
A Preliminary Exploration of
Optimized Stack Code

Generation

Philip Koopman, Jr.

United Technologies Research Center
411 Silver Lane M/S 48
East Hartford, CT 06108
koopman@utrcgw.utc.com

ABSTRACT

This paper presents an experimental code gener-
ator that performs intra-block stack scheduling for a
stack-based execution model. For small test
programs, 91% to 100% of redundant local variable
accesses were eliminated using this compiler. Com-
piled intra-block stack scheduling and hand-per-
formed global stack scheduling show that significant
opportunities exist to keep temporary variable values
on the expression evaluation stack when compiling
conventional languages.

INTRODUCTION

Efficient compilation of conventional languages
to stack-based execution models has received relative-
ly little attention. Previous work has focused on using
the stack efficiently for expression evaluation (e.g.,
Bruno & Lassagne (1975), Couch & Hamm (1977),
Miller (1987)) and performing peephole optimizations
(e.g., Hayes (1986), Hand (1989)). There seems to have
been little work on optimizing stack usage at the basic
block level (code sequences containing no branches nor
labels) or the global level (whole-procedure).

One significant advantage of register-based com-
putation models is that register scheduling algorithms
can place temporary variables in registers instead of
memory-based variables to improve code efficiency. A
common criticisms of stack-based execution is that
variables can’t be kept on the stack without a lot of
wasted stack manipulation. There is data to back this
up: Koopman (1989) gives dynamic instruction fre-
quencies for Forth programs indicating approximately
1 operation in 4 is a DUP, SWAP, or other stack
manipulation.

The question is, can stack-based computational
models use stacks for temporary values as effectively
as register-based computational models? While there
are not yet any definitive answers, this paper seeks to
establish a foundation for performing experiments on
stack-based code generation. It does so by using an

experimental stack-scheduling compiler and hand-
coding techniques to optimize stack usage on several
small C programs at both the basic-block level and the
global level.

METHODOLOGY

I have developed an experimental stack-based
code generator that works as a postprocessor for the
GNU C compiler (Stallman 1988). In order to compile
a program, GNU C is run on the source code with
optimization enabled. A dump of the intermediate
code data structures (in LISP-like notation) is
generated just before the register assignment pass of
GNU C. The resulting dump file is used as input for
the stack-based code generator. The output of the code
generator is Forth source code augmented with stack
comments on every line.

The results reported here are for compiling seven
integer benchmark programs from the Stanford
Benchmark Suite (Hennessy & Nye). Although sig-
nificantly larger programs must be used to make con-
clusive statements about performance, these
programs are sufficiently complex and varied at the
basic block level to form a starting point for experimen-
tation. The goal of my experiment was to explore the
area with limited resources rather than give definitive
results.

GENERAL COMPILATION

The stack-based code generator works in six
steps:

1) Raw input processing:
The LISP-notation input file is parsed to generate a
list of stack-based instructions using numbered local
variables (the temporary register numbers from GNU
C are the local variable numbers). Register-to-
register operations in the input are transformed into
loads of operands from local variables to the stack, an
operation, and a store of the result back into a local
variable. For example:

(insn 42 41 43
 (set (reg:SI 77)
 (plus:SI (reg:SI 75)
 (reg:SI 73))) -1 (nil)
 (expr_list:REG_DEAD (reg:SI 73)
 (nil)))

is translated into:

(--) 75 LOCAL@
(75 --) 73 LOCAL@
(75 73 --) +
(77 --) 77 LOCAL!

P. KOOPMAN 1992 ROCHESTER FORTH CONFERENCE

PREPRINT 1 PREPRINT

A running stack picture is maintained as the code
is translated. Each instruction in the stack-code list
gets a copy of the stack picture as it is before the
instruction’s stack effect. The stack is always empty
at the end of each GNU C LISP expression.

The example expression above declares the value
in register 73 to be "DEAD". This means the value is
not needed in subsequent expressions. The "DEAD"
attribute is captured as a pseudo-operation in the
stack-code list for later use to eliminate unnecessary
stores to local variables whose values are not reused.

2) Code clean-up:
This is a set of related steps that modifies code details
to finish converting from a register-based paradigm to
stack operation. Modifications include holding sub-
routine inputs on the stack instead of in registers,
modifying condition code phrases to use stack-based
comparisons, and ensuring subroutine return values
are placed on the stack.

