
Embedded System Software Quality
Why is it so often terrible? What can we do about it? (Keynote Talk)

Philip Koopman
ECE, ISR, RI Depts., Carnegie Mellon University & Edge Case Research LLC

Pittsburgh, PA USA
Koopman@cmu.edu

Abstract— Failures of embedded system software increasingly
make the news. Everyday products we rely upon are suffering
from safety issues, security issues, and just plain bugs. While
perfection is unrealistic, surely we can improve this situation.
Two key ideas apply: (1) embedded products often aren’t created
by computer specialists, and (2) teaching application domain
specialists just how to code is more of a problem than a solution.

Keywords—embedded software, safety, security, quality, CPS

I. INTRODUCTION

Embedded software failures are on the rise. Thermostats
leave homeowners in the cold. [1] Attackers drive a production
passenger vehicle off the road via cell phone link. [2] A car
company is found liable of “reckless disregard” for a
computerized throttle control that resulted in a fatal car crash.
[3] Malicious attackers take down a computerized power grid.
[4] Without some fundamental change, problems with software
quality, safety, and security will continue to grow. In an era
when embedded software and Cyber-Physical Systems (CPSs)
permeate our everyday lives, we have to do better than this.

II. WHEN “GOOD ENOUGH” ISN’T

Software developers often eschew heavy software process.
In principle, it’s difficult to argue with the entrenched idea of
“good enough” software. [5] A rational tradeoff approach of
ethically weighing costs, benefits, constraints, and risks makes
perfect sense. However, that presumes deep understanding of
the unique nonlinearities, discontinuities, and technical
challenges in creating robust CPS systems. In other words,
“good enough” tradeoffs are only defensible when software
engineering literacy is present. Otherwise, it’s just guessing.

Based on our experience with about 200 design reviews of
industry projects, development teams often don’t have
sufficient software engineering literacy to make informed
“good enough” tradeoffs. Non-computer application domain
experts often lack respect for the inherent difficulty of writing
high quality software, and do not have the skills needed to pull
it off. Computer specialists often lack respect for the challenges
of deploying huge numbers of low-cost but mission-critical
unattended computing devices that run 24x7 in the real world.

It is common to see a development cycle that boils down to
a vague product description, writing code, and product testing.
Usually missing are: design, peer reviews, unit test, and
process quality assurance. Many projects also suffer from a
lack of good coding practice, poor traceability, and missing
difficult-to-reproduce transient software failures.

The general reaction to high profile software defects
escaping to the field often includes yet more testing, and
perhaps insecure on-line patching. All too often missing are the
more productive strategies of: instituting effective peer
reviews, using static analysis tools, actually doing a design,
requiring traceability from testing back to requirements, and
following applicable software safety and security standards.

III. ARE THEY SOFTWARE PROFESSIONALS?

Improving the state of embedded software requires product
developers to embrace the fact that they are all software
developers. That requires them to get serious about reasonable
software engineering practices. Learning how to write code –
even good code – is not enough. It’s necessary to know how to
engineer appropriate quality software and how to tell when the
result actually is “good enough” in the context of the product.

Instituting adequate software development hygiene is not
so simple. Teaching computer specialists how to create good
embedded software won’t reach most application domain
specialists. This implies that all STEM practitioners (and
faculty who teach them) should learn at least the following:
good coding practices; methodical testing skills; software
process literacy; security literacy; and software safety literacy.
Most should also be exposed to embedded software technical
skills and CPS literacy as well. Mid-career training is essential
even for extremely talented domain experts who find
themselves thrust into the midst of large software development
projects with a skill set that amounts to only how to write code.

REFERENCES
[1] Billington, J., “Nest not working: Smart thermostat bug plunges

customers into cold ,” 1/14/2016, http://goo.gl/ZC4xP7

[2] Greenberg, A., “Hackers remotely kill a jeep on the highway – with me
in it,” 7/21/2015, http://goo.gl/8UHyuq

[3] Isidore,C., “Toyota settles acceleration case after $3 million jury
verdict,” 10/25/2013, http://goo.gl/PocJcy

[4] BBC, “Hackers caused power cut in western Ukraine – US,” 1/12/2016,
http://goo.gl/XYWcmw

[5] Bach, J., “Good Enough Quality: beyond the buzzword,” IEEE
Computer, August 1997, pp. 96-98.

Prof. Philip Koopman teaches embedded systems at the Carnegie
Mellon University ECE Department. He specializes in improving
robustness, safety, and security of cyber-physical systems. Current
activite areas include stress testing autonomy software, automotive
software safety, and training industry practitioners on best practices
for embedded software. Previously he worked for Harris
Semiconductor, United Technologies, and the US Navy submarine
force. He is a co-founder of Edge Case Research LLC.

ISSRE 2016, PREPRINT

