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Abstract

We present a new abstract machine for graph reduction
called TIGRE. Benchmark results show that TIGRE’s ex-
ecution speed compares quite favorably with previous com-
binator-graph reduction techniques on similar hardware.
Furthermore, the mapping of TIGRE onto conventional
hardware is simple and efficient. Mainframe implementa-
tions of TIGRE provide performance levels exceeding
those previously available on custom graph reduction
hardware.

Introduction

We have designed and implemented a new abstract
machine called TIGRE (Threaded Interpretive Graph
Reduction Engine) for executing combinators in a pure
graph-reduction style. TIGRE maps efficiently onto con-
ventional hardware, providing speeds that compare quite
favorably with previous combinator graph reducers. For
example, the current implementation of TIGRE on a single-
processor VAX 8800 can achieve over 355,000 combinator-
reduction applications per second (raps) when reducing
the Turner set of SK-combinators (Turner 1979b). Even a
microVAX workstation executing TIGRE performs
155,000 raps. These numbers compare well with existing
software implementations of graph reducers, and also with
custom-built hardware such as NORMA, which has a
250,000 raps performance rating under similar benchmark
conditions (Scheevel 1986). Supercombinator-based com-
piler optimization techniques promise to improve further
the performance of TIGRE-based programs significantly
beyond the current levels.

In this paper we give a description of the TIGRE
abstract machine, provide code listings for portions of its
implementation, report preliminary performance data, and
make comparisons with other methods for combinator
reduction.
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Background

Turner (1979a) described a technique for implementing
normal-order functional languages, sometimes referred to
as SK-combinator reduction. The idea is based on the
observation that all of the variables in a functional program
can be removed by transforming it into a sequence of
combinators which are drawn from a small, pre-defined set
of combinators. With all free variables thence removed,
the resulting program text becomes amenable to repre-
sentation as a graph in which subgraph sharing represents
the sharing of subexpressions in the program, cycles repre-
sent recursion, and combinator definitions represent graph
rewrite rules. In this scheme, executing programs becomes
a process of graph reduction.

Besides the great advantage in efficiency gained from
sharing, the language implementation overall becomes
much simpler by virtue of the fact that the usually “tricky”
issues of variables and substitution are, in effect, encapsu-
lated in a small set of simple rules for rewriting graphs.
Indeed, a pure graph reducer can be implemented quite
easily, and will often exhibit better performance than im-
plementations of normal-order languages based on other
approaches. Such simplicity also lends itself to direct
hardware implementation, as in SKIM (Stoye 1984) and
NORMA. Still, normal-order evaluation (or, more precise-
ly, fully “lazy” evaluation) of functional programs, even via
combinator-graph reduction, is in practice much less effi-
cient than applicative-order (“eager”) evaluation. Hence,
agreat deal of research has been directed towards improv-
ing the efficiency of combinator-based techniques. One
significant development along these lines, first proposed by
Hughes (1982), is the notion of “super-combinators”, in
which the crucial observation is made that any function can
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be made into a combinator by adding extra formal
parameters corresponding to the free variables appearing
in the function body. Supercombinator compilation
produces a set of custom-defined combinators for each
program, resulting in much larger-grain reduction steps,
and thus requiring fewer reductions for evaluation.

One promising development is the so-called closure-
based execution of combinator expressions, as exemplified
by TIM (Fairbairn & Wray 1987). Closure-based ap-
proaches have an advantage over previous pure graph
reduction implementations in that they can be mapped
easily onto conventional architectures. However, these
closure-based architectures are also quite subtle and more
difficult to understand than pure graph reducers.

TIGRE, A New Architecture for Pure Graph
Reduction

The major sources of inefficiency in most graph reducers
are the traversing of the graph’s left spine (stack unwind-
ing) and the case analysis of node tags. If these costs are
reduced or eliminated, significant speedups may be pos-
sible. In this section, we shall use the mechanisms typically
employed by graph reducers (for instance, the Chalmers
G-Machine as described by Peyton Jones (1987)) as a
starting point. Then we shall explain how TIGRE is able to
avoid certain inefficiencies present in previous graph
reducers.

