PROGRAMMABLE HARDWARE

Microcoded Versus
Hard-wired Control

A comparison of two methods for implementing
the control logic for a simple CPU

THE INSTRUCTION decoding and exe-
cution control sections of modern com-
puiters are prime areas for using program-
mable hardware. Two of the most widely
used methods for designing CPU control
sections in miCroprocessors, minicom-
puters, and mainframes are microcode and
hard-wired logic. Each method has its ad-
vantages, and both are natural applications
for programmable hardware devices.

Architectural Description

I'll start by giving the specifications for .

a simple computer architecture, then walk
through the implementation of this archi-
tecture using both microcoded and hard-
wired design strategies. While both ap-
proaches require the same description and
specification groundwork, they use dif-
ferent schemes to generate control signals.

I will examine the CPU architecture of
Toy, a fictitious computer designed
especially for this article. The CPU has
an accumulator (ACC), an arithmetic
logic unit (ALU), an instruction register
(IR), a program counter (PC), some ran-
dom-access memory (RAM), and some
control logic. Figure 1 is a block diagram
of the Toy architecture. All data paths are
16 bits wide with 12-bit memory-address
paths. You can directly implement the
ALU, ACC, IR, PC, multiplexer, and
RAM sections of Toy using commonly
available chips. Toy’s control-logic section
will require detailed design and the use
of customized hardware or a large number
of combinatorial logic gates.

The Toy instruction format shown in
figure 2 consists of a 4-bit op code and
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a 12-bit address field. The 16 implemented
op codes are shown in table 1. Op codes
8 through 1S do not make use of the in-
struction’s address field.

Since Toy is a single-accumulator ma-
chine, the instructions ADD, SUB, AND,
OR, and XOR combine the contents of a
memory location with the accumulator
and return the result to the accumulator.
The instructions STORE and LOAD
transfer the accumulator to and from
RAM. The instructions NOT, INC, DEC,
and ZERO operate on the accumulator
alone. While JMPZ is the only branching
instruction, you can program an uncon-
ditional branch by following ZERO with
a JMPZ. Finally, the four unused op
codes act as null operations (NOPs) to
eliminate the annoyance of dealing with
illegal op codes. .

Control Logic
The control-logic section translates the op-
code bit patterns into CPU-control and
timing signals. Figure 1 shows the op-code
inputs to the control-logic unit and the
control-signal outputs required to run the
rest of the CPU. The signals ALUO
through ALUCIN control the ALU. (I
based the bit assignments on those for the
74181 ALU chip. See The TTL Data Book,
listed in the Bibliography.) If ALUMODE
is a I, then the ALU will perform a logical
operation; if it’s a 0, the ALU will perform
an arithmetic operation. ALUO through
ALU3 control which arithmetic or logic
operation the ALU is performing.
ALUCIN acts as the carry-in for the ALU.
When the signal CLOCK[ACC]isa |,

the ACC register is loaded with the value
of its inputs at the rising edge of the system
clock. This is usually referred to as
“clocking in” the contents of the ACC.
When the signal CLOCKI[IR] is a 1, the
contents of the IR are clocked in from the
RAM output. This is the mechanism used
to decode the next op code. When
ADDR=IR is a 1, the RAM address
multiplexer places the contents of the IR
address field onto the RAM address bus.
When it is a 0, the PC is used to address
RAM. I use the descriptor ADDR=PC
to mean ADDR=IR is 0. When
CLOCK[PC}isa ! and the ACC is 0, the
PC is loaded from the IR address field.
When INCI[PC] is a 1, the program
counter is incremented by 1 at the end
of the current clock cycle. When
WRITE[RAM] is a 1, the RAM cell ad-
dressed by the RAM address bus is loaded
with the output of the ALU; when this
signal is a 0, the ALU is driven from the
output of RAM.

Functional Specifications
Now for the heart of how the Toy instruc-
tion set is implemented. In the Toy CPU,
all instructions can be executed in just one
or two clock cycles. Table 2 shows the ac-
tions required to complete each op code’s
function. Those actions in table 2 that are
continued
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not the control signals shown in figure 1
are macros for the ALU control bits
whose value is given in table 3. Let’s ex-
amine some representative op codes in
detail.

