Overview of Digital Integrated Circuits

Fall 2003 18-322

Objectives

• Design a Digital IC of small complexity (several thousand transistors) from behavioral/algorithmic level to circuit and layout level
 – optimize logic for performance or power
 – optimize layout for compactness and performance
• Analyze Digital IC at behavioral, structural, and circuit level
 – Active devices and parasitics
• Learn efficient hand analysis techniques to analyze digital IC timing performance including parasitics
• Size transistors to optimize performance or power
Introduction to CMOS Circuits

• Digital Systems
• Transistors
• Logic Design with Switches

Basic CMOS Design

• MOSFETs as switches
 – Ideal switches & Boolean operations

• CMOS logic gates
 – Basic/complex functions

• Transmission gates
 – Pass transistors
Intro to CMOS Processes II

- Generic Complimentary Metal-Oxide-Semiconductor (CMOS) Process:
 - Processing steps
 - N-well process flow
 - Lithographic masks
 - 3-D structures

MOSFET & SPICE Models

- MOSFET Structure
- MOSFET Operation
- I-V Characteristic
- SPICE Model:
 - Diode
 - MOSFET
Layout Design

- **Physical Structure of IC’s**
 - Design rules
 - Basic gates layout
- **Stick Diagrams**
 - Basic rules
 - Examples
- **CADENCE (Virtuoso)**

Layout Design II

- Handout: Virtuoso
- Design Verification
 - DRC: Design Rule Check
 - LVS: Layout versus Schmatic
- Design in the large…
 - How do designers design ICs now
Transistor sizing
The logical effort

- Static CMOS circuit design
 - Transistor sizing
 - For symmetrical response
 - For performance
 - Large Fanin gates
 - Chains of Fanin gates
- Logical effort introduction

Interconnect (1)

- Interconnect parameters
 - Capacitance
 - Resistance
 - Inductance
- Electrical wire models
 - Lumped RC model
 - Elmore delay
Sequential Logic

• The third dimension: Sequential systems
 – Memory function
 • Static (positive feedback)
 • Dynamic
 – Memory elements
 • Latches
 • Flip-flops

Timing Issues and Clock Distribution

• Timing issues & clock distribution
 – System Performance Determination
 – Pipelining
 – Clock skew. Register timing
 – Counter clock skew
RTL Design

- Design Automation
- RTL Design

Interconnect II

- Electrical wire models
 - Lumped RC model
 - Distributed rc line
- Designing gates for performance
 - Progressive sizing
 - Input re-ordering
- Driving large capacitances
 - Buffering techniques
- Addressing Coupling Capacitance, Resistance, and Inductance
CMOS Power Consumption

- Low-power design
 - Motivation
 - Sources of power dissipation in CMOS
 - Power modeling
 - Optimization Techniques (a survey)

Alternative CMOS Design Styles

- Pass-Transistor Logic
- Pseudo n-MOS Logic
- Cascade Voltage Switch Logic
- Dynamic CMOS Logic
- CMOS Domino Logic
Intro to CMOS Process I

• IC Manufacturing Process Steps:
 – Lithography
 – Oxidation
 – Deposition
 – Epitaxy
 – Wet Etching
 – Dry Etching
 – Diffusion
 – Ion Implantation

Intro to CMOS Processes II

• Generic Complimentary Metal-Oxide-Semiconductor (CMOS) Process:

 • Processing steps
 • N-well process flow
 • Lithographic masks
 • 3-D structures
PN Junctions and Diodes

- Operation Principle
- I-V Characteristics

MOSFET & SPICE Models

- MOSFET Structure
- MOSFET Operation
- I – V Characteristics
- SPICE Model:
 - Diode
 - MOSFET
CMOS Inverter: VTC and Delay

- Ideal Inverter
- MOS Transistors’ Characteristics
- Simplest Inverter DC Characteristic
- Noise Margins
- CMOS Inverter Switching

CMOS Gates: Sizing and Delay

- Load Capacitance
- Fall and rise time analysis
- Analytical models
- Propagation delay analysis
- Fall and rise time formulas
- Transistor sizing
- Multi-input gates
Layouts: The Good, the Bad, and the Ugly

- Compact
 - Less capacitance
 - Less bigness
- Uniform
 - Cell Height
 - Plan to abut cells to neighboring cells
- Structured
 - Layers can have “functions”
 - Layers can have “directions”

Beyond the Basic Gates

- How to make larger blocks
 - Rotating/mirroring cells
 - Abutment & Power/ground rails
 - Substrate contacts
- Floorplanning
 - Routing channels
 - Block porosity
 - Metal layer allocation
- Buffering
 - Large Loads
 - Long Lines
 - Folding Transistors
Bipolar Junction Transistor

- NPN Cross-section and Masks
- BJT Notation
- Hand Analysis Models
- NPN Modes of Operation
- Ebers - Moll Model
- BJT Inverter

Emitter Coupled Logic

- ECL Inverter
- Voltage Transfer Characteristics
- ECL NOR Gate
<table>
<thead>
<tr>
<th>Memory I: Read Only Memory (ROM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Random Access Memories</td>
</tr>
<tr>
<td>• ROMs:</td>
</tr>
<tr>
<td>– ROM</td>
</tr>
<tr>
<td>– Decoders</td>
</tr>
<tr>
<td>– PLA’s</td>
</tr>
<tr>
<td>– EEPROM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory II: Static Random Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Memory Classification</td>
</tr>
<tr>
<td>• CMOS Static Memory</td>
</tr>
<tr>
<td>– Six transistor memory cell</td>
</tr>
<tr>
<td>– Memory architecture</td>
</tr>
<tr>
<td>– Decoders</td>
</tr>
<tr>
<td>– Read/Write circuitry</td>
</tr>
<tr>
<td>• RMOS Static Memory</td>
</tr>
<tr>
<td>– Four transistor memory cell</td>
</tr>
<tr>
<td>– Technology</td>
</tr>
<tr>
<td>– Memory cell layout</td>
</tr>
</tbody>
</table>
Memory III: Dynamic Random Access

• Memory Classification
• DRAM Basics
 – Single transistor memory cell
 – Memory architecture
• DRAM Circuitry
 – Read/refresh operation
 – Charge sharing
 – DRAM design trends/limitations

VLSI Testing

• Manufacturing is imperfect
 – No. of good chips on wafer/total No. of chips
 – Yield (Y) depends on technology, chip area and layout
 • Y decreases as the area of chip is increased
 • Defect density (D)
 – Modern technologies yield a value of 1-5 defects/cm²
 – Yield starts out low (~10%) moves up (95%)
• High quality expectation
 – The earlier you detect a fault, the cheaper it is to fix
VLSI Design Flow/Trends

• Questions for:
 • What kind of company are you?
 • What product do you make?
 • How do you design and fab product?
• Three design strategies
 • Full-custom, Semi-custom, Structure ASICs, Programmable Logic
• The Productivity Gap

Future Trends in VLSI/ULSI Technology

• Trends in Semiconductor Manufacturing
• Technology Status and Roadmap
• VLSIC Yield
• Design for Manufacturability
Final Exam

Extremely Likely:
- Transistor level circuit diagram and stick diagram from logic function for any design style
- Cross-sections and circuit/logic extraction from layout
- Path delay with transistor sizing
- Interconnect delay evaluation – Elmore delay
- Sequential circuit analysis: timing and power
- BJT gate hand analysis

Very Likely:
- VTC for CMOS gates