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Abstract—While much research effort has been devoted to
operation of microgrids, how the economic benefits of microgrids
can be integrated into the transmission-level main grids remains
as an open question. Motivated by this observation, we position
the microgrid operation problem that is compatible with the main
grid operation problem. This paper first presents an economic
structure where multiple microgrids can be aggregated into
the transmission-level main grids through load serving entities.
Assuming that a microgrid energy manager (MEM) can bid into
the market through a load serving entity, we solve the optimal
scheduling of various distributed energy resources (DERs) in
a microgrid. We construct detailed cost functions for DERs
taking into account the costs of aging and fuel. The resulting
cost functions can be non-increasing in terms of power, which
is significantly different from cost functions of traditional bulk
power producers, and can hinder MEMs from participating in
the market. However, we show that as a result of the optimal
scheduling of DERs, a MEM can obtain a single linear bid, which
is the marginal cost of the microgrid system for each time step.
This is compatible with the market structure at the main grid
level. We also show the impact of including levelized costs of
DERs compared to a case assuming zero short-term costs.

I. INTRODUCTION

The concept of microgrids emerged around two decades ago
[1], [2] and has garnered increasing attention since. Falling
prices of distributed energy resources and their growing pene-
tration as its result made microgrids more economically viable.
Needs for more secure power supply is also one of the main
reasons for building a microgrid system. As a result, many
technical and economical questions regarding how to operate
a microgrid system have been widely studied. The focus in
this work is geared toward the economical perspective.

Some previous work has considered long-term costs of
components such as operation and maintenance (O&M) costs
into its short-term scheduling, which includes costs of aging
and repair of the equipment. One of the most studied topics
regarding these levelized costs is degradation of batteries in
electric vehicles in, for example, [3]–[5]. We consider this type
of costs into short-term scheduling for operating a microgrid.
In doing so, we provide detailed models on how we calculated
the levelized costs.

Most literature regarding resource scheduling of microgrids
concerns components within one microgrid. Game theoretic
methods have been widely studied [6]–[9]. [10] gives an
overview of the game theoretic approach applied to smart

grids. [7] explores cooperation between multiple microgrids,
but does not consider the application of the results onto the
main grid. It is also not clear if coalition among microgrids is
realistic. [11] considers scheduling of storage in a microgrid
in relation to the day-ahead and real-time market prices.
This work proposes that the distributed generation resources
submit their bids with respect to their production cost. This is
equivalent to individual distributed generation resources bid-
ding directly into the market. However, since these resources
are tied within a microgrid, the bid has to be calculated in
relation with the other resources and demand of the particular
microgrid that it is serving. In other words, the bids of a
generation resource in a microgrid should come as a result of
scheduling it with the other resources in the same microgrid.

This paper has three main contributions. First, we pro-
vide detailed models of levelized O&M and aging costs for
distributed energy resources (DERs) in a microgrid such as
small generators and batteries. We use these costs to schedule
the components to meet given loads in a microgrid system.
Secondly, we analyze the bidding prices and quantities of mi-
crogrids to the transmission-level market. We observe that the
levelized costs of DERs may not be monotonically increasing,
especially in the case of storage devices. The costs can be
piecewise linear with different ranges by components and the
optimization model of scheduling involves binary variables.
We calculate the bidding price and quantity of a particular
microgrid to participate in the main grid operation. Lastly, by
simulating cases with and without assuming levelized long-
run costs of a storage system and comparing the results, we
discuss the impact of scheduling a microgrid with levelized
costs.

II. BACKGROUND

The overall system environment we consider in this pa-
per consists of microgrids, load serving entities, and a
transmission-level market, as shown in Fig. 1. Microgrids are
overseen and operated by microgrid energy managers (MEMs).
MEMs are responsible for safe and economic operation of the
microgrids. Their economic objective is to minimize the cost
of meeting demand in their microgrid, either by utilizing the
resources in their own grids or by purchasing energy from a
load serving entity. Load serving entities (LSEs) provide elec-
tricity not only to individual consumers but also to microgrid
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Fig. 1. Overview of the system

loads. They purchase energy from the market and/or can have
bilateral contracts with power producers outside of the market.
Since most consumers do not purchase energy directly from
the market or power producers, LSEs aggregate small loads
of consumers including microgrids and make transactions with
the market and power producers in large amounts. An MEM
can choose to have contracts with her LSE so she can sell
surplus energy production from her microgrid to the LSE. The
LSE can then purchase energy from the MEM and provide
that energy to the other loads or sell it in the market. The
market/system operator oversees the energy transactions and
operation at the transmission grid level.

The problem we solve in this paper is the one by a MEM
who schedules energy transaction in a microgrid and calculates
bids to submit to the market and purchase amount from the
market through a LSE. We assume that the LSE simply acts
as a mediator between the MEM and the market operator,
and the market is a perfect competition. Even though these
assumptions do not perfectly model the reality, it gives an
insight as to what a MEM would bid in the market, and how
it would affect the transmission-level grid operation.