The STORE op code stores the contents
of ACC into RAM. For the first cycle of
this instruction, the low 12 bits of the IR
address RAM. The ALU routes the ACC
contents through without modification,
then writes them out to RAM.

STORE requires two clock cycles since
RAM is being used for accessing a data
value during the first clock cycle. The sec-
ond clock cycle is the same for all two-
cycle instructions; it is simply a decoding
of the next op code.

The contents of the RAM address
pointed to by the PC are put onto the
RAM address bus to fetch the op code.
They are then clocked into the IR, and

continued
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Figure 1: Toy architecture block diagram.

INSTRUCTION FORMAT :
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Figure 2: Toy instruction set format.
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Table 1: Toy instruction set.

R A R

Op code Operation Description

0 STORE store accumulator in RAM at address

1 LOAD load ACC from RAM at address

2 JMPZ jump to address it ACC is zero

3 ADD add RAM to ACC

4 sSuB subtract RAM trom ACC

5 OR logical OR RAM into ACC

6 AND logical AND RAM into ACC

7 XOR logicat XOR RAM into ACC

8 NOT logical one’s complement into ACC

9 INC add 1 to ACC

10 DEC subtract 1 from ACC

1 ZERO place 0 in ACC

12 NOP null operation — unused op code

13 NOP null operation — unused op code

14 NOP null operation — unused op code

15 NOP null operation — unused op code

R

S

Table 2: Toy functional specification. Note that ADDR=PC is equivalent to
the ADDR=IR signal being 0. Also, I have used descriptive macro names
for the ALU control bits (see table 3).

N

Op code Operation Cycle Specification
¢} STORE 1 ADDR=IR ; ALU=ACC ; WRITE[RAM]
2 ADDR=PC ; CLOCK{IR] ; INC[PC)
1 LOAD 1 ADDR=IR . ALU=RAM : CLOCKIACC)
2 ADDR=PC ; CLOCKIIR] : INC[PC]
2 JMPZ 1 CLOCK[PC]}
2 ADDR=PC ; €LOCK(IR] ; INC{PC]
3 ADD 1 ADDR=IR ; ALU=ACC+RAM ; CLOCK[ACC]
2 ADDR=PC ; CLOCKIIR] ; INC[PC}
4 suB 1 ADDR=IR ; ALU=ACC-RAM ; CLOCK[ACC]
2 ADDR=PC ; CLOCKIIR] ; INC[PC]
5 OR 1 ADDR=IR ; ALU=ACCorRAM ; CLOCK[ACC]
2 ADDR=PC ; CLOCKIIR) ; INCIPC]
6 AND 1 ADDR=IR ; ALU=ACCandRAM , CLOCK{ACC)
2 ADDR=PC ; CLOCK([IR] ; INC[PC]
7 XOR 1 ADDR=IR ; ALU=ACCxorRAM ; CLOCK([ACC]
2 ADDR=PC ; CLOCK[IR] ; INC[PC]
8 NOTA 1 ALU=notACC ; CLOCK|ACC]) ;
ADDR=PC ; CLOCK[IR] : INC[PC]
9 INCA 1 ALU=ACC+1 ; CLOCK[ACC] ; ADDR=PC ;
CLOCKI[IR] ; INC[PC]
10 DECA 1 ALU=ACC~1 ; CLOCK[ACC] ;
ADDR=PC ; CLOCK{IR] ; INCIPC)
1 ZERO 1 ALU=0 ; CLOCK[ACC] .
ADDR=PC ; CLOCK[IR] ; INC[PC]
12-15 NOP 1 ADDR=PC ; CLOCK|IR] ; INC[PC]
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finally the PC is incremented so that it is
pointing to the next op code.

JMPZ accomplishes a conditional
branch by loading the contents of the PC
with the address in the IR. For this to be
a conditional branch, the control signal to
the PC loader must be ANDed with a

R

signal that is only true if all the bits of the
ACC are 0. Since the PC is loaded with
the new instruction address at the end of
the first clock cycle, the second cycle is
a normal decoding instruction for this new

address, identical to the second cycle of
STORE.

