
Representing User Workarounds As A Component Of System Dependability

Abstract

Evaluation of system-level dependability can benefit

from representing and assessing the effects of user

workarounds as a response to system component failures.

We assemble sequence diagrams that represent UML

scenarios into mission graphs that contain all possible

paths from a particular mission starting point to a

particular mission success goal point. Analysis of these

graphs reveals potential dependability bottlenecks and the

existence of possible workarounds that can be intentionally

added to a design, retrofitted to fit an existing design, or

discovered as an emergent property of existing system and

user behaviors. Simulations of a moderately complex

distributed embedded system demonstrate that this

approach has potential benefits for representing and

improving system-level dependability by including the

ability of users to perform simple workarounds to achieve

mission objectives.

1. Introduction

While techniques for evaluating system-level reliability

based on a combination of component reliabilities are well

known, assessing the true operational dependability of a

system requires consideration of many factors beyond just

individual component failure rates. These factors include

software reliability, system configuration problems, opera-

tor training, and the existence of gracefully degrading oper-

ating modes. For complex systems it is sometimes even

difficult to evaluate whether a system is “working” or

failed, because failure of some components may leave

enough residual system functionality to provided degraded

service or even entirely accomplish a subset of possible us-

age missions. Thus, an important question in building tools

to evaluate system dependability is whether it is even possi-

ble to represent some of the important factors that make sys-

tems dependable on a practical basis.

In this paper, we explore the issue of representing the

well known concept of a user “workaround” for evaluating

system dependability, especially in the context of complex,

multi-user embedded systems. The class of workarounds of

interest are “a procedural change to using a computer sys-

tem intended to compensate for a hardware or component

failure” (sense 2 of the definition of workaround from

[Koopman03], although our approach might be extended to

encompass other classes of workarounds). Workarounds

are traditionally created in response to a problem with a de-

ployed system and are often created in an ad hoc fashion.

Workarounds can sometimes provide an alternate way to

use a system that accomplishes some or all mission objec-

tives, but are not necessarily practical in all situations. In

this paper we present one possible way to formalize the rep-

resentation of a workaround. Additionally, we present a

case study showing how this representation can be useful in

portraying intended and actual system operation.

The general approach taken is to build upon the Unified

Modeling Language (UML) [UML99] use cases, scenarios,

and sequence diagrams to create graphs that represent a pre-

cise notion of various missions that can be accomplished

with a particular system, whether it be fully functional or

partially functional. (Other representations, such as Petri

Nets, could also be used with appropriate modifications to

the approach.) Examples from an elevator system design of

moderate complexity demonstrate that straightforward

graphical analysis techniques can yield insight into poten-

tial dependability bottlenecks. Simulation results show that

the complexity of training users to exploit workarounds can

be minimal, yet yield significant improvements in practical

dependability.

The work presented in this paper builds upon the previ-

ous work in [Latronico01], which showed that UML se-

quence diagrams could be augmented and combined to

create a formal language representing all valid uses of a sys-

tem. In particular, a complex embedded system typically

has many different UML use cases that represent different

system capabilities. A user desiring to accomplish a mis-

sion using the system typically invokes a sequence of differ-

ent use cases, with the particular use cases invoked

depending on the user’s starting state, the desired goal state

for the mission, the current system internal state, and any

user preference for selecting among alternate courses of ac-

tion. Each use case can in turn be accomplished via activat-
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ing one or more UML scenarios, with each scenario being a

set of steps performed by the user/system combination.

Finally, a UML sequence diagram (SD) is a formal graphi-

cal representation of a scenario in which each component of

a distributed system sends and receives events as well as

processes internal state information.

Thus, the starting point for the work presented in this pa-

per is a UML-based design of a complex distributed embed-

ded system that is represented by a set of SDs. Using such a

system involves activating a valid sequence of use cases via

traversing a set of corresponding SDs that can be repre-

sented as either an expression in a formal language or a path

through a graph of connected SDs. We explore the concept

of workarounds in the form of user-aided arcs within and

between SDs.

The subsequent sections of this paper more fully explore

the idea of representing humans as a system component for

the purposes of evaluating the effects of workarounds on

system-level dependability. Section 2 discusses existing

work in related fields. Section 3 proposes augmenting

UML-based designs to create mission graphs as a formal

representation of workarounds. Section 4 presents experi-

mental results from applying the proposed approach to an

embedded system design of moderate complexity. Sections

5 and 6 present general observations and conclusions.

