
CMU 18-447 Introduction to Computer Architecture, Spring 2015

HW 4: SIMD, VLIW, Static Scheduling, Caching, Virtual Memory

Instructor: Prof. Onur Mutlu
TAs: Kevin Chang, Rachata Ausavarungnirun, Albert Cho, Jeremie Kim, Clement Loh

Assigned: Wed., 2/25, 2015
Due: Wed., 3/18, 2015 (Midnight)

Handin: autolab

1 Vector Processing [15 points]

Consider the following piece of code:

for (i = 0; i < 100; i ++)
A[i] = ((B[i] * C[i]) + D[i])/2;

(a) Translate this code into assembly language using the following instructions in the ISA (note the
number of cycles each instruction takes is shown next to each instruction):

Opcode Operands Number of Cycles Description
LEA Ri, X 1 Ri Ð address of X
LD Ri, Rj, Rk 11 Ri Ð MEM[Rj + Rk]
ST Ri, Rj, Rk 11 MEM[Rj + Rk] Ð Ri

MOVI Ri, Imm 1 Ri Ð Imm
MUL Ri, Rj, Rk 6 Ri Ð Rj x Rk
ADD Ri, Rj, Rk 4 Ri Ð Rj + Rk
ADD Ri, Rj, Imm 4 Ri Ð Rj + Imm

RSHFA Ri, Rj, amount 1 Ri Ð RSHFA (Rj, amount)
BRcc X 1 Branch to X based on condition codes

Assume one memory location is required to store each element of the array. Also assume that
there are 8 registers (R0 to R7).

Condition codes are set after the execution of an arithmetic instruction. You can assume typically
available condition codes such as zero, positive, and negative.

Solution:

MOVI R1, 99 // 1 cycle
LEA R0, A // 1 cycle
LEA R2, B // 1 cycle
LEA R3, C // 1 cycle
LEA R4, D // 1 cycle
LOOP:
LD R5, R2, R1 // 11 cycles
LD R6, R3, R1 // 11 cycles
MUL R7, R5, R6 // 6 cycles
LD R5, R4, R1 // 11 cycles
ADD R8, R7, R5 // 4 cycles
RSHFA R9, R8, 1 // 1 cycle
ST R9, R0, R1 // 11 cycles
ADD R1, R1, -1 // 4 cycles
BRGEZ R1 LOOP // 1 cycle

How many cycles does it take to execute the program?

1/16

Solution:
5` 100ˆ 60 “ 6005

(b) Now write Cray-like vector assembly code to perform this operation in the shortest time possible.
Assume that there are 8 vector registers and the length of each vector register is 64. Use the
following instructions in the vector ISA:

Opcode Operands Number of Cycles Description
LD Vst, #n 1 Vst Ð n (Vst = Vector Stride Register)
LD Vln, #n 1 Vln Ð n (Vln = Vector Length Register)

VLD Vi, X 11, pipelined
VST Vi, X 11, pipelined
Vmul Vi, Vj, Vk 6, pipelined
Vadd Vi, Vj, Vk 4, pipelined
Vrshfa Vi, Vj, amount 1

Solution:

LD Vln, 50
LD Vst, 1
VLD V1, B
VLD V2, C
VMUL V4, V1, V2
VLD V3, D
VADD V6, V4, V3
VRSHFA V7, V6, 1
VST V7, A

VLD V1, B + 50
VLD V2, C + 50
VMUL V4, V1, V2
VLD V3, D + 50
VADD V6, V4, V3
VRSHFA V7, V6, 1
VST V7, A + 50

How many cycles does it take to execute the program on the following processors? Assume that
memory is 16-way interleaved.

(i) Vector processor without chaining, 1 port to memory (1 load or store per cycle)

Solution:

The third load (VLD) can be pipelined with the add (VADD). However as there is just only
one port to memory and no chaining, other operations cannot be pipelined.