Figure 1 shows that nodes are typically represented by
three words. The first word is a tag for the values in the
application node. This tag value is selected so as to be an
index value into an entry table containing addresses of
action routines. Accessing a node requires a double in-
direction operation through the tag and entry table. Ona
VAX, unwinding a node while traversing the stack requires

| RIGHT SIDE_|

pointer

[ TAG | LEFT SIDE
Offset into jump  pointer

table: combinator token combinator token
application value
cons
integer
function
unused
I Action Table
EVALUATE p—+ Evaluation code
UNWIND |——> Stack unwinding code

PRINT —> Print value code

Figure 1. G-Machine tag case analysis structure (after
Peyton Jones (1987))
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four instructions, including this double indirect jump
through the entry table (Peyton Jones 1987):

movl Head(r0),r0
movl 1r0,-(%EP)
movl (xr0),rl

jmp *0_Unwind(rl)

One of the key points of TIGRE is the elimination of
most of this overhead for traversing tree nodes during the
stack unwinding process. This can best be accomplished
by simply eliminating the need for tags, thereby eliminating
the cost of tag interpretation. Figure 2 shows ageneralized
node representation which has tags associated with both
the left and right-hand sides of the node. Figure 3 showsa
tree for the expression ((+ 11) 22) which we shall use as a
running example. The numbers above the nodes serve as
labels for our discussion. Although only three tagtypes are
shown in the example, typically more tag types are used in
actual implementations.

LEFTSIDE | TAG | RIGHT SIDE |

LTac |

Figure 2. Basic structure of a node.

left tag right
[consT | 22 |

0 tag
[ PR |

1 ¢ tag left tag right
COMB | + | CONST | 11 |

Figure 3. Example for expression ((+ 11) 22).

As a first step in eliminating tags, we shall replace the
cells containing constant values by pointers to indirection
nodes. (We are assuming, without loss of generality, that
all data items are integers.) Figure 4 shows the result of
this rewriting. Any graph can be rewritten with constant
values placed in the right-hand sides of indirection nodes
in a similar manner. This may appear to be wasteful, but is
in fact the way graphs often exist during program execution.

O[PTR],|PTR| |

3 ¢

comB]| 1| [consT] 22 |

1

come[ + [ PR [ ¢ |

2

coms] 1 JconsT] 11|

Figurc 4. Example using indirection nodes for constants.
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For example, the + combinator, when executed, creates an
indirection node with the sum. Thus, if the 11 and 22 of
Figure 3 were actually the results of previous computations,
both would have been in the right-hand side of 1 nodes
before being moved to the right-hand sides of nodes 0 and
1.

Now, notice that constants are only found as arguments
to indirection combinators. If we rename those 1 com-
binators in the left-hand side of constant nodes as LIT
combinators (short for “literal value” combinators), as
shown in Figure 5, the constant tag is no longer needed,
since the LIT combinator implicitly identifies the argument
as a constant value. All other special tag types can be
eliminated by defining new combinators in a similar man-
ner.

The graph shown in Figure 5 now only has two tag types:
combinator and pointer. We can now greatly reduce the
cost of tag checking by using any number of standard tricks.
For instance, all nodes and therefore pointer values can be
aligned on 4-byte boundaries (which improves speed or is
even required on many machines). The lowest bit ofa cell’s

o

(PRI, [ PR [ ]

3 9

4
comluT] 777 [22]

comB] + [ PTR [ 4 |

21‘

comsuT] 722 [11]

Figure 5. Example using LIT nodes instead of indirection
nodes for constants.

SPINE STACK

1989 PLDI

Figure 6. Example with tags removed.

contents can then be used as a one-bit tag. Figure 6 shows
the graph rewritten in this style.

The case analysis for numeric constants has been
replaced by the need to reduce LIT combinators (although
we argue that this combinator is often present in the form
of an I node anyway). However, we have also reduced the
amount of tag checking on all other cells. This is the
representation used for the C language implementation of
TIGRE. Other details of TIGRE will be deferred for the
moment, but in general TIGRE loops while scanning the
lowest order bit of left-hand side cells to unwind the stack.
When a non-pointer value is found, TIGRE then uses a
case statement to jump to the correct action code.

The Key Insight

There is an additional key insight which provides ap-
proximately a twofold speedup when using VAX assembly
language over that possible with C code alone. This insight
is gained by exploiting the hardware support for graph
traversal that already exists in most conventional proces-
SOrS.

