
User Recognition by Keystroke Latency Pattern Analysis

Dawn Song Peter Venable Adrian Perrig

April, 8th 1997

Abstract

We analyze keystroke latency patterns to identify the person typing on the keyboard. Unlike previous work in
this domain, which focused on taking one reference sample and doing user authentication based on the reference

sample only, we continuously sample user input and use the data for identi�cation and further learning and

re�nement of the user model.

1 Introduction

In many situations, a user may leave his computer without logging out or locking the computer. This gives
an intruder a chance to use the console and the users login to break into systems and shows the insu�ciency

of password scheme for authentication purpose. In this project report we present a tool to provide continuous

authentication of the user by continuously monitoring the users typing pattern. As soon as a di�erent typing

pattern is detected, the computer locks up and the \intruder" is asked to type in a password. This technique can

be useful in many settings, for instance for notebooks. It can also be used as an additional biometric authentication
method on a high security computer or for military applications.

2 Previous work

Joyce and Gupta have described an user authentication system by using keystroke in [JG90]. They are identifying

a user by comparing the keystroke latencies of a �xed string, i.e. the password, with the previously stored samples.

Our work di�ers substantially with Joyce and Gupta's approach because we do not rely on pre-selected strings
such as passwords. Further we are continuously learning and re�ning our model of the user. In addition we have

used a �ner grained keystroke event model by processing both keypress and keyrelease events. Joyce and Gupta

use latencies between keypresses only.

3 Our Approach

Our approach is to validate user identity at all times by continuously monitoring keystrokes. Each keystroke

is captured through by way of the X-windows server and processed either to train the model or to compute a

probability that the current user is the same as the user on whom the model was trained.

We are using the keystroke delays to set up a structure similar to a Markov chain which models the mean
and variance of the delay between two keystrokes. We take all the combinations of 2 subsequent keys and store

the data as a user pro�le. To identify a user we check which user's model maximizes the likelihood of the recent

key-presses.

3.1 Latency Observation

In our approach, we monitor all the key events that the user types. Typing one key triggers a pair of key events:

press and release, which we call a key stroke. We get the latency between pressing and releasing a key for each

key that is typed, which is called PR-latency. For each two continuous keys typed, we get the latency between

the release event of the �rst key and the press event of the second key, which is called RP-latency. PR-latency is

always positive, because a key can only be released after it's pressed. RP-latency can be negative, because the

second key can be pressed before the �rst key is released. Because of the resolution of the X-server, the resolution
of the latencies that we can get is 10 ms. The PR-latencies and RP-latencies are two disjoint data sets. The



2 3 Our Approach

PR-latencies and RP-latencies are grouped respectively in three di�erent ways: bigram, trigram and word-gram.
A Key event is a bigram event, a trigram event or a word-gram event.

Bigram: We group every two continuous key strokes into one bigram event and index it by the two keys.

Trigram: We group every three continuous key strokes into one trigram event and index it by the three keys.

Word-gram: We group every continuous set of key strokes that only contains letters, the CapsLock key and

the Shift key into one word-gram event and index it by the keys.

The Cardinality of a key event is the number of keys in the event. A bigram event has a cardinality of two.

A trigram event has a cardinality of three. A word-gram event has a cardinality of the length of the word. The

Bigram model contains all the bigram events data. A Trigram model contains all the trigram events data.

A Word-gram model contains all the word-gram events data. We call the data set of each index in the three
models the index-set. The Cardinality of an index-set C[I] is the cardinality of the index of the index-set.

3.2 Statistics Model

For each user, we build up three models: bigram model, trigram model and word-gram model. In the training

phase, we insert the data into the three models as we described above. Then we compute the mean and the

standard deviation of each index-set of the three models. In the prediction phase, we use the key-strokes gathered

from the X server as the input to the three models and compute the prediction.

Index-set prediction: Assume an index-set has a vector of mean ~� and a vector of standard deviation ~�.
Assume the index-set has a normal distribution. (Later we will show that this assumption is valid.) Given a

testing point T of ~x, the probability of the point on the given index-set I P (T 2 I) = 1
C[I]

P
exp(� (xi��i)

2

2��2
i

).

Historical prediction: We are monitoring the key strokes of the user continuously. For each new key event,

we compute the the index-set prediction according to the key event on the given model. Then we compute the

current prediction of whether the key strokes are typed from the user of the model based on the weighted average

of the previous prediction and the prediction of the new key strokes. Pcurrent = �Pnew + (1� �)Pold. Because

a person's typing can be irregular sometimes, it's better to give prediction based on the typing history. The

average weight on the history is exponentially decreased as more key events, so any slow-occurring change of

typing pattern will be captured by the prediction.

3.3 System Architecture

A program called xlisten (written in C) grabs keystrokes from the X server and for each key pressed or released

outputs a line of data describing the event, including which key was pressed or released and the latency in

milliseconds since the last event. These raw data are passed by the shell to the main program (written in Java)

which has three distinct input modules to process the three input event types: bigrams, trigrams, and word-grams.