2. Related work

In systems that incorporate user actions as part of system

operation, we observe that people can compensate for par-

tial system failures via an approach generically known as a

“workaround.” More precisely, if a system offers multiple

mechanisms for an intermediate step toward accomplishing

a mission goal, an adequately trained user can try alternate

mechanisms if any single mechanism fails due to hardware

component failure, design defect, or even user error. More-

over, if multiple paths exist to accomplish a goal, users can

choose paths that circumvent partial system failures. We as-

sume that users have adequate knowledge, written instruc-

tions, training, or insight into system operation, and that

they choose productive actions rather than make matters

worse when attempting workarounds. We do not address

the issue of mistakes made by users such as performing in-

correct steps or omitting steps in a procedure.

While there are many case studies of workarounds, there

is little discussion of formalizing the concept of a

workaround as part of a system design representation. A

thorough definition of the term “workaround” and discus-

sion of related concepts is provided in [Koopman03]. The

value of user-available workarounds in desktop, end-user

software and in office systems has been explored in

[Gasser86]. An embedded system case study of electronic

medical equipment suffering from a partial failure due to a

Y2K bug was examined in [Manning99]. Some com-

puter-aided design literature considers workarounds to be

subversion of a task (e.g., [Day96]), but we consider

workarounds in a positive light, and assume that the user is

attempting to help a partially failed system fulfill mission

requirements.

The area of human-computer interaction (HCI) often fo-

cuses on the system interface rather than how a human aug-

ments a system’s dependability. The GOMS framework

[John96], and the related Soar architecture [Rosenbloom93]

are largely concerned with the goal of evaluating the perfor-

mance of the human interface component of a system,

rather than that of the underlying human+computer system

as a whole. While the role of HCI design is critical to creat-

ing robust systems, we seek not just to evaluate HCI, but

rather to analyze the functional effects of user actions upon

dependability.

Cognitive systems engineering uses a notion of

workarounds compatible with ours. [Hoffman02] does not

provide an explicit definition for a workaround, but consid-

ers it to be a person using knowledge to plan and execute an

alternate path to a goal when encountering some malfunc-

tion. Task analysis is a general technique to represent tasks

as a sequence of steps, and is compatible with our approach.

In the area of task analysis, [Albers98] considers

workarounds to be activities that people undertake when en-

countering error conditions or exceptional operating condi-

tions, but argues that goal-driven approaches are necessary

rather than a preplanned task analysis. While it might be

impractical to foresee all possible failure modes, we think

that it is important to catch and represent likely failure

modes at design time, or incorporate important failure

modes into a design framework in a form that might be con-

sidered an off-nominal task analysis.

A paper that presents a similar problem representation is

[Poelmans99], which defines a workaround as “a coping

strategy that deviates from the strategies that have been de-

fined in a WFS” (Work Flow System), which can be similar

to a mission graph. However, Poelmans does not discuss

representing a workaround within a WFS as we do.

There are of course many well known techniques for as-

sessing system dependability, although few seem particu-

larly conducive to the exploration of workarounds as a

system dependability aspect. For hardware, techniques

such as Failure Mode Effects and Criticality Analysis

(FMECA) represent the effects of hardware component fail-

ures, or subsystem functional failures (e.g., as discussed in

[McCollin99]). A FMECA presents an opportunity to docu-

ment a workaround as a mitigation of a component failure,

but does not make workarounds part of the intentional sys-

tem design. Our work differs in that it examines the effects

of deleting a step from a sequence of steps, regardless of

root cause, rather having to deduce how a component fail-

2



ure affects attempted operations. Thus it complements a

FMECAand other approaches such as Fault Tree Analysis.

[Mo99] uses a hierarchical-tree based approach to repre-

senting plans that consist of composed sets of actions,

which might be used to deal specifically with workarounds.

We have taken a mission-graph based approach instead.

Some previous work has attempted to include people in

evaluating the dependability of entire systems. In

[Brehm96], system dependability is evaluated based on

models constructed from the specified characteristics of

each of its components, including software, hardware, and

people. However, the underlying inputs to the model (par-

ticularly software and human error representations) do not

seem to take into account the complex interactions these

components can have with the rest of the system, and do not

seem to encompass the fact that users can help the system as

well as cause failures. [Brown02] acknowledges that hu-

man operators can both help and hurt system dependability

via diagnosis and maintenance actions.