The generic graph shown in Figure 7 is executed by
traversing the leftmost spine, placing pointers to ancestor

2

0
POINTER TO 0
POINTER TO 1 ‘/J/ [~
POINTER TO 2 — 1
r/ I
POINTER TO 3 l/
N

3 /

[ comB |

- |
N

PROGRAM
SUBGRAPH

NIl
PROGRAM
)\ SUBGRAPH

PROGRAM
SUBGRAPH

PROGRAM
SUBGRAPH

Figure 7. An example TIGRE program graph, emphasizing the left spine.



Koopman & Lee

nodes onto a spine stack. When a combinator is en-
countered in the graph, some code to implement the com-
binator is executed. The data structure is controlling the
execution of the program. Another, more insightful, view
is that the data structure is itself a program with two
instruction types: pointer and combinator. Then graph
reduction is essentially a process of interpreting a threaded
program that happens to reside in the node heap. In other
words, the tree is a program that consists mainly of calls to
subroutines. These subroutines then contain calls to other
subroutines, and so on until, finally, some other executable
code is found. The C implementation of TIGRE thus is
actually a threaded code interpreter. Threaded code is not
a new concept (Bell 1973), but there appear to be no
previous applications of this concept to combinator graph
reduction.

The key idea is that the spine stack is actually just a
subroutine retum stack for the interpreted threaded pro-
gram. As control flows from node 0 to node 1to node 2 to
node 3 in the graph of Figure 7, pointers to these nodes are
stored on the spine stack. These pointers will eventually be
used to access the right-hand side values of the ancestor
nodes as arguments to a combinator, so what we really want
saved on the stack are pointers to the right-hand sides of
each node. If the left-hand sides of each node are viewed
as subroutine call instructions, then the return addresses
which would be automatically saved would be the right-
hand cell addresses of the spine of the graph, which is
exactly the desired behavior.

Combinator nodes, such as node 3, contain some sort
of token value that invokes a combinator. At some point
during program execution, this value will have to be
resolved to an address for a piece of code to be executed,
so the assembler version of TIGRE simply stores the actual
code addresses of the combinator action routines instead
of token values. In fact, we store a subroutine call to the
combinator code, so the address of the right-hand side of
node 3 in Figure 8 will be pushed onto the spine stack, and
the combinator will have all its arguments pointed to by the
spine stack (which is now the subroutine return stack). A

0
[caL 1] cawL 3 |

1
[cAlL + [caL 2| 3fcaL ut] 11 |

N

2

[calL LT[ 22 |

( CODEFOR + ) ( CODEFOR LIT )

Figure 8. Example with pointers replaced by sub-
routine call instructions.
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pleasant side effect of this scheme is that there is now only
one type of data in the graph: the pointer. Hence there is
only one type of node, and therefore no conditional branch-
ingor case analysis is required at runtime. All nodes contain
either pointers to other nodes or pointers to combinator
code. Figure 8 shows our running example of ((+ 11) 22)
compiled using this scheme. Since all node values (except
the right-hand sides of LIT cells) are subroutine call in-
structions, we can simplify matters by simply saying that
each cell contains a pointer that is interpreted as a sub-
routine call by the TIGRE execution engine.

At a more detailed implementation level, TIGRE graph
nodes can be implemented as triples of 32-bit cells. The
first cell of each triple contains a subroutine call instruction
while the second and third cells of the triple contain the
left- and right-hand sides of the node, respectively. The
hardware’s native subroutine calling mechanism is used to
traverse the spine, using the subroutine return stack as the
spine stack. Figure 9 shows the example graph as it appears
in the VAX assembly language implementation of TIGRE.
(Note that the jsb is the fast VAX subroutine call instruc-
tion which only pushes the program counter onto the return
address stack, as opposed to the slower subroutine call
instructions which automatically allocate stack frames.)

While the graph shown in Figure 9 is simple, its opera-
tion is not necessarily obvious. Evaluation of a program
graphis initiated by doing a subroutine call to the jsbnode
of the root of a subgraph. The machine’s program counter
then traverses the left spine of the graph structure by
executing the jsb instructions of the nodes following the
leftmost spine. When a node points to a combinator, the
VAX simply begins executing the combinator code, with
the return address stack providing addresses of the right-
hand sides of parent nodes for the combinator argument
values. When graph nodes are rewritten, only the pointer
values (which are 32 bits in size on a VAX) need be
rewritten. The jsb opcode is initialized upon acquisition
of heap space and thereafter never modified.