We solve a problem of scheduling resources in a microgrid
a day ahead of operation, before submitting bids into the
main grid. We assume that a MEM can either purchase or
sell electricity from/to the market, at the market price. In
future work, we plan to relax these assumptions by including
surcharges by the load serving entity such as distribution costs
and market transaction costs.

III. COST MODELS FOR DISTRIBUTED ENERGY RESOURCES

In this section, cost models for small distributed energy
resources (DER) will be studied. Derivation of cost models
for small DERs is slightly different from larger power plants.
In large power plants, the cost is calculated based on various
criteria and has a direct relation with economical conditions.
However, in smaller plants, cost model is mainly driven by
the capital cost and costs of fuel. Hence, after the initial
investment, this model is often not updated except for the
cost of fuel (in the case of small fuel cell resources or diesel
generators). For instance, a battery resource does not require
fuel and hence, its cost model is derived based on installation
and maintenance costs.

The return on investment (ROI) portion of the cost is
calculated based on the profit that an investor would make
if funds were deposited in an average investment plan. In this
case, capital cost for installation of an item, ccap, will reach a
total of (1 + i)yccap after y years with a fixed interest rate i.
By investing ccap in a DER, the investor will receive a fixed
annual revenue of cy which can be invested in the market.
Assuming that the collection of revenue occurs at the end of
each year, the annual revenue to completely compensate for
the capital cost in y years is

cy =
ccap(1 + i)y

(1 + i)y−1 +· · ·+ 1
=

ccapi(1 + i)y

(1 + i)y − 1
(1)

In order to compensate for annual inspections and incidental
damages to this system, a fixed operation cost of co is added
to this model. In order to utilize this model in grid markets,
per kWh cost of the resource is defined as

c/kWh =
cy + co

Cnom × 8760
+ cr + cf (2)

where Cnom is the nominal capacity of the unit in kW, cr
is the cost of repair dependent on the power output level,
and cf is the cost of fuel required to generate a kWh of
energy. It should be noted that this cost is calculated based on
the investment and does not include any revenue. However,
economical competitiveness usually enforces an investor not
to expect any net revenues during the ROI period.

Due to the high price of equipment, these systems are
designed and constructed to operate for a long period of time.
In fact, the incentive for investment in an energy resource is
the profit period that comes after the ROI period. After the
ROI period, the unit will continue to operate and generate a
net revenue higher than that during the ROI period. However,
heavy usage of the DER can reduce its expected life span
which is levelized in this work as an additional short-term cost.
In this paper, the aging cost, ca, is defined as the equivalent
cost associated with accelerated aging of an energy resource.

The failure rate of equipment is modeled as a random
variable. Statistical studies have shown that failure of electrical
equipment is well described with exponential, Weibull, or
bathtub random variables [12], [13]. For a random variable,
a failure rate function λt can be defined so that the survival
rate of a unit is a random variable with a survival distribution
function of e−

∫
λtdt [14]. Based on statistical inference, it has

been observed that the failure rate for majority of electrical
equipment is an exponential function of electrical stresses. In
low stress conditions, mechanical failures such as overall aging
of equipment is the dominant factor of incidents. However,
high electrical stresses can dominate mechanical stress factors.
For this reason and without loss of generality, a reduced-order
failure rate function of a DER is defined as

λt(P ) = max{λ0, kλekp|P |} (3)

where λ0 is the base failure rate factor calculated in safe
nominal operating conditions, kp and kλ are correction factors,
and P is the power transferred by the equipment, respectively.
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Fig. 2. An example of the proposed levelized cost model for a battery storage
system.

Intuitively, if electrical equipment is not used, it is still prone
to failures due to aging and wear-down with a rate of λ0.
Aging can be defined as the cumulation of a failure rate over
time (i.e. Age =

∫
λt/λ0dt) [14]. Hence, the overall cost of

generating P kW during a unit time by a DER can be derived
as

C(P ) = c/kWhP + (cη+1P≥0 + cη−1P<0)P

+ cf1|P |>P0
ekP |P |P (4)

where cη+ and cη− are costs associated with efficiency during
generation and storage, respectively. An indicator function
is denoted as 1logic where its value is 1 when logic is
true and 0 otherwise. cf and kP are the costs associated
with early failures and the correction factor, respectively. P0

is the maximum safe operation region of the unit. In case
of wind and solar resources, this is the maximum limit of
the unit. However, some DERs such as battery resources or
small generators can be forced to operate higher than their
nominal ratings for short periods of time. In this case, model
proposed in this paper will consider an additional cost of cf
to compensate for accelerated aging of the unit.