Processing the first 50 elements takes 346 cycles as below

| 1 | 1 | 11 | 49 | 11 | 49 | 6 | 49 |
| 11 | 49 | 4 | 49 | 1 | 49 | 11 | 49 |

Processing the next 50 elements takes 344 cycles as shown below (no need to initialize Vln
and Vst as they stay at the same value).

| 11 | 49 | 11 | 49 | 6 | 49 |
| 11 | 49 | 4 | 49 | 1 | 49 | 11 | 49 |

Therefore, the total number of cycles to execute the program = 690 cycles

2/16

(ii) Vector processor with chaining, 1 port to memory

Solution:

In this case, the first two loads cannot be pipelined as there is only one port to memory
and the third load has to wait until the second load has completed. However, the machine
supports chaining, so all other operations can be pipelined.

Processing the first 50 elements takes 242 cycles as below

| 1 | 1 | 11 | 49 | 11 | 49 |
| 6 | 49 |

| 11 | 49 |
| 4 | 49 |

| 1 | 49 |
| 11 | 49 |

Processing the next 50 elements takes 240 cycles (same time line as above, but without the
first 2 instructions to initialize Vln and Vst).

Therefore, the total number of cycles to execute the program = 482 cycles

(iii) Vector processor with chaining, 2 read ports and 1 write port to memory

Solution:

Assuming an in-order pipeline.

The first two loads can also be pipelined as there are two ports to memory. The third load
has to wait until the first two loads complete. However, the two loads for the second 50
elements can proceed in parallel with the store.

| 1 | 1 | 11 | 49 |
| 1 | 11 | 49 |

| 6 | 49 |
| 11 | 49 |

| 4 | 49 |
| 1 | 49 |

11	49
11	49
11	49

| 6 | 49 |
| 11 | 49 |

| 4 | 49 |
| 1 | 49 |

| 11 | 49 |

Therefore, the total number of cycles to execute the program = 215 cycles

3/16

2 VLIW [15 points]

You are using a tool that transforms machine code that is written for the MIPS ISA to code in a
VLIW ISA. The VLIW ISA is identical to MIPS except that multiple instructions can be grouped
together into one VLIW instruction. Up to N MIPS instructions can be grouped together (N is the
machine width, which depends on the particular machine). The transformation tool can reorder MIPS
instructions to fill VLIW instructions, as long as loads and stores are not reordered relative to each
other (however, independent loads and stores can be placed in the same VLIW instruction). You give
the tool the following MIPS program (we have numbered the instructions for reference below):

(01) lw $t0 Ð 0($a0)
(02) lw $t2 Ð 8($a0)
(03) lw $t1 Ð 4($a0)
(04) add $t6 Ð $t0, $t1
(05) lw $t3 Ð 12($a0)
(06) sub $t7 Ð $t1, $t2
(07) lw $t4 Ð 16($a0)
(08) lw $t5 Ð 20($a0)
(09) srlv $s2 Ð $t6, $t7
(10) sub $s1 Ð $t4, $t5
(11) add $s0 Ð $t3, $t4
(12) sllv $s4 Ð $t7, $s1
(13) srlv $s3 Ð $t6, $s0
(14) sllv $s5 Ð $s0, $s1
(15) add $s6 Ð $s3, $s4
(16) add $s7 Ð $s4, $s6
(17) srlv $t0 Ð $s6, $s7
(18) srlv $t1 Ð $t0, $s7

(a) Draw the dataflow graph of the program Represent instructions as numbered nodes (01 through
18), and flow dependences as directed edges (arrows).

4/16

Solution:

(b) When you run the tool with its settings targeted for a particular VLIW machine, you find that
the resulting VLIW code has 9 VLIW instructions. What minimum value of N must the target
VLIW machine have?

Solution:

N “ 3 (see VLIW program below). If N “ 2, then the VLIW program must have at least 11
MIPS instructions, and the number of VLIW instructions either stays the same or decreases as
width is increased by one MIPS instruction.