The processor is in no sense interpreting the graph. It
is directly executing the data structure, using the hardware-

(s [ 2 [ ¢ | 3ol g [11]

2 v

jsb | 122 |

( CODEFOR + ) ( CODE FOR LT )
Figure 9. VAX implementation of a TIGRE expression.
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provided subroutine call instructions to do the stack un-
winding.

Briefly, TIGRE uses an interpretive pointer to do sub-
routine call operations down the left spine of the graph.
When combinators are reached, they pop their arguments
from the return stack, perform graph rewrites, and then
jump to the new subgraph to continue traversing the new
left spine. The use of the return stack for graph reduction
is slightly different than for “normal” subroutines in that
subroutine returns are never performed on the pointers to
the combinator arguments, but rather, the addresses are
consumed from the return stack by the combinators. (This
seems to be a characteristic of other combinator reducers
as well).

Implementing TIGRE

The availability of a reasonably quick subroutine call
instruction on most modern architectures makes the
TIGRE technique applicable, in theory, to most computers.
In practice, there are some issues having to do with
modifications of the instruction stream that make the ap-
proach difficult to implement on some machines. It should
be emphasized, however, that these problems are the result
of inappropriate (for the current application) tradeoffs in
system design, not the result of any inherent limitation of
truly general-purpose CPUs. Inasmuch as graph reduction
is a self-modifying process, it is not surprising that a highly
efficient graph reduction implementation makes use of
self-modifying techniques. One could go as far as to say
that the extent to which graph reducers use self-modifying
code techniques reflects the extent to which they efficiently
implement the computation being performed.

Figure 10 shows a block diagram of the TIGRE abstract
machine. As a minimum, TIGRE requires a processing unit
(with ALU and control logic), a spine stack/subroutine
return stack, a small collection of registers for holding
temporary values (or a second stack for data manipula-
tion), memory for holding combinator definitions, and
heap memory for holding the graph nodes. In the VAX
implementation, the stack memory, combinator memory,
and graph memory all reside in the same memory space.

COMBINATOR
CONTROL MEMORY
LOGIC
SCRATCH HEAP
REGISTERS MEMORY

Figure 10. A block diagram of the TIGRE abstract
machine.
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Table 1sketches two implementations of TIGRE for the
SKI combinator set. The first column lists TIGRE pseudo-
code which is the basis for a TIGRE assembly language (for
supercombinator definitions) currently under develop-
ment (Lee & Koopman 1989). The second column lists C
code to implement the pseudo-operations. The C macros
Rme, Lme, Rparent, and Lparent perform indirect
reads and writes to heap memory through the top two
nodes of the spine stack. The third column lists the cor-
responding VAX assembly language implementation of
TIGRE. The VAX code presented is a simple version
written for clarity. The VAX implementation actually in
use has various small optimizations to eliminate redundant
memory reads and better exploit the pipeline of high-end
VAX processors.

It is important to realize that traversing the leftmost
spine is nearly free, while rewriting the graph to perform
reductions is an expensive operation. This leads to some
novel design decisions, one of which is the implementation
of “projection” combinators, such as I and K. These com-
binators do not modify the graph at all, but rather redirect
the flow of control of the graph evaluation, popping ele-
ments from the return stack as they execute.

The K and I combinators are implemented in an almost
identical manner, revealing K and I as two specializations
of the projection set of combinators which simply drop a
number of parent nodes while performing an indirection
operation on the topmost node on the spine stack. This
optimization may degrade garbage collection performance
by leaving subtrees attached to a K node when they would
have otherwise been abandoned, but our experience thus
far has been that the speedup realized by avoiding graph
rewrites more than makes up for this inefficiency.

Another important realization is that TIGRE uses the
same primitive functions over and over again to implement
combinators. Only a few primitives such as “fetch the
right-hand value of the parent node” are needed to imple-
ment the entire Turner Set (Turner 1979b) of combinators.
An assembly language of similar primitives can be used to
defined supercombinators for TIGRE, even on a special
purpose hardware version, with only a minimal set of
machine operations.