If an investor decides to use a DER, then no costs associated
with the investment should be considered. In this case, the
investor have already taken the risk of investment and there-
fore, cannot charge the sunk cost. In this case, (4) is calculated
with cy = 0. Also, investment in low-capacity DERs are likely
not competitive in the market because of their high cost per
capacity. Therefore, it is assumed that if they have already
invested in a DER, they do not consider cy in their cost model.
Therefore, our cost models only include the costs of fuel and
aging. The result, however, can help verify the effectiveness of
the investment by comparing the expected net annual revenue
and the revenue required to compensate for their investment
from (1).

The cost function defined in (4) is nonlinear and cannot
be used in market operations. Hence, levelized costs can be
derived by linearizing this model in multiple operation regions.
The levelized cost of this DER is calculated as

c(P ) = cj1P0≤P<P1
+· · ·+ cn1Pn−1≤P<Pn

(5)

where ci is calculated by linearizing (4) in the region Pj−1 ≤
P < Pj . An example of this levelized model for a storage
system is shown in Fig. 2.

For a microgrid energy manager who has various DERs
already installed, it is economically feasible to supply its loads

with the local non-dispatchable DERs such as solar and wind.
Therefore, these resources are considered as negative loads
with no costs associated to them. For storage systems, the
MEM will only consider the cost of repair, and for diesel and
gas generators, the costs of repair and fuel can be included.

IV. PROBLEM OF A MICROGRID ENERGY MANAGER

A. Scheduling distributed energy resources

A MEM schedules DERs in her microgrid before a day-
ahead market at the transmission level opens. Given the
expected price for this market, either forecast by her own
intelligence or given from another entity, she can schedule
DERs over a day in the time interval consistent with the
market. In this work we assume that the market price forecast
is given to the MEM and the time interval is 15 minutes.

minimize
T∑
t=1

λ̂(t)Pgrid(t) +

N∑
i=1

ni∑
j=1

cijPij(t)

 (6)

subject to Pi(t) = Pi,min +

ni∑
j=1

Pij(t) ∀i,∀t (7)

N∑
i=1

Pi(t) + Pgrid(t) = P̂D(t) ∀t (8)

Pgrid,min ≤ Pgrid(t) ≤ Pgrid,max ∀t (9)

Pi(t) = Pi,min(t) +

ni∑
j=1

Pij(t) ∀i, ∀t (10)

Pij,min ≤ Pij(t) ≤ Pij,max ∀i,∀j,∀t (11)
Ei(t+ 1) = Ei(t) + ∆tPi(t) ∀t, for i ∈ S (12)
Ei,min ≤ Ei(t) ≤ Ei,max ∀t, for i ∈ S (13)

Ui(t)P
+
i,min ≤ P

+
i (t) ≤ Ui(t)P+

i,max for i ∈ S,∀t (14)

(1− Ui(t))P−i,min ≤ P
−
i (t) ≤ (1− Ui(t))P−i,max

for i ∈ S,∀t (15)

P+
i (t) =

∑
j∈j+

Pij(t), P
−
i (t) =

∑
j∈j−

Pij(t),

Pi(t) = P+
i (t) + P−i (t) for i ∈ S,∀t (16)

Ui(t): binary varable for i ∈ S,∀t (17)

The decision variables are Pgrid, Pij Pi, and Ei, P+
i , P−i , Ui

for i ∈ S where S denotes the set of storage components. The
reason for introducing binary variables for storage is because
it can be either charging or discharging, but not a combination
of both. An idle state of storage can be considered as Pi being
zero with Ui either 0 or 1. Additionally, the costs at charging
and discharging states can be further divided into multiple
segments as shown in Fig. 2. The relationship between the
segmented power level and charging/discharging state is mod-
eled in (14)-(16). All the other values are assumed to be given
deterministically, including the market price forecast λ̂ and
expected demand P̂D. In particular, cijPij in (6) corresponds
to our cost model developed in (5).



If component i is a storage device such as a battery, i.e.,
i ∈ S, then the energy dynamics of the component should also
be considered, as in (12). The initial state of the device Ei(1)
(e.g., the initial energy level of a battery) is given.

This is a scheduling problem over T time steps, of N
components. The nonlinear cost function of each component is
approximated as a piecewise linear function with ni segments
for component i, and the piecewise linear cost coefficient is
cij for segment j of component i. Pgrid can be negative when
sale to the market through the LSE is allowed.

