
Code Style
for Humans

© 2020 Philip Koopman

“Any fool can write code that a
computer can understand. Good
programmers write code that
humans can understand.”

– Martin Fowler

Prof. Philip Koopman

2© 2020 Philip Koopman

Anti-Patterns:
 “Style doesn’t matter;

it passes all the tests”
 Code that is clever

instead of clear

Other people must understand your code
 Peer reviews won’t work if nobody can read your code

– Write code so that others can tell it is obviously correct
 If others can’t understand it, they will inject bugs
 If it’s not obviously correct, then it’s wrong.

Coding Style: Understandability
“There are two ways of constructing a software
design: one way is to make it so simple that
there are obviously no deficiencies and the
other way is to make it so complicated that
there are no obvious deficiencies.”

— C.A.R. (Tony) Hoare, 1980 Turing Award Talk

3© 2020 Philip Koopmanhttp://blog.aerojockey.com/post/iocccsim

 Consistent formatting
 Consistent indentation, braces
 Templated headers for files and functions
 Spaces and “()” to avoid precedence confusion
 Use space instead of tab

 Comments
 Explain what & why, not just code paraphrase
 Comments are not a design

 Naming
 Descriptive, consistent naming conventions

– E.g., variables are nouns; functions are verbs

 Avoid magic numbers (use const)
 Avoid macros (use inline)

Make Code Easy To Read
Obfuscated C

Winner:
Flight Simulator

4© 2020 Philip Koopman

 Modularity
 Many smaller .c/.cpp files (one per class)
 Externally visible declarations into .h file

 Conditional Statements
 Boolean conditional expression results; no assignments
 All switch statements have a default (usually error trap)
 Limited nesting (see also cyclomatic complexity)

 Variables
 Descriptive names that differ significantly
 Smallest practicable scope for variables; initialize at point of definition
 Use typedefs to define narrow types (also use uint32_t, use enum, etc.)
 Range checks & bounds checks (e.g., buffer overflow)

 Handle errors returned by called functions

Good Code Hygiene

5© 2020 Philip Koopman

"We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should
not pass up our opportunities in that critical 3%”
 Donald Knuth (December 1974). "Structured Programming

with go to Statements". ACM Journal Computing Surveys 6 (4): 268.

 Don’t optimize unless you have performance data
 Most code doesn’t matter for speed
 Use little or no assembly language. Get a better compiler.

 Optimization makes it hard to know your code is right
 Do you want correct code or tricky code?

– (Pick one. Which one is safer?)
 Buy a bigger CPU if you have to

Optimization

https://xkcd.com/1691/

6© 2020 Philip Koopman

 Pick a coding style and follow it
 Use tool support for language formatting
 Evaluate naming as part of peer review
 Comments are there to explain implementation

 The point of good style is to avoid bugs
 Make it hard for a reviewer to miss a problem

– Even better, make it easy for a tool to find problem
 Also need to have a good technical style

 Coding style pitfalls:
 Optimizing for the author instead of the reviewer
 Making it too easy to deviate from style rules

Coding Understandability Best Practices
Great style depends
upon point of view.

7© 2020 Philip Koopman

“Always code as if
the guy who ends up

maintaining your code
will be a

violent psychopath
who knows where you live.

Code for readability.”

(Author unclear)

https://goo.gl/pvDMHX CC BY-NC 2.0

8© 2020 Philip Koopman

https://xkcd.com/1513/

	Code Style�for Humans���
	Coding Style: Understandability
	Make Code Easy To Read
	Good Code Hygiene
	Optimization
	Coding Understandability Best Practices
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Discussion Questions
	Exercises