TIGRE Performance

The TIGRE architecture was first explored using Forth, a
language noted for its stack manipulation facilities. Since
then, TIGRE has been implemented in C and VAX as-
sembler. The C version has been run on a variety of plat-
forms. The VAX assembler versions have been run on
different members of the VAX family, and show significant
improvements over the output of an optimizing C compiler.
These improvements are in large part due to the inability
of C to express manipulations of the subroutine return
stack.
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Lparent = temp1 ;
Rparent = temp2 ;
pop(1) ;
push(n%m_addr(temm));
THREAD ;

Lparent = temp1 ;
Rparent = temp2 ,;
*(spine_stack) = temp1+1

continue ;

TIGRE OPERATION C CODE VAX ASSEMBLER

i: case DO_I: DO_L:

ip = Rme; ip = Rme; movi *(sp),ré

flgop(1) ; spine_stack +=1; movab 4(sp),sp
HREAD ; continue; jmp (6)

K: case DO_K: DO_K:

ip =Rme; ip = Rme; movl *(sp),ré

pop(2) ; spine_stack +=2; movab 8(sp),sp

THREAD ; continue ; jmp (r6)

S: case DO_S: DO_S:

ALLOCATE(2) ; need2(temp1i,temp2) ; need2(r8,:7)

ip = Rme, Ltemp1 = ip = Rme; movi *(sp)+,r6

Ltemp1 = Rme ; movl 16,(r8)

pop(1) ; spine_stack +=1;

Ltemp2 = Rme; Ltemp2 = Rme ; movi *ﬁsp;,(r?)

Rtemp2 = Rparent; Rtemp2 = Rtemp1 = Rparent ; movi 4(sp),r10

movi (r10),4
Rtemp1 = Rparent ; movl (r10),4(r8

movab -2(r8),-4(r10)
movab -2(17),(r10)
movab 4(r8),(sp)

jmp(s)

IF:
result = Eval(Rme)

pop(1) ;

case DO IF:
resutt = Eval(Rme)

spine_stack +=1;

DO_IF.
mowi *(sp) +,r6
jsb (r6)

movl 4(sp),rt0

while (ip not a combinator)

{ push(right_addr(ip)) ;
ip=_Lme;}

jump(ip);

while (ip < MAX_COMB)
{*(- - spine_stack)= ip+1;
ip=Lme }

switch(ip)

if (result is true) if (resulf) tsti r11
jeqi L39
%;i:farem = Rme; { Rparent = Rme ; } movl *(sp),(r10)
en
Lparent = addr(l) ; Lparent = DO_I ; L39: $DO _|,4(r10)
ip = Rparent ; ip = Rparent ; movi (r10§,16
pop(2) ; spine_stack +=2; addi2 $8,sp
THREAD ; continue ; jmp (16)
LIT: case DO_LIT: DO_LIT:
resutt = Rme ; resutt = Ame ; movl *(sp) +,r1
pop(1) ; spine_stack +=1;
return{result) ; return{resutt) ; rsb
PLUS: case DO_PLUS: DO_PLUS:
result = Eval(Rme) result = Eval(Rme) movl *(sp) +,r6
jsb (r6)
pop(1) ; pop(1) ;
result = result + Eval(Rme); result + = Evai(Rme); movl *(sp),16
push! r11
1sb (r6)
addi2 (sp)+,r11
Lme = addr(LIT) ; Lme = DO_LIT; movl gsp&hrs
movl $00_LIT,-4(r9)
Rme = result ; Rme = result ; movi r11,(r9)
pop(1) ; pop(1) ;
return{resutt) ; return(result) ; rsb
THREAD: /* Threader loop */ (implicit threading)

jsblLme

Table 1. Code listing for some TIGRE combinators.
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Table 2 shows the performance of TIGRE. Simple
stop-and-copy garbage collection (Baker 1978) is used.
The allocated heap space is small enough to force several
dozen garbage collection cycles in order to represent fairly
the average cost of garbage collection. No sharing analysis
or other optimizations beyond compiling to the Turner Set

Time Speed,

Platform  _Language = Program  (sec) (BAPS)
VAX 8800 ASSEMBLER SKIFIB(23) 282 387000
FIB@23) 210 355000