Similar to the goals of our approach, [Zemany91] aims to

provide a mission-level reliability evaluator. That ap-

proach takes into account that not all subsystems are re-

quired at all phases of a mission, but adheres to the principle

of combining component-based failure rates to compute the

probability of a mission success. While degraded operating

modes are addressed, the specific concept of user

workarounds is not discussed.

A subset of preliminary results for this paper appeared in

[Latronico01b]. That paper proposed mission graphs as a

potentially useful problem formulation, but did not include

an assessment of effectiveness and did not discuss looking

for single arc/node points of failure as a key approach to

evaluating dependability.

3. Mission graphs

Evaluating the system as it performs as a whole, just as if

it were deployed in the field and in use by the customer, is

essential in making a good reliability estimate [Musa96].

While software testing techniques often use the concept of

operational profiling to weight reliability estimates by the

frequency with which different system components are acti-

vated, we desire a technique that encompasses the notion of

mission success hinging on the successful completion of a

sequence of tasks rather than the probability of successful

completion of a single step in such a sequence. As a result,

we evaluate system-level dependability in terms of paths

through the set of interconnected SDs that form the valid

uses of the system.

3.1 Mission graph dependability

If examined from the user perspective, dependability

can be seen as the probability of a user successfully com-

pleting a mission, which in the general case consists of a se-

ries of tasks. For example, a mission may be riding an

elevator, which consists of a series of tasks such as calling

the elevator, boarding it, designating a destination floor, and

so on. The key to incorporating the effects of workarounds

in a system is to create a flexible, but formal and exact, defi-

nition of what constitutes a successful mission (i.e., what

different sets of system operations can be considered to re-

sult in a successful delivery of service).

One way to represent dependability, then, is a graph de-

picting the possible user paths through the system, which

we call a mission graph. Building on the work of

[Latronico01], the set of valid uses of a system can be de-

scribed by a graph representing the possible strings created

by a formal language representing the system design.

Within such a graph, a vertex is a sequence diagram and an

arc is a path connecting one SD to a valid successor SD.

(The complexity of an SD is not rigorously defined by the

UML; however for our purposes we assume that each SD is

roughly analogous to a basic block in compiler terms, and

thus is for practical purposes a set of system actions that

need not be broken up into smaller pieces.) The entirety of

the system graph is in general not needed to represent a spe-

cific mission. Rather, a subset of the system graph suffices

to represent the paths of interest through all possible se-

quences of system operations.

A mission graph, then, is a directed graph consisting of a

starting state, a goal state, and all possible intermediate ver-

tices and arcs that lead from the starting state to the goal
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state via some valid path through existing SDs. (Addi-

tionally, all arcs out of any included graph vertex must be

included as described in the next paragraph.) Figure 1

shows that a mission success is accomplished by traversing

a valid path through the mission graph from start state to

goal state. In cases where recursion or iteration are neces-

sary to represent mission successes, it may be desirable to

represent mission graphs as symbolically manipulated for-

mal languages rather than directed graphs; however di-

rected graphs are appropriate as the common case and are

used in this paper to illustrate the concepts involved.

(Limits to recursion/iteration depend on the application. As

a practical matter, since system users are involved in deter-

mining many arc selections, breaking recursive graph tra-

versals occurs when a user gives up and tries an alternate

path or abandons use of the system.) The inclusion of graph

cycles is important in representing real systems, because it

permits users to revisit states when experiencing emergent

or transient system failures. In our work mission graphs

have been assembled by hand, but automation seems feasi-

ble.

A mission failure is a path that does not achieve a desired

goal, but instead results in a path through the mission graph

that either leads irrevocably away from the intended goal or

becomes trapped in a graph cul-de-sac. Mission paths that

lead away from a mission success are those that activate an

arc from which return to the mission goal is impossible,

which corresponds to activating an arc with no destination

vertex within the mission graph. (It is possible that some al-

ternate and useful goal state could still be reached in such a

situation, but using a mission graph to represent that alter-

native is beyond the scope of this paper.)

It is important that mission graphs be directed rather than

undirected graphs because, in general, visiting a graph ver-

tex produces enduring side effects within the system. As an

example, vending money from an automated teller banking

machine is an irreversible process. A compensating back-

ward arc can be provided (e.g., a workaround of depositing

money in an amount compensating for money withdrawn

from a bank), but that is not at all the same as “un-pressing”

a button or otherwise intrinsically reversing a side effect via

backtracking over a previously executed directed arc.