3) Peephole optimization:
An initial pass of a peephole optimizer is used to make
the code more consistent for processing in later phases.
Usually very few changes take place here.

4) Stack scheduling:
This will be presented in more detail in subsequent
sections. The purpose of stack scheduling is to carry
values on the stack instead of using local variables.

5) Peephole optimization:
The peephole optimizer is used again to clean up the
code. It is typically much more effective on this pass
than on the first pass, and is used to simplify complex
stack manipulations that may result from code
scheduling. For example:

DUP SWAP becomes DUP
SWAP TUCK becomes OVER

Also, stores to dead local variables are eliminated
in this pass by using transformations such as:

DUP (dead)LOCAL! becomes NOP

6) Code generation:
In this phase mapping from stack-code to target
machine instructions is performed. Composite in-
structions are also generated here (see Appendix for
examples). For example:

OVER + becomes OVER_+
TUCK ! becomes TUCK_!

INTRA-BLOCK STACK SCHEDULING

The stack scheduling step described in the pre-
vious section can be performed at two levels: intra-
block scheduling, which will be discussed in this

section; and global scheduling, which will be discussed
in the next section.

Intra-block stack scheduling attempts to remove
local variable fetches and stores by maintaining copies
of the local variables on the stack. It designates where
variables go on the stack for each instruction. The
terminology is deliberately similar to "register
scheduling", in which variables are assigned to
registers in conventional compilers (e.g., Hennessy &
Patterson (1990), pp. 113-114).

Generalized stack scheduling is a bit more dif-
ficult than register scheduling because stack depth
must be uniform and consistent when control passes
through branch targets from differing branch sources.
For example, in an IF...ELSE...THEN construct, the
IF and ELSE clauses must both leave the same tem-
porary variables in the same locations on the stack
when control transfers beyond the THEN. The
simplest way to ensure that this happens is to adopt a
policy of always leaving the stack empty when taking
a branch. An obvious way to implement this policy is
to employ stack scheduling only within basic blocks
(intra-block stack scheduling).

The Intra-Block Scheduling Algorithm

I experimented with several intra-block schedul-
ing algorithms while performing compiler research for
the Harris RTX 2000 stack CPU. All of the methods I
used then were based on ad-hoc sets of transforma-
tions that seemed to work, but lacked a unifying ap-
proach. However, recent exploration of the problem
from a fresh start has yielded a simple heuristic ap-
proach that seems to give excellent results.

The algorithm for intra-block stack scheduling
has two parts. The first part is ranking opportunities
for eliminating local variable fetches and stores. The
second part is attempting to actually eliminate the
local variable operations in rank order.

An opportunity for stack scheduling exists when-
ever a local variable value is used more than once
within a basic block. We will use code generated from
the following code sequence as an example of opera-
tion:

b = a + c;
a = b + 5;
c = b + a;

This code sequence could be compiled into the follow-
ing stack code:

(--) 75 LOCAL@ \ a @
(75 --) 77 LOCAL@ \ c @
(75 77 --) +

P. KOOPMAN 1992 ROCHESTER FORTH CONFERENCE

PREPRINT 2 PREPRINT

(76 --) 76 LOCAL! \ b !
(--) 76 LOCAL@ \ b @
(76 --) 5 \ literal 5
(76 88 --) +
(75 --) 75 LOCAL! \ a !
(--) 76 LOCAL@ (DEAD) \ b @
(76 --) 75 LOCAL@ \ a @
(76 75 --) +
(77 --) 77 LOCAL! \ c !

where the variable a is assigned to local variable 75,
b is assigned to 76, and c is assigned to 77. Note that
because of data dependencies, rearrangement of the
assignments can’t remove the need to keep a tem-
porary copy of the value of a in b for computation of
the new value of c. Nevertheless, there is an oppor-
tunity to perform stack scheduling on local variables
75 and 76 because they are each used multiple times
as operands in the computation.