NFIB(23) 3.55 366000

TAK 16.07 329000

C SKIFIB(23) 6.50 168000

FIB@3) 501 149000

NFIB(23) 9.13 142000

microVAX ASSEMBLER SKIFIB(23) 6.33 172000
FIB(23) 480 155000

NFIB(23) 823 158000

c SKIFIB(23) 13.12 83000

FIB23) 10.75 69000

NFIB(23) 19.16 68000

SUN 3/260 C SKIFIB(23) 862 126000
24 MHz FIB3) 7.01 105000
NFIB(23) 1237 105000

SUN 3/75 Cc SKIFIB(23) 14.62 75000
16 MHz FIB(23) 1275 58000
NFIB(23) 22.02 59000

Table 2. TIGRE performance measurements.

SKIFIB:
fibn 1;n<3

fib(n-1) + fib(n-2)

((S ((S ((S (K IF)) ((S <) (K 3NN

(K 1))) ((S ((S (K +)) ((S (K CYCLE))

((S =) (K 1))))) ((S (K CYCLE))

((s =) (K 2)))))

FIB:
fibn ; n<3

1
fib(n-1) + fib(n-2)

((S (((8’ IF) ((C ) 3)) (K 1)))
(((S' +) ((B CYCLE) ((C -) 1)))
((B CYCLE) ((C =) 2))))

NFIB:
nfib n =1;n<2
= 1 + nfib(n-1) + nfib(n-2)
TAK:
takxyz ; not (y < Xx)

o

z
tak (tak(x-1) y z) (tak(y-1) zx)
(tak (z-1) xy)

Table 3. Benchmark listings.
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of combinators has been used. Table 3 shows source code
for the benchmarks along with S-expression repre-
sentations for some of the compiled program graphs.

Figures for the C implementation on the VAX 8800,
microVAX (VAXstation 3200), Sun 3/75, and SUN 3/260
used the gec compiler (Stallman 1988) with the optimiza-
tion switch turned on. The VAX 8800 is a 22 MHz
mainframe with fast cache memory. The VAXstation 3200
is a high-end microVAX workstation. The Sun 3/75 system
is a 16 MHz 68020 workstation with no cache memory. The
Sun 3/260 system is a 24 MHz 68020 workstation with cache
memory.

We shall now take these and other results for TIGRE
performance and attempt comparisons with other impor-
tant combinator evaluation strategies described in the
literature. Comparisons of this type are often fraught with
peril because of varying execution platforms and operating
system environments. Nonetheless, we shall attempt as fair
a comparison as the data currently available to us permits.

Miranda

The Miranda (Turner 1985) system is a straightforward
commercial implementation of a lazy functional program-
ming language that is based on reduction of the Turner Set
of combinators.

Table 4 shows the measured performance of Miranda
on a Sun 3/75 compared to TIGRE performance (in C) on
exactly the same machine. It should be noted that the C
performance of TIGRE can be expected to be a ap-
proximately half the speed of assembly language, based
upon results with the VAX architecture.

Time Speed.

Platform _ (sec) (BAPS)
SUN 3/75 TIGREC FIB(23) 1275 58000
NFIB(20) 5.22 59000

MIRANDA FIB(23) 86.55 7300

NFIB(20) 22.17 7000

Table 4. Performance of TIGRE versus Miranda.

Hyperlazy Evaluation

Hyperlazy evaluation (Norman 1988) concentrates on only
the three basic combinators S, K, and 1. This permits
implementing combinator graph reduction that is lazy at
two levels. It provides for lazy function evaluation, and also
lazy updating of the graph in memory by using registers to
pass small portions of the tree between combinators.

The hyperlazy evaluation scheme attempts to deal with
common sequences of graph manipulation operations not
by creating more complicated combinators, but rather by
implementing a finite state machine that remembers the
sequence of the last few combinators that have been ex-
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ecuted. This finite state machine enforces a discipline of
maintaining outputs of a combinator sequence in desig-
nated registers for use by the next combinator in the state
sequence. Implementing the finite state machine involves
performing a case analysis at the end of each combinator
to jump to the next state based on the next combinator
executed from the graph.

