
1© 2020 Philip Koopman

Integration Testing

“It's hard enough to find an error in your
code when you're looking for it; it's even
harder when you've assumed your code is
error-free.”

– Steve McConnell

Prof. Philip Koopman

2© 2020 Philip Koopman

YOU ARE HERE
SPECIFY

PRODUCT

SPECIFY
SOFTWARE

UNIT
TEST

SOFTWARE
TEST

ACCEPTANCE
TEST

CREATE SW
ARCHITECTURE

IMPLEMENT

INTEGRATION
TEST

TRACEABILITY & VALIDATION

DESIGN
MODULES

Product
Requirements

Software Requirements

High Level Design

Detailed Design Source Code

Unit Test Results

Integration Test Results

Test Plan & Test Results

Test Plan & Test Results

Test Plan & Test Results

Test
Plan &

Test
Results

Software Test
Results

PRODUCT

3© 2020 Philip Koopman

 Anti-Patterns:
 Skipping straight to system test
 No traceability from integration test

to High Level Design
 Integration test “pass” criterion based on

system function, not interfaces

 Testing component integration:
 Exercise all component interfaces

– Correct responses to input sequences?
– Handle all types of data on interfaces?

 Ensure modules match HLD, including SDs
– Assume unit test has vetted each component
– Concentrate on component interactions

Integration Testing

4© 2020 Philip Koopman

 Exercise all interfaces
 All inputs result in correct outputs
 Every component interface exercised

– With all relevant values
– With all relevant timing & sequencing

 Use SDs and HLD info drive testing
– Pass/fail: does it match SD?

 Integration test coverage:
 All arcs on all SDs exercised?
 Off-nominal behaviors tested?

– Invalid sequencing and extraneous inputs?
– Extraneous outputs?

Integration Test Approach To SDs

Integration Test IT-1a:
1. Initialize modules
2. Test setup: CoinCount to zero
3. Insert coin (1a)
4. Observe CoinIn(true) (1b)
5. Observe CoinIn(false (1c)
6. Observe mCoinCount == 1 (1d)

1

6

3 4
2

5

5© 2020 Philip Koopman

 Observe module interactions
 Set up test

– Meet SD preconditions

 Feed input arc(s) to modules
 Observe intermediate arcs
 Observe output arcs
 Find a way to observe documented

side effects (e.g., final CoinCount)

 Integration test “pass” is
not just based on final output
 Do all the arcs appear in expected sequence?
 Is timing appropriate?

Tracing Integration Tests to SDs

Test Outputs

Test Input

6© 2020 Philip Koopman

 Interfaces often look like “messages”
 Categorical values (enums)
 Data structures
 Network packets

 Integration testing should exercise
“message” structure
 All types of messages
 Valid and invalid field values
 Timing, exception handling

– e.g., bad checksum, bad sequence number

 HLD will have the message dictionary
 Defines message types, formats, etc.
 Accompanied by a validation test suite

Integration Tests and Messaging

OBDii Parameter ID message dictionary
(CAN Network Messages)

[https://en.wikipedia.org/wiki/OBD-II_PIDs]

7© 2020 Philip Koopman

 Trace Integration tests to HLD
 Exercise all arcs on every SD
 Cover all modules; all interfaces
 Cover all message types and fields

 Integration test pitfalls
 System testing alone misses system integration edge cases

– Sometimes a misbehaving system appears to work at system test
– Can be difficult to exercise off-nominal SDs at system level

 If you skip HLD, you can’t trace Integration Tests back to design

Integration Test Best Practices

8© 2020 Philip Koopmanhttps://goo.gl/pvDMHX CC BY-NC 2.0

	��Integration Testing�� ����
	YOU ARE HERE
	Integration Testing
	Integration Test Approach To SDs
	Tracing Integration Tests to SDs
	Integration Tests and Messaging
	Integration Test Best Practices
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Discussion Questions
	Exercises
	Another View of Unit Test