(c) Write the MIPS instruction numbers (from the code above) corresponding to each VLIW instruc-
tion, for this value of N . When there is more than one MIPS instruction that could be placed
into a VLIW instruction, choose the instruction that comes earliest in the original MIPS program.

Solution:

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

VLIW Instruction 1: 01 02 03
VLIW Instruction 2: 04 05 06
VLIW Instruction 3: 07 08 09
VLIW Instruction 4: 10 11
VLIW Instruction 5: 12 13 14
VLIW Instruction 6: 15
VLIW Instruction 7: 16
VLIW Instruction 8: 17
VLIW Instruction 9: 18

5/16

(d) You find that the code is still not fast enough when it runs on the VLIW machine, so you contact
the VLIW machine vendor to buy a machine with a larger machine width N . What minimum
value of N would yield the maximum possible performance (i.e., the fewest VLIW instructions),
assuming that all MIPS instructions (and thus VLIW instructions) complete with the same fixed
latency and assuming no cache misses?

Solution:

N “ 6. This is the maximum width of the dataflow graph and results in 7 VLIW instructions (see
below). If N “ 5, then the VLIW program will instead have 8 VLIW instructions. Increasing N
further does not allow any more MIPS instructions to be parallelized in wider VLIW instructions.

(e) Write the MIPS instruction numbers corresponding to each VLIW instruction, for this optimal
value of N . Again, as in part (c) above, pack instructions such that when more than one instruc-
tion can be placed in a given VLIW instruction, the instruction that comes first in the original
MIPS code is chosen.

Solution:

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

VLIW Instruction 1: 01 02 03 05 07 08
VLIW Instruction 2: 04 06 10 11
VLIW Instruction 3: 09 12 13 14
VLIW Instruction 4: 15
VLIW Instruction 5: 16
VLIW Instruction 6: 17
VLIW Instruction 7: 18
VLIW Instruction 8:
VLIW Instruction 9:

(f) A competing processor design company builds an in-order superscalar processor with the same
machine width N as the width you found in part (b) above. The machine has the same clock
frequency as the VLIW processor. When you run the original MIPS program on this machine,
you find that it executes slower than the corresponding VLIW progra m on the VLIW machine
in part (b). Why could this be the case?

Solution:

Concurrently fetched instructions can be dependent in a superscalar processor, requiring bubbles
in the pipeline to be processed. A VLIW code translator can reorder instructions to minimize
such bubbles.

Note that the superscalar processor is in-order in this question.

(g) When you run some other program on this superscalar machine, you find it runs faster than the
corresponding VLIW program on the VLIW machine. Why could this be the case?

Solution:

VLIW code must have explicit NOPs; the superscalar processor does not require these NOPs.
Higher code density results in a higher I-cache hit rate and lower required fetch bandwidth.

6/16

3 Code Optimizations [20 points]

Assume an in-order, non-pipelined machine. The ISA for this machine consists of only the following
five instructions that never generate exceptions. In this syntax, x is a register, whereas y and z
are either registers or constants. Note that this machine is able to execute branches and jumps
instantaneously.

Instruction Name Syntax Cycles

Move x “ y 1

Addition x “ y ` z 2

Multiplication x “ y ˚ z 5

Branch-If-Greater-Than if (y > z) 0

Jump – 0

Consider the following assembly program that is written in the machine’s ISA. For any initial values
of registers a and b, the purpose of the program is to compute the final value and store it in register
f . After the program terminates, it is considered to have executed correctly if and only if the values
stored in registers a, b, and f are correct.

a = a + 1

c = 2 * a

if (a > b)

b = b + 2

d = a + b

f = f + d

a = a + 1

d = a + b

f = f + d

e = 2 * a

f = f + c

f = f + e

if (a > 10)

then else

then

END

else

START

f = 0

BB1

BB2 BB3

BB4

BB0

7/16

(a) How many cycles does the machine take to execute the assembly program, when a and b are
initialized to 0 and 1, respectively?