B. Bids to market through load serving entity
In a perfect market, the optimal bidding price for a par-

ticipant is their marginal cost [15]. Without considering any
surcharges for bidding, we can find out the marginal cost of a
microgrid that was scheduled in the previous subsection IV-A.
The marginal cost of this system at time step t is defined as
λm(t), which is the Lagrange multiplier associated with (8).
One of the Karush-Kuhn-Tucker optimality conditions when
the constraint (9) is nonbinding is

∂L
∂Pgrid(t)

= λ̂(t)− λm(t) = 0 ∀t (18)

where L is the Lagrange function of the problem (6)-(17).
This implies that at the optimal operation of a microgrid, the
marginal cost of the microgrid system and the expected market
price is the same, and this will be the bidding price of the
MEM in a perfect market. Since the expected market price
determines the bidding price, the accuracy of the market price
forecast is essential. Therefore, further research on including
stochasticity of the market price to calculate the optimal bids
is planned for future work.

The quantity of bids are decided as Pgrid(t) at the optimum.
Note that Pgrid can have a sign either negative or positive.
At the time steps when Pgrid is positive, the MEM offers
to purchase electricity at the marginal cost, and when it is
negative, a sale offer is made.

It is also worth noting that regardless of the number of
components in the microgrid system and the complexity of
their cost functions, the MEM can submit one bid, either
purchase or sale, with a bidding price and quantity per time
step. Since the components of the microgrids are not visible
to the system operator, this is particularly important in order
to comply with the market rules at the transmission level.

V. NUMERICAL EXAMPLE

The microgrid system we consider for a numerical example
is a modified version of the real microgrid system in the Solar
Village of Missouri University of Science and Technology
[16]. The system we modeled consists of five residential
houses with solar panels, a fuel cell, a battery, and a diesel
generator. Since the usage of a diesel generator requires
meeting environmental regulations and is usually limited for
emergency cases, we impose a higher cost than its fuel cost to
penalize its output. The levelized costs and capacities of the
components considered are shown in Table I. The peak load
of the system was about 9.8 kW.

TABLE I
THE LEVELIZED COSTS OF THE MICROGRID COMPONENTS

Cost ($/kWh) Output range (kW) Total capacity

Solar 0 0 to 5 5 kW

Fuel cell 0.15 3 to 5 5 kW

Battery 0.03 0 to 1 (charge) 5 kWh
0.1 1 to 1.5 (charge)
0.035 0 to 1 (discharge)
0.1 1 to 1.5 (discharge)

Diesel 0.31 0 to 1 1.3 kW
generator 0.5 1 to 1.3

We obtained data of the total solar output and load in
the system during the month of October 2014 in 15-minute
intervals and averaged the values at each interval, which
are depicted in Fig. 3. For the expected market price, we
averaged the 5-minute real-time locational marginal price of
node AMMO.UE in the Midcontinent Independent System
Operator (MISO) region on the October 13th, 2014 [17]. This
is shown in Fig. 5 with the right-hand side y-axis. As discussed
in Subsection IV-B, this price becomes the bidding price of
purchase or sale.

Given these data, we optimized the scheduling of each
component to meet the load with the given expected mar-
ket price and the costs of the components. We used the
mixed-integer linear programming solver intlinprog of
MATLAB® Optimization Toolbox™ to solve the problem, and
the simulation time was trivial. The optimal power from/to
the main grid Pgrid for each time step is shown in Fig. 4.
Power coming out of the battery is depicted in Fig. 5. We ran
simulations for both cases where we assumed the levelized
cost for battery operation, and where a zero marginal cost for
the battery was assumed.

As is obvious from Fig. 5, when we consider the long-run
levelized costs for battery operation it was used less frequently.
This also affects the purchase and sale from/to the main grid,
as shown in Fig. 4. It is worth nothing, however, that the result
of the battery schedule assuming no cost not only degrades it
faster, but also requires a higher fluctuation of Pgrid to meet
the load. In other words, choosing the right cost models for
scheduling microgrid components not only is crucial for the
long-run microgrid health and economy but may also have
implications for stability at the point of common coupling with
the main grid.

Interestingly, the total operational cost with the nonzero
levelized battery cost was 38.78 dollars, which was only 0.9%
higher than that with the zero battery cost. As expected, the
MEM can sell surplus power from solar during the daylight
hours and purchase power to meet peak demands in the
morning and the evening. When the levelized cost of battery
was included in the model, it was used to avoid the market
price spikes, as shown in Fig. 5.
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VI. CONCLUSION

In this work we scheduled components in a microgrid with
their levelized costs, and calculated their bidding price and
quantity to that can be incorporated into the transmission mar-
ket. Our simulation results show that including the levelized
costs of components in a microgrid results in a vastly different
schedule of a storage system and power exchange with the
transmission-level system.

We plan to extend this work to include a variety of microgrid
components and configurations, and see the impact of an
aggregate of a number of microgrids in the transmission grid
operation. In order to assess the impact of levelized costs
in short-term scheduling with better accuracy, we expect to
obtain solar and load data for a longer time period to run
numerical examples with multiple days and seasons. More
realistic strategic models of load serving entities and microgrid
energy managers can also be studied based on this work.
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