Component failures can be represented via removing a

vertex and/or arc from the mission graph. (In this work we

assume a one-to-one or one-to-many mapping from compo-

nent failures to arc removals.) Because a mission graph is

selected from a fully functioning system design, a missing

vertex or arc can introduce a number of dead end paths that

result in mission failures if not compensated for. Dead ends

can be encountered when a user follows a path through the

mission path and does not have arcs available for traversing

back to a decision point to attempt an alternate path (or, if no

alternate path exists).

Of course it is possible to have multiple starting states

and multiple goal states concurrently available for use in a

system. Creating a distinct mission graph for each possible

pair suffices for implementing the methods described

herein, but no doubt there are more refined approaches pos-

sible that consider multiple sets of starting and goal states in

a single multi-mission graph ([Mo99] addresses multiple

goals, but uses a different formalism for representing sys-

tem activity.)

Representing system use as a mission graph not only

gives a formal representation of system operation, but also

implicitly encompasses the issue of user interactions and

training. In the general case, each vertex of a mission graph

has multiple exiting arcs. In some cases the exit arc taken

depends on system state entirely within the purview of the

computer-based system. But in other cases the user deter-

mines the arc taken via selecting a button to press or select-

ing a course of physical action (such as whether to stay on

an elevator or exit an elevator when doors are open, based

on whether the elevator is at the correct destination floor).

At this point we assume that the user has enough system

knowledge to make progress toward the system goal if it is

possible to do so, and defer discussion of how sophisticated

a user must be to make such selections to an example appli-

cation in a later section.

3.2 Dependability bottleneck detection

A dependability bottleneck can be said to exist in a mis-

sion graph if there is a single arc that, if severed, would par-

tition the mission graph such that the starting state and goal

state were in separate, unconnected subgraphs. In other

words, if a mission can only be completed with success by

traversing a particular arc somewhere within a graph, that

arc will cause all missions to fail if it is severed. By exploit-

ing the duality of vertices and arcs in a graph, a vertex could

similarly be a dependability bottleneck if all missions must

traverse that vertex. However, we consider arcs as depend-

ability bottlenecks without loss of generality.

Since a specification of “no single point of failure” is

common in dependable systems, we look for such single

points of failures in evaluating systems. For simple mission

graphs, dependability bottlenecks can be found by visual in-

spection, since what is being sought is a situation in which a

single arc points from a portion of the graph on the mission

start side to the remainder of the graph on the mission goal

side. A failure of this arc would partition the mission graph,

making it impossible to complete a mission.

More generally, one could consider N concurrent failures

in a mission graph. Determining whether a mission graph is

vulnerable to N concurrent points of failure can be accom-

plished via applying an s-t min-cut algorithm applied to a

directed graph (the “s-t” notation indicates that designated
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vertices must be on opposite sides of the graph cut, as is the

case in this application). If the min-cut is less than degree

N, the mission graph would be augmented to fix the vulner-

ability until a min-cut value of greater than N is achieved.

Min-cut algorithms are reasonably efficient and operate in

low-order polynomial time. A survey of min-cut algorithms

and algorithm performance can be found in [Chekuri97].

(Graph cycles present a problem due to “backward” point-

ing arcs increasing cut size without providing a path from

start to goal. We overcame that by deleting backward arcs

before performing graph analysis.)

Once a mission graph has been constructed, it is tempt-

ing to assign probabilities to arcs, reliabilities to vertices,

and attempt complex computations to derive an overall sys-

tem availability. While such an approach can certainly be

contemplated, it is not at all clear how realistic it would be

to obtain the large number of numeric values required for

such an exercise. Thus we limit our objectives to one, rather

simple, metric that appears to be useful in practice based on

identifying single points of failure.

3.3 Dependability bottleneck remediation

Once any dependability bottlenecks have been identi-

fied, designers can use a variety of approaches to remediate

vulnerabilities discovered. Possible approaches include

adding redundancy, adding additional mission paths, and

adding additional acceptable goal states.

A time-honored way to increase dependability is to add

redundancy. In a mission graph with unweighted arcs this

can be represented for analysis purposes as having K redun-

dant arcs on a transition between vertices for K-way redun-

dant hardware.

Additional mission paths can be added by providing

workarounds. In the case of a mission graph a workaround

is at least one arc, and possibly some vertices, added to pro-

vide an alternate path to remediate a dependability bottle-

neck. Workarounds can be created by adding new

capabilities to a design. This is done via adding a new sce-

nario and accompanying SD to a UML-based design and

then adding appropriate design and implementation mecha-

nisms to the system.

