
1© 2020 Philip Koopman

Code Style
for Compilers

“Programming can be fun, so can
cryptography; however they should
not be combined.”

– Kreitzberg and Shneiderman

Prof. Philip Koopman

2© 2020 Philip Koopman

 Anti-Patterns:
 Code compiles with warnings
 Warnings are turned off or over-ridden
 Insufficient warning level set
 Language safety features over-ridden

Make sure the compiler understands what you meant
 A warning means the compiler might not do what you think

– Your particular language use might be “undefined”
 A warning might mean you’re doing something that’s likely a bug

– It might be valid C code, but should be avoided
 Don’t over-ride features designed for safe language use

Coding Style: Language Use

3© 2020 Philip Koopman

Defined, but potentially dangerous
 if (a = b) { … } // a is modified
 while (x > 0); {x = x-1;} // infinite loop

Undefined or unspecified dangerous
 You might think you know what these do …

… but it varies from system to system
 int *p = NULL; x = *p; // null pointer dereference
 int b; c = b; // uninitialized variable
 int x[10]; … b = x[10]; // access past end of array
 x = (i++) + a[i]; // when is i incremented?

The C Language Doesn’t Always Play Nice

BAD
CODE!

4© 2020 Philip Koopman

 MISRA C, C++
 Guidelines for critical systems in C (e.g., no malloc)
 Portability, avoiding high risk features, best practices

 CERT Secure C, C++, Java
 Rules to reduce security risks (e.g., buffer overflows)
 Includes list of which tools check which rules

 Static analysis tools
 More than compiler warnings (e.g., strong type warnings)
 Many tools, both commercial and free. Start by going far past “–Wall” on gcc

 Dynamic Analysis tools
 Executes the program with checks (e.g., memory array bounds)
 Again, many tools. Start by looking at Valgrind tool suite

Language Use Guidelines & Tools

5© 2020 Philip Koopman

MISRA C
2012

Example

[MISRA C-2012 Guidelines; Fair Use]

6© 2020 Philip Koopman

 Use enum instead of int
 enum color {black, white, red}; // avoids bad values

 Use const instead of #define
 const uint64_t x = 1; // helps with type checking

uint64_t y = x << 40; // avoids 32-bit overflow bug

 Use inline instead of #define
 If it’s too big to inline, the call overhead doesn’t matter
 Many compilers inline automatically even without keyword

 Use typedef with static analysis
 typedef uint32_t feet; typedef uint32_t meters;

feet x = 15;
meters y = x; // feet to meters assignment error

 Use stdint.h for portable types
 int32_t is 32-bit integer, uint16_t is 16-bit unsigned, etc.

Let the Language Help!

https://goo.gl/6SqG2i

7© 2020 Philip Koopman

 Use deviations from rules with care
 Use “pragma” deviations sparingly; comment what/why

What about legacy code that generates
lots of warnings?
 Strategy 1: fix one module at a time

– Useful if you are refactoring/re-engineering the code
– Sometimes might need to keep warnings off for 3rd party headers

 Strategy 2: turn on one warning at a time
– Useful if you have to keep a large codebase more or less in synch

 Strategy 3: start over from scratch
– If the code is bad enough this is more efficient … if business conditions permit

Deviations & Legacy Code

8© 2020 Philip Koopman

 Desirable language capabilities:
 Type safety and strong typing (e.g., pointers aren’t ints)
 Memory safety (e.g., bounds on arrays)
 Robust static analysis (language & tool support)
 In general, no surprises

 Spark Ada as a safety critical language
 Formally defined language; verifiable programs

– The language doesn’t have ambiguities or undefined behaviors
 You can prove that a program is correct

– E.g., can prove absence of: array index out of range, division by zero
– (In practice, this makes you clean up your code until proof succeeds)

 Key idea: design by contract
– Preconditions, post-conditions, side effects are defined

Or – You Can Use A Better Language!

Wikipedia
https://goo.gl/3w6RF6

Spark Ada is a subset
of the Ada

programming
language.

9© 2020 Philip Koopman

 Adopt a safe coding style (or a safe language)
 MISRA C & CERT C are good starting points
 Specify a static analysis tool and config settings

– To degree practical, let machines find the style problems
 When static analysis is set up, add dynamic analysis

 The point of good style is to avoid bugs
 Let the compiler find many bugs automatically
 Reduce chance of compiler mistaking your intention

 Coding style pitfalls:
 “The code passes tests, so warnings don’t matter”
 Real bugs lost in a huge mass of warnings
 Making it too easy to deviate from style rules

Language Style Best Practices

https://goo.gl/pvDMHX CC BY-NC 2.0 https://goo.gl/pvDMHX CC BY-NC 2.0

11© 2020 Philip Koopmanhttps://xkcd.com/1695/

	Code Style�for Compilers���
	Coding Style: Language Use
	The C Language Doesn’t Always Play Nice
	Language Use Guidelines & Tools
	MISRA C 2012 Example�
	Let the Language Help!
	Deviations & Legacy Code
	Or – You Can Use A Better Language!
	Language Style Best Practices
	Slide Number 10
	Slide Number 11
	Slide Number 12
	2012 Open Source Coverity Scan
	Discussion Questions
	Exercises