In this program, the two registers a and b are racing to become larger than the other.
If (a ą b) then b is incremented so that it can “catch up” to a; else a is incremented
so that it can “catch up” to b. However, this game of “leap frog” is rigged in favor
of a, because a is guaranteed to be incremented by 1 at every iteration of the loop.
Therefore, when b is trying to catch up, it can only close the gap by 1, even though b
itself is incremented by 2. On the other hand, when a is trying to catch up, it always
closes the gap by 2. To give b more turns to catch up, the majority of the loop iterations
execute BB2, rather than BB3.

Initially: (a, b) = (0, 1)

Iteration #1:
After BB1: (1, 1)
Before BB4: (2, 1)

Iteration #2:
After BB1: (3, 1)
Before BB4: (3, 3)

Iteration #3:
After BB1: (4, 3)
Before BB4: (4, 5)

Iteration #4:
After BB1: (5, 5)
Before BB4: (6, 5)

Iteration #5:
After BB1: (7, 5)
Before BB4: (7, 7)

Iteration #6:
After BB1: (8, 7)
Before BB4: (8, 9)

Iteration #7:
After BB1: (9, 9)
Before BB4: (10, 9)

Iteration #8:
After BB1: (11, 9)
Before BB4: (11, 11)
Exit loop.

Each iteration executes 8 instructions: 6 additions and 2 multiplications. Per-iteration
execution time: 6*2 + 2*5 = 22 cycles. Initializing f takes 1 cycle.

Answer: 8-iterations * 22-cycles/iteration + 1-cycle = 177 cycles.

8/16

You decide to make simple optimizations to the program to reduce its execution time. The optimiza-
tions involve only removing, modifying, and/or moving some of the already existing instructions.
However, there are two restrictions: you may not move instructions out of the loop and you may not
add completely new instructions.

(b) Show the optimized assembly program.

BB0:
f = 0

BB1:
a = a + 1
c = a + a /* CHANGE MULTIPLICATION TO ADDITION */
if (a > b)

BB2:
b = b + 2
d = a + b /* MOVE */
f = f + d /* MOVE */

BB3:
a = a + 1
d = a + b /* MOVE */
f = f + d /* MOVE */

BB4:
d = a + b /* MOVE */
f = f + d /* MOVE */
e = a + a /* CHANGE MULTIPLICATION TO ADDITION */
f = f + c
f = f + e
if (a > 10)

(c) How many cycles does the machine take to execute the optimized assembly program, when a and
b are initialized to 0 and 1?

Each iteration executes 8 instructions: 8 additions.
Per-iteration execution time: 8*2 = 16 cycles.

Answer: 8-iterations * 16-cycles/iteration + 1-cycle = 129 cycles.

9/16

After learning about superblocks, you decide to optimize the program even further to reduce its
execution time. In order to form the superblock(s), assume that you run the program once beforehand
when a and b are initialized to 0 and 1. During this profile run, if a branch is biased in either direction
by more than 60%, it is included in the superblock(s). However, there are two restrictions: you may
not move instructions out of the loop and you may not unroll the loop.

(d) Show the superblock-optimized assembly program. Circle the superblock(s).

BB0:
f = 0

BB1:
a = a + 1
c = a + a
if (a > b)

BB2:
b = b + 2

BB2-TAIL:
d = a + b
f = f + d
e = a + a /* REMOVE UNNECESSARY COMPUTATION */
f = f + c
f = f + c /* SUBSTITUTE c for e */
if (a > 10)

BB3:
a = a + 1

BB3-TAIL:
d = a + b
f = f + d
e = a + a
f = f + c
f = f + e
if (a > 10)

The superblock consists of BB1, BB2, and BB2-TAIL. Recall from (a) that the branch
is biased towards BB2, not BB3.

10/16

(e) How many cycles does the machine take to execute the superblock-optimized assembly program,
when a and b are initialized to 0 and 1?

5 out of 8 iterations take BB2. Those iterations execute 7 instructions: 7 additions.
Execution time: 7*2 = 14 cycles.