Workarounds can also be created in many cases by teach-

ing users new procedures that accommodate limitations of

existing designs. This can be represented in a UML format

by adding a scenario and SD that will work properly given

an existing design (i.e., that adds additional constraints and

specifications to a design, but does so without necessitating

a change in any existing statechart, software, or other exist-

ing design and implementation). While this sounds tricky,

this is in fact a formal definition of the intuitive notion of a

workaround already in common use for software systems –

a workaround is simply a way of using a system that accom-

plishes a goal given a defect or other problem that precludes

attaining that goal in “normal” operation. Workarounds are

often implemented via instructing a user in a specific proce-

dure devised to be compatible with an existing system im-

plementation.

Obviously there is some added complexity in creating a

workaround either via a system design change or a user pro-

cedure. Potential issues that go beyond the scope of this pa-

per include instructing users on how to employ

workarounds, creating designs that are likely to result in

successful workaround attempts by untrained or everyday

users, creating designs that are tolerant of erroneous

workaround attempts, and so on. Such difficulties aside, it

is plainly true that workarounds are a common practice.

Thus, it seems worthwhile to formalize their existence and

explore their role in system dependability.

4. Experimental results

Validating the applicability of the mission graph concept

and approaches to identifying dependability bottlenecks

will of course ultimately require examining many different

designs and domains. However, a proof of concept explora-

tion on a design having moderate complexity has provided

promising results, and reveals that formalization of even

seemingly straightforward system designs can yield benefi-

cial surprises.

4.1 An executable elevator design

An executable model of a UML-based elevator design

has been used to explore and demonstrate feasibility of the

mission graph concept. This elevator design was not a

“toy,” but rather a model created as part of an embedded

systems capstone design course that embodies many of the

complexities of a real-world, high performance elevator

based on significant industrial experience. The model is a

discrete-event simulation of a single-hoistway elevator ac-

cording to a 26-page detailed requirements document that is

traceable to the approximately 10,000-line Java source code

implementation.

Because users of this system play an important role in

achieved dependability, the simulation’s model of the pas-

sengers is thorough and is included as a specific portion of

the system requirements and implementation. Passenger

behavior encompasses 20 distinct behaviors such as “A Pas-

senger p at Floor f where a CarLantern(desired_direc-

tion(p)) is On shall attempt to enter the Car if the Door is

sufficiently far open.” (The concept of “sufficiently far” is

the subject of a different behavioral specification involving

the physical size of the passenger, and “attempt to enter” is

the subject of specifications involving how multiple passen-

gers queue for exit/entry and respond to a full elevator or a
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collision with closing doors.)

The example mission graph in Figure 2 is a simplified

mission-level depiction of a user attempting to reach an-

other floor in a building via elevator. The bulk of the exam-

ple revolves around boarding an elevator (the details of

exiting have been omitted in the interest of simplicity, but

are included in full in the executable model). The system

design and model also include main elevator drive control,

acceleration profiles, passenger queuing to ac-

count for congestion in loading and unloading,

safety interlocks, multiple operating modes, and

other similar factors.

The elevator simulation workload represents

the conditions a single hoistway elevator in a

small office building might be subject to over the

course of a typical 24 hour business day. The fol-

lowing test scenario descriptions highlight the dif-

ferent passenger traffic patterns that occur and are

generally representative of normal elevator usage:

• LIGHT_TRAFFIC: (extremely early in morning/late at

night) When the elevator is occupied, it only contains

one or at times two passengers. There is little contention

for its use, and the elevator remains more than 30% idle.

(The selection of 30% idle as a number is arbitrary, but

generally representative.)

• MEDIUM_TRAFFIC: (mid-day use) Moderate

contention for the elevator; idle 5% to 10% of the time.

• HEAVY_TRAFFIC: (morning/evening rush hour)

Constant contention for elevator; idle 0% of the time

with at least one user at some floor waiting for the

elevator to arrive at all times.

For each experiment below, long enough simulations

were run at each level of traffic intensity to ensure represen-

tative results, with each simulating covering at least one

hour of simulated passenger loads. However, the precise

numeric values of these simulations are unimportant. The

important point to note is the effect of differing traffic loads

on performance in general and the effect of adding or sub-

tracting arcs from the mission graph on overall system util-

ity (i.e., how well did the elevator deliver passengers with

failed or enhanced mission graph arcs?).