The first step in the stack scheduling process is
to measure the distance between a local variable fetch
operation and the nearest preceding occurrence of that
variable on the stack. The idea is to schedule the
closest “use/reuse pairs” first, because they have a
high likelihood of success. The distance measures for
our example are as shown:

(--) 75 LOCAL@
(75 --) 77 LOCAL@
(75 77 --) +
(76 --) 76 LOCAL!
(--) 76 LOCAL@
(76 --) 5
(76 88 --) +
(75 --) 75 LOCAL!
(--) 76 LOCAL@ (DEAD)
(76 --) 75 LOCAL@
(76 75 --) +
(77 --) 77 LOCAL!

Variable 76 is reused immediately after it is stored,
with a distance measure of 1. Variable 76 is reused
again with a single intervening instruction, giving a
distance measure of 2. Variable 75 is reused with a
distance measure of 2 as well.

After distances are measured, candidates for
stack scheduling (use/reuse pairs) are ranked in order
of ascending distance. Thus, the algorithm considers
nearest pairs before more distant pairs. I chose this
ranking method so that nested uses of values on the
stack would be scheduled optimally (from the inner
usages out).

For each pair of use/reuse stack operations, the
following procedure is applied. The register of interest
must be able to be copied to the bottom of the stack

using: DUP, TUCK, UNDER, or TUCK_2 (see Appen-
dix), otherwise the scheduler moves on to the next
use/reuse pair. Also, the stack depth at the reuse
instruction must also be 2 or less (so that the register
of interest can be brought from its new position on the
bottom of the stack to the top with a SWAP or ROT if
necessary). If both of these conditions hold, a DUP,
TUCK, UNDER, or TUCK_2 instruction is inserted
before the “use” instruction to copy the value to the
bottom of the stack, and the LOCAL@ instruction at
the “reuse” point is replaced with a NOP, SWAP, or
ROT as appropriate.

The idea behind the stack scheduling algorithm
is to copy a value to the bottom of the stack at the use
point, update the stack pictures of the instructions
between the use and reuse points, and move the value
back to the top of the stack at the reuse point. As
successive use/reuse pairs with longer distance
measures are scheduled, their values tend to go under
the existing scheduled values on the stack.

Access is limited to only the top 3 stack elements
at use/reuse points. My previous experience indicates
arbitrary-depth PICKs generate poor code because of
subsequent DROP operations required to eliminate
dead values. Also, many stack CPUs pay performance
penalties for deep stack accesses. Note that the stack
itself may get deeper than three elements (the small
programs I compiled used up to 8 stack elements); it
is just access to the stack that is limited to the top 3
values.

In our example, the distance-1 use/reuse pair is
a reuse of the value of variable 76. This is transformed
into:

(--) 75 LOCAL@
(75 --) 77 LOCAL@
(75 77 --) +
(76 --) DUP \ copy of 76
(76 76 --) 76 LOCAL!
(76 --) NOP \ 76 LOCAL@
(76 --) 5
(76 88 --) +
(75 --) 75 LOCAL!
(--) 76 LOCAL@ (DEAD)
(76 --) 75 LOCAL@
(76 75 --) +
(77 --) 77 LOCAL!

Although distances between uses/reuses may be
changed by the transformations, the distance metric
need not be recomputed. Next is the distance-2 oppor-
tunity for the reuse of variable 76. This use/reuse pair
is selected instead of the variable 75 pair with distance
measure 2 because it comes sooner in the instruction

1

2

2

P. KOOPMAN 1992 ROCHESTER FORTH CONFERENCE

PREPRINT 3 PREPRINT

list; in practice which of an overlapping set of equal
distance measures is picked doesn’t seem to make
much difference. After transformation, the example
becomes:

(--) 75 LOCAL@
(75 --) 77 LOCAL@
(75 77 --) +
(76 --) DUP
(76 76 --) 76 LOCAL! (DEAD)
(76 --) NOP
(76 --) 5
(76 88 --) UNDER \ copy of 76
(76 76 88 --) +
(76 75 --) 75 LOCAL!
(76 --) NOP \ 76 LOCAL@
(76 --) 75 LOCAL@
(76 75 --) +
(77 --) 77 LOCAL!

Note that since the fetch of local variable 76 was
eliminated, the DEAD annotation migrates to the pre-
vious variable 76 reference. This shows that the store
of local variable 76 is in fact unnecessary (because
variable b is only a temporary holding variable).