3 out of 8 iterations take BB3. Those iterations execute 8 instructions: 8 additions.
Execution time: 8*2 = 16 cycles.

Answer: 5-iterations * 14-cycles/iteration + 3-iterations * 16-cycles/iteration + 1 = 119
cycles.

(f) If you had used traces to optimize the program instead of superblocks, would the execution time
increase, decrease, or stay the same compared to (e)? Choose one and explain briefly why.

Increase. Requires fix-up code.

(g) If you had used hyperblocks to optimize the program instead of superblocks, would the execution
time increase, decrease, or stay the same compared to (e)? Choose one and explain briefly why.

Increase. Cannot perform the optimizations done with superblocks since we do not know
the outcome of the predicated instructions. Also, useless instructions from one of the
branch paths are executed due to predication.

11/16

4 Caching [15 points]

Below, we have given you four different sequences of addresses generated by a program running on a
processor with a data cache. Cache hit ratio for each sequence is also shown below. Assuming that
the cache is initially empty at the beginning of each sequence, find out the following parameters of
the processor’s data cache:

• Associativity (1, 2 or 4 ways)

• Block size (1, 2, 4, 8, 16, or 32 bytes)

• Total cache size (256 B, or 512 B)

• Replacement policy (LRU or FIFO)

Assumptions: all memory accesses are one byte accesses. All addresses are byte addresses.

Sequence No. Address Sequence Hit Ratio
1 0, 2, 4, 8, 16, 32 0.33
2 0, 512, 1024, 1536, 2048, 1536, 1024, 512, 0 0.33
3 0, 64, 128, 256, 512, 256, 128, 64, 0 0.33
4 0, 512, 1024, 0, 1536, 0, 2048, 512 0.25

Solution:
Cache block size - 8 bytes
For sequence 1, only 2 out of the 6 accesses (specifically those to addresses 2 and 4) can hit in the
cache, as the hit ratio is 0.33. With any other cache block size but 8 bytes, the hit ratio is either
smaller or larger than 0.33.
Therefore, the cache block size is 8 bytes.

Associativity - 4 For sequence 2, blocks 0, 512, 1024 and 1536 are the only ones that are reused
and could potentially result in cache hits when they are accessed the second time. Three of these four
blocks should hit in the cache when accessed for the second time to give a hit rate of 0.33 (3/9).

Given that the block size is 8 and for either cache size (256B or 512B), all of these blocks map to set
0. Hence, an associativity of 1 or 2 would cause at most one or two of these four blocks to be present
in the cache when they are accessed for the second time, resulting in a maximum possible hit rate of
less than 3/9. However, the hit rate for this sequence is 3/9. Therefore, an associativity of 4 is the
only one that could potentially give a hit rate of 0.33 (3/9).

Total cache size - 256 B
For sequence 3, a total cache size of 512 B will give a hit rate of 4/9 with a 4-way associative cache
and 8 byte blocks regardless of the replacement policy, which is higher than 0.33. Therefore, the total
cache size is 256 bytes.

Replacement policy - LRU
For the aforementioned cache parameters, all cache lines in sequence 4 map to set 0. If a FIFO re-
placement policy were used, the hit ratio would be 3/8, whereas if an LRU replacement policy were
used, the hit ratio would be 1/4. Therefore, the replacement policy is LRU.

12/16

5 Virtual Memory [10 points]

An ISA supports an 8-bit, byte-addressable virtual address space. The corresponding physical memory
has only 128 bytes. Each page contains 16 bytes. A simple, one-level translation scheme is used and
the page table resides in physical memory. The initial contents of the frames of physical memory are
shown below.

Frame Number Frame Contents
0 Empty
1 Page 13
2 Page 5
3 Page 2
4 Empty
5 Page 0
6 Empty
7 Page Table

A three-entry translation lookaside buffer that uses Least Recently-Used (LRU) replacement is added
to this system. Initially, this TLB contains the entries for pages 0, 2, and 13. For the following
sequence of references, put a circle around those that generate a TLB hit and put a rectangle around
those that generate a page fault. What is the hit rate of the TLB for this sequence of references?
(Note: LRU policy is used to select pages for replacement in physical memory.)