4.2. Verifying effects of a dependability bottleneck

In the first experiment, we verified that breaking a sin-

gle-arc dependability bottleneck in a mission graph actually

produced a system failure as expected. Figure 2 shows that the

arc labeled D is the only transition from the Wait to Board

states. This arc represents the model of how passengers re-

spond to hallway lanterns (the “going up”/“going down” di-

rectional arrow lights mounted in the hallway or on the door

frame of elevator cars). In particular, passengers only enter the

elevator car when the appropriate directional lantern is lit. Ta-

ble 1 shows that when this arc is broken, representing a com-

ponent failure such as burned out light bulbs in both

directional lanterns, the worst case travel time for a passenger

is that they are never delivered. Passengers don’t know that

the car is headed in an appropriate direction when the car doors

are open and thus never enter the elevator.

In this experiment the approach of looking for a sin-

gle-arc partitioning point in the mission graph did in fact re-
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Performance Decrease Due to Broken Car Lanterns

LIGHT_TRAFFIC MEDIUM_TRAFFIC HEAVY_TRAFFIC

Users N/A1 N/A1 N/A1

1 Passengers were never successfully delivered in this test

Table 1: Increase in delivery time with failed car lanterns.



veal this dependability bottleneck that resulted in

an inability of users to complete missions. This

problem is resolved in real elevators in several

ways. One way is the addition of audible chimes

in addition to lanterns (typically one chime

means “up”; two chimes means “down”), provid-

ing a redundant interface that yields a second arc

in the mission graph parallel to arc D. A second

way is to train passengers to be a little more

clever in entering the elevator, such as boarding

when the opposite lantern is extinguished rather

than the appropriate lantern is lit. This in fact constitutes a

workaround (a second arc parallel to D activated via a dis-

tinct and less obvious behavioral rule) that improves system

dependability, although a more interesting workaround ex-

periment is discussed in a later section. A final way that

such a problem is resolved in practice is that people eventu-

ally tire of watching the elevator stop at their floor without

signaling them to enter, and just enter the elevator without

any specific workaround in mind other than compensating

for the fact that lanterns must somehow be broken. This fi-

nal workaround might cause users to enter an elevator trav-

eling in the wrong direction, but has the virtue that no

specific user insight into elevator behavior is required and

users eventually get delivered to their destination.

4.3. Discovering a false dependability bottleneck

In the process of testing all single-arc bottlenecks, a false

bottleneck was discovered. Far from disproving the utility

of the approach, this experiment instead illustrated an im-

portant point about implicit redundancy that tends to be

present in robust everyday systems.

In the example elevator mission graph, transition B is the

only arc provided that allows the user to transition out of the

initial Hallway state to the Waiting state, which occurs

when the user successfully presses the hall call button (this

is the appropriate “up” or “down” button in the hallway

used to summon the elevator car and provide a hint to the

elevator as to intended destination). However, if a hall call

button is broken, the elevator is not aware that a passenger is

waiting for pick-up, partitioning the elevator mission graph

by causing arc B to be inoperative. Thus, breaking this arc

via causing a hall call button to fail should result in all pas-

sengers attempting to use that button being stranded and

failing to complete their missions. (Replication is not ad-

dressed in Figure 2. However the executable model main-

tained separate copies of each hall call button and enabled

fault injection into buttons on a selected floor.) Table 2,

however, demonstrates that this is not what happened in all

cases. In that table performance is relative to worst case

passenger delivery time increase compared to a fully opera-

tional system under an identical passenger workload (thus, a

0% result means no degradation, and 100% means that the

worst case passengers waiting+travel time doubled).

What happened in the medium and heavy traffic cases

was that users attempting to press a failed button got lucky

when some other passenger exited the elevator car at their

floor and the elevator happened to be going in the same di-

rection that the user wished to travel in. It so happened that

the appropriate hall lantern was illuminated at all stops

whether or not a hall call had been registered, as is the case

with real elevators. It also happened that the implementa-

tion of users permitted them to board an elevator without

having completed a successful button activation, which is

representative of a user arriving at an elevator when the

door is already open and bypassing the hall call operation.

Given that situation, the heavier the elevator load, the more
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LIGHT_TRAFFIC MEDIUM_TRAFFIC HEAVY_TRAFFIC

Users N/A1 178% 27%

1 Passengers were not successfully delivered in this test after one hour of
wait time

Table 2: Increase in delivery time with failed hall call buttons.