Finally, the distance-2 opportunity for variable
75 is exploited giving the output of the code scheduler:

(--) 75 LOCAL@
(75 --) 77 LOCAL@
(75 77 --) +
(76 --) DUP
(76 76 --) 76 LOCAL! (DEAD)
(76 --) NOP
(76 --) 5
(76 88 --) UNDER
(76 76 88 --) +
(76 75 --) TUCK \ copy of 75
(75 76 75 --) 75 LOCAL!
(75 76 --) NOP
(75 76 --) SWAP \ 75 LOCAL@
(76 75 --) +
(77 --) 77 LOCAL!

There are of course many inefficiencies in stack
manipulation in this code. The peephole optimizer
uses a few dozen simple rules to eliminate inefficient
code sequences. I found it was easier just to
enumerate the situations that arose in practice rather
than "teach" efficient stack usage to the compiler. The
following peephole rules are used on the above code:

DUP (dead)LOCAL! becomes NOP
SWAP + becomes +
TUCK LOCAL! + becomes DUP LOCAL! +
NOP is deleted

giving the result:

(--) 75 LOCAL@
(75 --) 77 LOCAL@
(75 77 --) +
(76 --) 5
(76 88 --) UNDER
(76 76 88 --) +
(76 75 --) DUP
(76 75 75 --) 75 LOCAL!
(76 75 --) +
(77 --) 77 LOCAL!

To put things in a more Forth-like representation, this
code could be written as:

 a c + (-- b)
 5 UNDER (-- b b 5)
 + DUP -> a (-- b a)
 + -> c (--)

The resultant code now has 4 local variable ref-
erences instead of the original 8 and is two instructions
shorter. Further reduction is not possible if we as-
sume that the example is a complete basic code block,
because the stack must be empty at the start and end
of the block.

Note that there are only two stack operations in
this code sequence, and both of them (the UNDER and
the DUP) could be combined with other operations to
form new primitives: UNDER_+ and DUP_LOCAL! .
Both these primitives are typically found on stack-
based CPUs. In general this code generation process
results in very little wasted manipulating of the stack.

Intra-Block Scheduling Results

It is well known that basic blocks in C programs
tend to be rather short. This limits the effectiveness
of intra-block stack scheduling. However, within the
single-block constraints my stack scheduling algo-
rithm tends to produce fairly good code. The code is
not necessarily the same as that which would be
produced by a human programmer, but is usually very
close in efficiency (measured by use of the stack in-
stead of local variables). One reason for the difference
between generated code and human-written code is
that human programmers typically don’t attempt to
arrange instructions for stack/operation compound in-
struction creation, whereas my stack scheduling algo-
rithm does.

One way of measuring the success of intra-block
scheduling is by counting the number of “reuse”
LOCAL@ instructions that were successfully removed
by the algorithm as a percentage of all redundant
(reuse) LOCAL@ instructions (Figure 1). The results
indicate that the algorithm was highly successful,

P. KOOPMAN 1992 ROCHESTER FORTH CONFERENCE

PREPRINT 4 PREPRINT

removing between 91% and 100% of all redundant
LOCAL@ instructions.

Surprisingly, deep accesses to the stack were not
needed to achieve excellent intra-block scheduling
results. ROT was the deepest stack movement opera-
tion required, and PICK_2 was the deepest stack ele-
ment copying operation needed (and neither of these
were needed often).

Of course, Figure 1 does not tell the whole story.
In determining how well intra-block scheduling does,
it is important to look at the total number of local
variable accesses. Figure 2 shows the number of local
variable loads and stores in each program with no
scheduling, intra-block scheduling, and global
scheduling (discussed in the next section). While
intra-block scheduling removes many of the local vari-
able references, many remain because of variable
lifetimes that cross basic block boundaries.

GLOBAL ANALYSIS

Intra-block scheduling has definite limitations.
In particular, it is not possible to eliminate local vari-
ables whose lifetimes cross basic block boundaries. In
order to assess how much these restrictions affected
code generation, I hand-generated code using global
analysis.

The hand-generated code starting point was the
output of the intra-block stack scheduling compiler. I
selected variables to keep on the stack using the dis-
tance metric across basic block boundaries. In general
I was as aggressive as possible in using the stack
consistent with keeping accesses to the stack to the top
three elements.