Each keystroke can be processed simultaneously by these modules and the results combined or compared. The

three input modules have a common output format which is sent to the statistics module. The statistics module

has two modes: train and predict. In training mode, it incorporates each new event into its model. In predict

mode (and incidentally also during training) it computes the probability of the model given the event. The user
interface module, in addition to providing controls, plots a graph of these recent probability results.

3.4 Raw Input

Our system is based on a X-windows capturing program which gives us the delays between key events with a 10

millisecond resolution. This data is then passed to a Java program which performs the statistical analysis.

The xlisten output from the string \I love AI" is shown in �gure 1. The meaning of the output �elds is as

follows:

� p = press event, r = release event

� Symbol of pressed key

� Key mask, where bit 0 = Shift, bit 1 = Caps Lock, bit 2 = Control, bit 3 = Alt

� Key-code

� Delay in milliseconds since last event

It is interesting to note that the order of the characters is interleaved. Unfortunately the X-server processes
the keystrokes in batches, yielding 0 as latency between the individual events.

User Recognition by Keystroke Latency Pattern Analysis



3

Shift_L 0 50 2015

p I 1 31 183

p space 1 65 0

r I 1 31 181

r Shift_L 1 50 0

r space 0 65 0

p l 0 46 183

r l 0 46 4

p o 0 32 184

r o 0 32 176

p v 0 55 0

r v 0 55 0

p e 0 26 183

r e 0 26 0

p space 0 65 178

r space 0 65 180

p Shift_R 0 62 0

p A 1 38 181

r A 1 38 0

r Shift_R 1 62 0

p Shift_L 0 50 182

p I 1 31 0

r I 1 31 181

r Shift_L 1 50 0

Figure 1: Raw xlisten output

r p r pp

second keyfirst key third key

RP RPPR PR

Figure 2: Keystroke Latencies in a Bigram

4 Experimental Results

4.1 Testing of Assumptions

Our mathematical model assumes that the distribution of keystroke latencies for a particular user is normal, so

we tested this by plotting latency histograms. As you can see in �gure 3, the assumption is essentially correct.

−200 0 200 400 600
0

50

100

150

200

250

300

latency [ms]

fr
eq

ue
nc

y

−200 0 200 400 600
0

100

200

300

400

latency [ms]

fr
eq

ue
nc

y

−200 0 200 400 600
0

50

100

150

200

latency [ms]

fr
eq

ue
nc

y

−200 0 200 400 600
0

50

100

150

200

latency [ms]

fr
eq

ue
nc

y

Figure 3: Keystroke Latency Distribution

4.2 An Example

For a simple test of our system, we gathered several hours worth of keystroke data from various users. We used
the data from one user to train the model, and then ran predictions both on that user's typing and on the typing

of another user. As illustrated by �gure 4, all three graphs show signi�cantly higher probabilities when the typist

is the same person as trained the model (on the left) than when another person types (on the right).

4.3 Limitations

While the example above shows our program correctly giving higher probability to the correct user over other

users, these probabilities are still not far enough apart to be conclusive for many applications. We strongly suspect

that the main limitation on the e�ectiveness of this program in distinguishing users unambiguously lies in the
gathering of the raw data from the X server. The X server reports keystroke latencies to a granularity of only

User Recognition by Keystroke Latency Pattern Analysis



4 REFERENCES

(a) Authentic User (b) Impostor

Figure 4: Predicting Identity Based on a Learned Model

10ms, and when typing is very rapid, it truncates them to zero. A granularity of 1ms would provide more accurate

results.

5 Future Work

As mentioned above, a �ner granularity in raw input is the �rst thing required. This could be done fairly quickly
with a little hacking inside the X server. It would also be helpful to put some more intelligence on the outside

of the running probability generator, to determine whether the results are inconclusive, authentic, or a probably

indicate an intrusion. A neural net would probably be a good tool here. An application of this would be to
incorporate it into a screen saver so that when the user steps away from his or her terminal without logging out

nor locking the screen, if someone else were to come and begin typing, the intrusion would be detected and a

password required. The authentic user, on the other hand, could resume work without the inconvenience of a
password. Since the majority of security problems come from people not using security measures provided to

them because of inconvenience, this added convenience would actually go a long way toward improving security

of unattended terminals.

6 Availability

The program is available at http://gs207.sp.cs.cmu.edu/~adrian/mid.tar. There are 2 versions of xlisten,

xlisten-linux and xlisten-sun. You can run the program as xlisten-linux | java mid. Please contact us if you

feel that the usage is not intuitive.

References

[JG90] Rick Joyce and Gopal Gupta. Identity authentication based on keystroke latencies. Communications of

the ACM, 33(2):168 { 176, February 1990.

User Recognition by Keystroke Latency Pattern Analysis


