

Prof. Philip Koopman

Carnegie Mellon University

Integration Testing

"It's hard enough to find an error in your code when you're looking for it; it's even harder when you've assumed your code is error-free."

- Steve McConnell

© 2020 Philip Koopman 1

YOU ARE HERE

Integration Testing

Anti-Patterns:

- Skipping straight to system test
- No traceability from integration test to High Level Design
- Integration test "pass" criterion based on system function, not interfaces
- Testing component integration:
 - Exercise all component interfaces
 - Correct responses to input sequences?
 - Handle all types of data on interfaces?
 - Ensure modules match HLD, including SDs
 - Assume unit test has vetted each component
 - Concentrate on component interactions

Integration Test Approach To SDs

Exercise all interfaces

- All inputs result in correct outputs
- Every component interface exercised
 - With all relevant values
 - With all relevant timing & sequencing
- Use SDs and HLD info drive testing
 - Pass/fail: does it match SD?

Integration test coverage:

- All arcs on all SDs exercised?
- Off-nominal behaviors tested?
 - Invalid sequencing and extraneous inputs?
 - Extraneous outputs?

Integration Test IT-1a:

- 1. Initialize modules
- 2. Test setup: CoinCount to zero
- 3. Insert coin (1a)
- 4. Observe Coinln(true) (1b)
- 5. Observe CoinIn(false (1c)
- 6. Observe mCoinCount == 1 (1d)

Carnegie

Mellon Universitv

Tracing Integration Tests to SDs

- Observe module interactions
 - Set up test
 - Meet SD preconditions
 - Feed input arc(s) to modules
 - Observe intermediate arcs
 - Observe output arcs
 - Find a way to observe documented side effects (e.g., final CoinCount)
- Integration test "pass" is <u>not</u> just based on final output
 - Do all the arcs appear in expected sequence?
 - Is timing appropriate?

Test Outputs

Carnegie

Mellon University

Integration Tests and Messaging

Carnegie Mellon University

Interfaces often look like "messages"

- Categorical values (enums)
- Data structures
- Network packets
- Integration testing should exercise "message" structure
 - All types of messages
 - Valid and invalid field values
 - Timing, exception handling
 - e.g., bad checksum, bad sequence number
- HLD will have the message dictionary
 - Defines message types, formats, etc.
 - Accompanied by a validation test suite

Mode 01 [edit]

PID (hex)	PID (Dec)	Data bytes returned	Description	Min value	Max value	Units	Formula ^[a]
00	0	4	PIDs supported [01 - 20]				Bit encoded [A7D0] == [PID \$01PID \$20] See below
01	1	4	Monitor status since DTCs cleared. (Includes malfunction indicator lamp (MIL) status and number of DTCs.)				Bit encoded. See below
02	2	2	Freeze DTC				
03	3	2	Fuel system status				Bit encoded. See below
04	4	1	Calculated engine load	0	100	%	$rac{100}{255}A$ (or $rac{A}{2.55}$)
05	5	1	Engine coolant temperature	-40	215	°C	A-40
			Short torm fuel				

OBDii Parameter ID message dictionary (CAN Network Messages)

[https://en.wikipedia.org/wiki/OBD-II_PIDs]

Integration Test Best Practices

- Trace Integration tests to HLD
 - Exercise all arcs on every SD
 - Cover all modules; all interfaces
 - Cover all message types and fields

Integration test pitfalls

- System testing alone misses system integration edge cases
 - Sometimes a misbehaving system appears to work at system test
 - Can be difficult to exercise off-nominal SDs at system level
- If you skip HLD, you can't trace Integration Tests back to design

Carnegie

University

Solutions that might fix the problem without breaking anything

@ThePracticalDev