Problems with this finite state machine approach in-
clude a combinatorial explosion in the number of states
(and therefore the number of code fragments to handle
these states) as the length of the “memory” of the system is
increased or as the number of combinators that is recog-
nized by the system is increased. In the actual system, the
C combinator was used in addition to S, K, and I since it
resulted in significant efficiency improvements.

The reported speed for the Hyperlazy Evaluator shown
in Table 5 is 4000 nfib recursions per second. This speed
was measured on an Acorn Archimedes system (a RISC
system) running at 8 MHz. It is difficult to draw a direct
comparison between the ARM RISC processor and
machines available to us, but the microVAX is probably a
reasonable comparison. In any event, Hyperlazy evalua-
tion seems to be poorly suited to supercombinators be-
cause it suffers a combinatorial explosion with an increase
in the number of combinators.

Time Speed
Platform  _language ~ Program  (sec) (nfib/sec)
microVAX TIGRE ASM.  NFIB(20)  1.92 11400
ARM Hyperlazy NFIB(?) ? 4000

Table 5. Performance of TIGRE versus Hyperlazy

The G-Machine

The G-Machine (Augustsson 1984, Johnsson 1984, Peyton
Jones 1987) is a graph reducer that uses supercombinators
to increase execution speed. The idea is that in most
combinator reduction schemes, traversing the graph tree,
performing case analysis on node tags, and performing case
analysis to determine which combinator to execute are all
quite expensive. Therefore, using supercombinators will
speed up the system, since supercombinators reduce the
number of nodes traversed and the number of combinators
executed. The G-Machine is representative of the most
sophisticated graph reducers developed.

A novel idea introduced by the G-Machine is the use of
macro instructions to synthesize sequences of machine
instructions for executing combinators. Each supercom-
binator is built using a sequence of G-code instructions,
which are then expanded by a macro assembler into the
assembly language of the target system.

Absolute performance information for the G-Machine
is not presently available to us. However, there are some
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indicators that may be used for comparison with other
implementations. The code listed by Peyton Jones (1987)
for the stack unwinding operation indicates that four VAX
instructions (including a doubly indirect jump with offset)
are executed for each node traversed. Also, seven VAX
instructions must be executed as a preamble to com-
binators to rearrange the stack. TIGRE uses only a single
instruction for each stack element unwound (the jsb in-
struction in the VAX implementation) and requires no
preamble to its combinators.

TIM

The Three Instruction Machine (TIM) (Fairbairn & Wray
1987, Wray & Fairbairn 1988) is an evolution beyond the
G-Machine graph reducer into the realm of closure
reducers. An important realization is that graph reducers
must produce suspensions to accomplish lazy evaluation.
Pointers to these suspensions are stored in the ancestor
nodes to a combinator in the tree. As the left spine is
traversed, the stack accumulates pointers to the ancestor
nodes, forming a list of pointers to the suspension elements.
TIM goes a step further, and copies the top stack elements
to a memory location so that they form a closure. This
closure is simply a tuple of elements forming a vector of
data in the memory heap.

The driving force behind TIM is to make closures inex-
pensive to create and manipulate. But, since the cost of
traversing the spine is not free, and since the cost of
manipulating graphs is not free, TIM also uses supercom-
binators to reduce the number of closures that must be
created and manipulated. Costs are greatly reduced by
executing code that pushes pointers directly onto a stack
instead of traversing a graph that incurs overhead for each
node to accomplish this same building of a pointer list on
the stack. An important efficiency consideration with TIM
is that it first builds closures by pushing elements onto a
stack, then moves the top stack elements into a closure
created from heap memory. This is equivalent in cost to a
context switch (where a set of registers are copied out to
memory when switching tasks) for each invocation of a
combinator (Wray 1988).

