SW work is on existing code, not a clean slate
 “Clean slate” often works with COTS components

 60/60 rule [Glass, IEEE Software May 2001]

 Maintenance can average 60% of lifecycle cost
 About 60% of maintenance is adding new features

 Maintenance is harder than development
 Need to understand existing system

– Motivation for keeping entire V document chain up to date
– Optimized code is more painful to maintain

 Need to modify system without breaking things
– Complete rewrite usually impractical – and might be worse

Maintenance Matters Most

https://goo.gl/1CqN9i

5© 2020 Philip Koopman

 Technical debt: messy code/design/architecture that hasn’t been cleaned up
 Some signs of debt:

– Degraded code quality (spaghetti code, globals, warnings, …)
– Skipped process steps (missing peer reviews, unit tests, …)
– High fault reinjection ratio (new bugs when fixing old bugs)

 You incur debt by taking a shortcut
– Short-term debt can be useful (e.g., meet a deadline)

 Repay debt by refactoring the system

 Technical debt incurs interest
 Shortcuts often lead to bugs, fragility
 Accumulated debt becomes unsustainable

 Use the right amount of debt
 It’s like using a credit card responsibly
 Devote part of each development cycle to repaying technical debt

Managing Technical Debt

$

$

$

$

https://goo.gl/cFXrD9

6© 2020 Philip Koopman

Most development is maintenance
 Plan for and staff maintenance

– Most development is on the next revision
– Plan for high priority emergency fixes

 Keep up with technical debt payments

Maintenance pitfalls
 Not allocating time for bugs, maintenance & technical debt

– For example, need perhaps 10% budget for technical debt repayment
– Leave slack in deadlines for fixing urgent previous-version bugs

 Evaluating programmers only for clean-sheet development skills

Best Practices for Maintenance

https://goo.gl/DDZfcY

7© 2020 Philip Koopman

https://xkcd.com/1172/ https://xkcd.com/1579/

	��Software�Maintenance�� ���
	Software Maintenance
	Managing Bugs
	Maintenance Matters Most
	Managing Technical Debt
	Best Practices for Maintenance
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Discussion Questions
	Exercises