Hallway

Start State

Goal State

Wait

Board

In Elevator

Destination

A

D

H

E

F

Gives UpB C

Figure 3: Arc H made explicit for example elevator.



likely it was that some other passenger would

choose to disembark at a floor having an other-

wise stranded waiting passenger. At very heavy

loads the elevator stopped at almost every floor in

each direction as a matter of course, resulting in

modest performance penalties even with multiple

broken hall call buttons. With medium traffic

loads it took a while for stranded users to get

lucky and board an elevator, and with light loads

users had to wait a very long time for an elevator to arrive

(in excess of an hour for this particular simulation).

While the original design’s scenario and SD indicated

that passengers press a hall call button before boarding,

nothing precluded boarding without pressing a button. The

resultant implementation had an implicit new transition be-

tween scenarios that permitted passengers to ignore the hall

call button if a hall lantern were illuminated, adding an im-

plicit arc H in the mission graph (see Figure 3). It was this

implicit arc H that was used by passengers delivered suc-

cessfully in this experiment, who met the precondition of

wanting to board and observing an elevator available even

though they hadn’t yet pressed a hall call button (which is

common in real elevator use as well).

The usual nature of the UML-based use case/scenario

design approach is to document typical usage, not represent

all possible usages. UML statecharts used for designs must,

however, present complete implementations, and therefore

are in the general case richer in functionality than the SDs

that form their partial specification. From this experiment

we see that it is possible (one could argue it is even com-

monplace in well designed systems) for system designs to

have behaviors that may be more robust than indicated by

formal design documentation. Thus, the way we look at this

experimental result is that identification of a dependability

bottleneck prompted a closer look at a critical aspect of a de-

sign, and this in turn revealed implicit redundancy that re-

solved the potential dependability bottleneck in many

important situations. It did not completely solve the prob-

lem, but adding a mission graph arc to represent the ob-

served system behavior serves to capture the emergent

behavior observed and to present a more accurate picture of

system dependability. This experiment also illustrates that

the effects of concurrent system users are significant, and

should be dealt with in evaluating system designs.

4.4. Verifying success of adding a work around

A third experiment verified that adding a user

workaround improves system performance, and illustrates

the simplicity of some effective workarounds.

The previous experiment showed that passengers could

become stranded during periods of light traffic if the hall

call buttons they needed were broken. One fairly common

way for system designers to deal with such a situation is to

assume or foster the existence of a “smarter” passenger that

knows about a workaround for such a situation. The

workaround desired must offer a redundant arc to arc B, en-

abling the passenger to transition from the Hallway to the

Wait state despite a broken button or broken button ac-

knowledgment light.

Most elevators have two hall call buttons per floor, one

in each direction. The workaround added to user behavior

consisted of trying to register a hall call in the desired direc-

tion, and if that does not succeed attempting a hall call in the

opposite direction. Figure 4 implies that which button is

pressed is at the user’s discretion, which is in fact the case in

a real elevator system. So, for example, if a passenger

presses the “up” hall call button without an accompanying

hall button light illumination being observed, the passenger

then presses the “down” request button. This is arguably a

very simple behavior that would be easy to teach users. In-

deed, some impatient elevator users press both buttons as a

matter of course. The results on system performance are

shown in Table 3, and indicate a negligible performance

penalty despite a component failure. For light traffic the el-

evator dispatching software noted that only one car call but-

ton was pressed by the user inside the elevator, and simply

went in the correct direction, resulting in no performance

penalty in the frequent case that a single user was in the car.

In medium traffic, a slight performance penalty was ob-

served because the passenger had to ride the elevator in the

wrong direction and upon occasion induced an unnecessary

elevator stop if the elevator would have stopped very soon,

by chance, at the correct floor going in the correct direction.
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LIGHT_TRAFFIC MEDIUM_TRAFFIC HEAVY_TRAFFIC

Users <1% 1% <1%

Table 3: Increase in delivery time with hall call workaround.

Hallway

Wait

Push
button in
opposite
direction

Notice
lack of
button
light

Push
button in
desired
direction

Figure 4: Additional arc provided by a

workaround.



In heavy traffic the elevator stopped at most floors on most

journeys up and down the hoistway, so the loss of a single

hall call button or spurious hall call button activation made

little difference as long as the elevator car did not become

completely full.