The closure building on top of a stack is roughly
analogous to a machine using a set of register windows.
This is not an accident. TIM is the result of an evolution of
software techniques that have transformed the repre-
sentation of the combinator graph reduction problem from
one of interpreting a combinator graph to one of executing
sequences of inline code using register windows which
contain groups of arguments. In other words, TIM shows
how the graph reduction problem can be made to fit con-
ventional hardware and software techniques. Since TIM is
optimized for the use of conventional software and
hardware techniques, it is unlikely that TIM performance
can be significantly improved by the use of any special
purpose hardware, beyond that available in a well designed
general purpose RISC processor. TIM s probably the most
advanced combinator reduction scheme thus far described.
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Published performance information for TIM, shown in
Table 6, includes a rating of nfib(20) as 1.21 seconds on an
Acorn RISC Machine (Fairbairn & Wray 1987). This num-
ber includes sharing and some strictness analysis (Hudak
& Goldberg 1985). Without such analysis (but still with the
use of supercombinators), TIM executes nfib(20) in 1.96
seconds. This is compared to TIGRE performance with
Turner Set combinators on a microVAX of 1.92 seconds,
which indicates rough comparability in performance.
However, TIGRE may improve significantly when used
with supercombinators, as discussed later.

Time Speed,
Platform  _Language  Program  (sec) (nfib/sec)

microVAX  TIGRE ASM. NFIB(20) 1.92 11400
ARM TIM supercomb.  NFIB(20) 1.96 11200
TiM optimized  NFIB(20)  1.21 18100

Table 6. Performance of TIGRE versus TIM.

NORMA

The Normal Order Reduction MAchine (NORMA)
(Scheevel 1986) is widely acknowledged to be the highest
performance special purpose hardware for combinator
graph reduction. Among NORMA's features are a 370-bit
wide microinstruction, five cooperating processors, a 64-
bit wide memory bus, a 64-bit wide hardware spine stack,
and extensive use of semicustom chips to optimize perfor-
mance. NORMA uses a highly structured node repre-
sentation that includes five tag fields in addition to two data
fields. NORMA also uses some of its processors to perform
garbage collection operations and heap allocation in paral-
lel with node processing and arithmetic operations.
NORMA uses the Turner Set of combinators to accomplish
graph reduction.

NORMA is rated at 250,000 raps. This is approximately
25 times faster than the C-based interpreter run on a VAX
11/780 previously used by the NORMA development group.
Table 7 shows NORMA performance compared to TIGRE
performance on a high-end VAX system. TIGRE is sig-
nificantly faster than NORMA for FIB(23) in both elapsed
time and raps.

Time Speed

Platform  _language = Program  (sec) (BAPS)
VAX 8800 TIGRE ASM. FIB(23) 210 355000
NORMA NORMA FIB(23) 3.1 250000

Table 7. Performance of TIGRE versus NORMA.

Analysis

We can see that even preliminary results are quite
promising. The VAX 8800 implementation of TIGRE is (as
far as is known to us) faster than all other reported com-
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binator graph reducers. TIGRE is close enough in perfor-
mance on comparable hardware to TIM, which is reputed
to be the fastest closure reducer, that the outcome of a
comparison between TIM and TIGRE is unclear.

Further Work

One of the problems with using the Turner set of com-
binators is that the grain size of computations is small. We
are implementing supercombinators on TIGRE. Prelimi-
nary results of this work show that even the simplest of
supercombinator compilation schemes gives a factor of two
or more speedup over Turner Set combinators. The defini-
tion of a TIGRE assembly language is allowing us to create
a fully automatic supercombinator compiler. Further shar-
ing and strictness analysis will probably result in more
dramatic speed increases for those program which do not
require fully lazy evaluation. Results of applying advanced
compiler techniques to TIGRE are in preparation (Lee &
Koopman 1989).

A significant amount of work remains to be done in the
performance analysis area. Performance metrics other
than simple reduction applications per second are
desirable. We feel that it is important to distinguish the
effects of different abstract machines, hardware, and com-
piler technology on performance. Since the combinator
reduction techniques used by TIGRE are quite different
from the typical code executed by general purpose proces-
sors, an architectural study of how design tradeoffs in
conventional machines influence suitability for combinator
graph reduction is also forthcoming (Koopman, Siewiorek
& Lee 1989).

Conclusions

Through its simplicity, TIGRE gives fundamentally better
insight into the operation of graph reducers. As evidence
of this, TIGRE is able to match or improve upon the execu-
tion speed of all previous reported combinator reduction
schemes. With relatively simple complier optimizations,
TIGRE has the potential to become faster than closure
reducers. One thing is clear: there is still enough unknown
areain the graph reducer design space to prevent abandon-
ing graph reducers in favor of closure reducers.
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