Global Scheduling Results

Figure 2 shows that global optimization removed
many local variable references beyond those removed
by intra-block optimization. For most programs, near-
ly all references were removed. However, portions of
QUEENS and QUICK proved to have too many active
values to juggle on the stack. This is not to say that
these two algorithms can’t be written using entirely
stack-resident variables, but rather that the C
programs as written in the Stanford Integer
Benchmark Suite are difficult to stack-schedule. Al-
though it wasn’t entirely successful in eliminating the
need for local variables, global scheduling showed
significantly improved performance over intra-block
scheduling.

I have not created a unified methodology from my
experience of hand-performing global stack schedul-
ing -- I just used ad-hoc techniques as necessary.
Nonetheless the experience of optimizing several

Figure 1. Intra-block stack scheduling removes most
redundant accesses to local variables

Figure 2. The number of local variable instructions in
the compiled code reduces dramatically with stack
scheduling.

P. KOOPMAN 1992 ROCHESTER FORTH CONFERENCE

PREPRINT 5 PREPRINT

programs in this manner leads to some observations
about how a formal methodology might be created.

Keeping loop indices on the Forth Return Stack
is a significant advantage. Also, it is usually fruitful
to keep one or sometimes two (but not more) frequently
used variables resident on the stack for the entire
duration of a loop instead of in local variables. Some-
times placing a dummy value onto the Data Stack in
one part of an IF...ELSE...THEN leads to significant
simplification of stack manipulation in the other part.

CONCLUSIONS

The algorithm have I developed for intra-block
stack scheduling seems to be quite effective, eliminat-
ing 91% to 100% of redundant local variable accesses
within basic blocks for the small programs studied.
Hand-performed global optimization results indicate
that significantly better stack scheduling can be done
if variables are kept on the stack across basic block
boundaries. Global optimization for stack scheduling
is still an ad-hoc process. While stack scheduling can
eliminate most local variable references, some
programs with large numbers of variables are still
difficult to stack-schedule.

REFERENCES

Bruno, J. & Lassagne, T. (1975) The generation of
optimal code for stack machines. JACM, July
1975, 22(3):382-396

Couch, J. & Hamm, T. (1977) Semantic structures for
efficient code generation on a stack machine.
Computer, May 1977, 10(5):42-48

Hand, T. (1989) Performance of the Harris RTX-2000
C Compiler. In: Proc. of the 1989 Rochester Forth
Conf., 20-24 June 1989, Univ. of Rochester, pp.
61-62

Hayes, J. (1986) An interpreter and object code
optimizer for a 32 bit Forth chip. In: 1986
FORML Conf. Proc., 28-30 November 1986,
Pacific Grove CA, pp. 211-221

Hennessy, J. & Nye, P., Stanford Integer Benchmarks,
Stanford University

Hennessy, J. & Patterson, D. (1990) Computer
Architecture: a quantitative approach, Morgan
Kaufmann Publishers, San Mateo, CA

Koopman, P., Stack Computers, Ellis Horwood/
Halstead Press, 1989

Miller, D. (1987) Stack machines and compiler design.
Byte, April 1987, 12(4):177-185

Stallman, R. (1988) GNU Project C Compiler

APPENDIX: NON-STANDARD PRIMITIVES

The stack scheduler uses primitives not found in
many Forth systems. LOCAL@ and LOCAL! are local
variable fetch and store operations that take a
numeric input (which probably represents an offset
into an activation frame) as the “name” of a local
variable to be fetched and stored. The following defini-
tions show the behavior of non-standard words dis-
cussed. The reader should understand that the intent
is for these operations to be provided as quick primi-
tives, not high-level operations.

: -ROT (a b c -- c a b)
 ROT ROT ;
: OVER_+ (a b -- a c)
 OVER + ;
: PICK_2 (a b c -- a b c a)
 >R OVER R> SWAP ;
: TUCK_2 (a b c -- a a b c)
 PICK_2 -ROT ;
: UNDER (a b -- a a b)
 >R DUP R> ;
: UNDER_+ (a b -- a c)
 OVER_+ ;
: DUP_LOCAL! (a -- a)
 DUP LOCAL! ;
 (this assumes that the local
 variable offset is compiled into
 the local variable instruction, not
 left on the stack at run time)

P. KOOPMAN 1992 ROCHESTER FORTH CONFERENCE

PREPRINT 6 PREPRINT