In this experiment the use of a mission graph revealed a

dependability bottleneck, and the addition of a simple

workaround was demonstrated to significantly improve

system performance in the light traffic case, even given the

existence of an implicit, accidental workaround as dis-

cussed in the previous section. The medium and heavy traf-

fic cases similarly attained better performance, although

they were not broken for practical purposes given the exist-

ing implicit workaround. It is worth noting that the particu-

lar elevator model built had both “up” and “down” buttons

on the top and bottom building floors for simplicity of im-

plementation that provided available redundancy for this

workaround. In a real elevator system the dispatcher would

have to occasionally register fake hall calls for the top and

bottom floors, which have only a single hall call button

each, to ensure that no passengers were stranded there. This

is an example of a combined user and system behavioral

modification to accomplish a workaround. Of course other

hybrid schemes are possible.

5. Workarounds as a dependability approach

This paper documents the exploration of representing

workarounds in mission graphs for a multi-user embedded

system of moderate complexity. Of course not all

workarounds will manifest at the mission graph level, since

that only represents a particular level of abstraction. Exam-

ples of other classes of workarounds include selecting an

entirely different mission to substitute for a mission objec-

tive that has been foiled, and analog system actions such as

jiggling knobs to get them to respond properly. But at the

level of mission graphs, our approach should reveal any de-

pendability bottleneck present.

Creating an executable simulation that includes simu-

lated users, rather than a purely paper design, has demon-

strated that the techniques can work in a system of this

moderate level of complexity. While of course more com-

plex systems would have large mission graphs, such mis-

sion graphs are composed of sequence diagrams that would

have to be generated anyway in a UML-based design pro-

cess that uses them. Similarly, a complex system design

simulation requires simulated users of some sort. In

script-based simulation scenarios, scripts would have to be

adapted to incorporate workarounds where necessary.

In the absence of a simulation the concept of a

workaround is still viable as an adjunct to FMECA develop-

ment. Mission graphs focus attention on steps in a usage

scenario, and thus examining what happens if such a step

fails provides the opportunity for a failure response thought

experiment somewhere between a FMECA (which postu-

lates a component failure) and a Fault Tree Analysis (which

postulates a mission failure symptom).

Beyond the use of mission graphs, workarounds form a

part of everyday life, but have received very little attention

in terms of how they fit into system designs. Every system

has some limit on the number and types of faults it can toler-

ate. Once that limit is exceeded, workarounds can form a

safety net in any practical application. Of course creating a

workaround might require significant ingenuity or might be

impossible in some situations. But in instances where

workarounds are practical, formalizating their representa-

tion and including them as an intentional part of a system

design provides a way to document and potentially analyze

another dimension of practical system dependability.

6. Conclusions

While the concept of ad hoc workarounds is well known

in practice, there is very little work on formalization of their

representation for analysis and design. Moreover,

workarounds are typically created after system deployment

as a stopgap measure when problems are encountered in the

field. We advocate explicitly representing the user’s ability

to work around some failures in the system design phase to

ensure that such workarounds are possible, and to document

a workaround as a system dependability property that

should be preserved when discovered after system deploy-

ment.

Mission graphs seem to provide a powerful representa-

tional technique for use in comprehensive system depend-

ability evaluation. They can be created by stitching

together sequences of scenarios corresponding to a user in-

voking a set of use cases to accomplish a mission, with most

design information required already being part of typical

UML-based design processes. Once created, detection of

any single-arc dependability bottlenecks provides a way to

focus attention on critical aspects of system behavior in or-

der to remediate possible single points of system failure.

Use of mission graphs does not necessarily change the un-

derlying ad hoc nature of workarounds themselves; but it

does provide a way to formalize the representation of a

workaround once it has been created.

Experiments with a multi-user simulation of an embed-

ded system show that using mission graphs to identify de-

pendability bottlenecks for study is feasible for at least three

purposes: identifying the location of single-point system

failures, documenting previously implicit system-level re-

dundancy that can ameliorate system vulnerabilities, and

representing user- or system-provided workarounds to ad-

dress single point failure vulnerabilities without requiring

brute-force redundancy.
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While this work proposes that workarounds are worthy

of formalization, further work in this area is needed, espe-

cially in the area of methodically creating workarounds.

Based on these results the following things seem both feasi-

ble and promising. Mission graphs can be used to provide a

formal representation of single-point system failure vulner-

abilities and of the concept of a user “workaround”. And, in

some cases, workarounds can be quite simple to implement,

and need not require complex and highly trained users so

long as the user interface and overall system design pro-

vides some likelihood users will perform appropriate

workaround actions.
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