References (to pages): 0, 13, 5, 2, 14, 14, 13, 6, 6, 13, 15, 14, 15, 13, 4, 3.

Solution:
References (to pages): (0), (13), 5, 2, [14], (14), 13, [6], (6), (13), [15], 14, (15), (13), [4], [3].

TLB Hit Rate = 7/16

(a) At the end of this sequence, what three entries are contained in the TLB?

Solution:
4, 13, 3

(b) What are the contents of the 8 physical frames?

Solution:
Pages 14, 13, 3, 2, 6, 4, 15, Page table

13/16

6 Page Table Bits [5 points]

(a) What is the purpose of the “reference” or “accessed” bit in a page table entry?

Solution:

To aid page replacement.

(b) Describe what you would do if you did not have a reference bit in the PTE. Justify your reasoning
and/or design choice.

Solution:

Pick a random page to replace when a page fault occurs.

(c) What is the purpose of the dirty or modified bit in a page table entry?

Solution:

To enable writeback of only dirty pages (rather than all pages) to disk.

(d) Describe what you would do if you did not have a modified bit in the PTE. Justify your reasoning
and/or design choice.

Solution:

Write back all pages to disk.

Alternative answer: the OS could map all pages read-only by default. On a page-fault due to a
write, if the program has permission to change the page, the operating system remaps the page
as read-write and also knows that the page has become dirty.

14/16

7 Virtual Memory - Optional(From past exam..)

A dedicated computer architecture student (like you) bought a 32-bit processor that implements
paging-based virtual memory using a single-level page table. Being a careful person, she also read the
manual and learnt that

• A page table entry (PTE) is 4-bytes in size.

• A PTE stores the physical page number in the least-significant bits. Unused bits are zeroed out.

• The page table base address (PTBA) is page-aligned.

• If an instruction attempts to modify a PTE, an exception is raised.

However, the manual did not mention the page size and the PTBA. The dedicated student then wrote
the following program to find out the missing information.

char *ptr = 0xCCCCCCCC;
˚ptr = 0x00337333;

The code ran with no exceptions. The following figure shows relevant locations of the physical memory
after execution.

0xFFFFFFFF

0x00000000

31 0

0xCCCCCCCC

0x00337333

0x00337333

0xCDCCCCCC

Using these results, what is the PTBA of this machine?

Let n = log2(page size).

Maximum possible number of unused bits in a PTE is 10. This means n ď 10.

0xC = 0b1100

If n % 4 == 0 ñ PTE offset ends with 0b110000, PTBA is not page aligned.
If n % 4 == 1 ñ PTE offset ends with 0b11000, PTBA is not page aligned.
If n % 4 == 2 ñ PTE offset ends with 0b1100, PTBA is aligned.
If n % 4 == 3 ñ PTE offset ends with 0b110, PTBA is not page aligned.

This leaves 10, 6, 2 as the only possible values of n.

15/16

Since all relevant memory locations are shown, the write must have occured to one of the two
entries. However, neither n = 2 or or n = 6 results in a physical address that maps to the two
locations.

This leaves n = 10.

Now suppose if 0xCDCCCCCC was PTE. Translating to physical address leads to 0xCDCCC-
CCC again. This would have triggered an exception.

This means 0xCCCCCCCC was the PTE, and the value was written to 0xCDCCCCCC.

Using this information, PTBA = 0xCCCCCCCC - (0x333333ăă2) = 0xCC000000.

What is the page size (in bytes) of this machine? Write your answer in the form 2n.

Since n = 10, The page size is 210.

16/16

	Vector Processing [15 points]
	VLIW [15 points]
	Code Optimizations [20 points]
	Caching [15 points]
	Virtual Memory [10 points]
	Page Table Bits [5 points]
	Virtual Memory - Optional(From past exam..)