~

74181 ALU chip).

Table 3: Macros for the ALU control bits (based on bit assignments in the

Macro ALUC  ALU1  ALU2  ALU3 ALUMODE ALUCIN
ALU = ACC 1 1 1 1 1 X
ALU = RAM 0 1 0 1 1 X
ALU = ACC + RAM 1 0 0 1 0 0
ALU = ACC - RAM 0 1 1 0 0 1
ALU = ACC ORRAM 0 1 1 1 1 x
ALU = ACC AND RAM 1 1 0 1 1 X
ALU = ACC XOR RAM 0 1 1 0 1 x
ALU = NOT ACC 0 0 0 0 1 x
ALU = ACC + 1 0 0 0 0 0 1
ALU = ACC - 1 1 1 1 1 0 0
AU =0 1 1 0 0 1 x

S d

m
Table 4: Control signal value specification.

Values for first clock cycle of each instruction

Control Op code

signal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ALUO 1 0 x 1 0 0 1t 0 0 0 1t 1 x x x x
ALU1 1t 1 x 01t 1 1 1 0 0 1 1 x x X x

ALU2 1 0 x 01 1t 0 1 00 1 0 x x X x

ALU3 t' 1 x 1 01t 1 0 0 0 1t 0 x x x x

ALUMODE 11t x 00 1 171 1.0 0 1 x x x x

ALUCIN x x x 0 1 x x x x 1 0 x X x X X

C}.OCK(ACC] o1 01 1 1 1t 1 1 1 1 1 0 0 0 0
CLOCK]IR} 0 000 0 O0O0OCO0OCT+T 1T 1 1 1 1 1 1

ADDR=1IR t1 1 1 1 1 1 1 0 0 0 0 0 0 O 0
CLOCK[PC] 6 0t 00 OO OOOOOUDOU OUOUO OO
INC[PC] 6 00 000 OO0 1T 1 1 1 1 1 1 1

WRITE[RAM] 1 0 0 0 0 0OO O 0O 0 0 OOO0OUO0OTOO

Values for second clock cycle of each instruction

Control Op code
signal 0 1
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ALUO

ALU1

ALU2

ALU3
ALUMODE
ALUCIN
CLOCKIACC]
CLOCK(IR]
ADDR = IR
CLOCK[PC]
INC[PC]
WRITE[RAM]

O~ 00 -=+0X X X X X X
O=200—=+0X X X X X X
Q200 =4O X X X X %X X
O w00 =+ 0O X X X X X X
O+ 00 20X X X X X X
O+ OO0 —=+0 X X X X X X

A

O 200 40O X X X X X X
O =400 20X X X X %X X
X X X X X X X X X X X X
M X M X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X
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The single-clock-cycle instructions,
such as NOTA, do not require a RAM ac-
cess for an operand. This means that the
usual second-cycle decoding sequence can
occur during the same clock cycle as the
ALU operation that modifies the ACC
contents. In the case of NOTA, the RAM
input to the ALU is ignored while the
ALU computes the one’s complement
(logical inverse) of the current ACC
contents.

Control-Logic Outputs

Table 4 gives a complete listing of all the
control-logic output values that you need
to specify the Toy functional description.
Each X corresponds to a signal whose
value does not matter, either because the
controlled resource is unused (as in the
ALU signals for op code 2) or because the
second clock cycle is unused for op codes
8 to 15. These “don’t-care” signals become
crucial when you are designing hard-wired
control circuitry.

Hard-wired Control

A CPU designed with hard-wired control
uses random logic such as AND, OR, and
NOT gates and either flip-flops or
counters to decode each op code and con-
trol the processing flow. The hard-wired
design process usually consists of identi-
fying all the states needed to implement
the instruction set, then deriving the
Boolean logic equations required to con-
trol the computer’s resources for each
step.

Figure 3 shows the hard-wired imple-
mentation of the functional specifica-
tions given in table 4. It requires a con-
troller with two states: first clock cycle and
second clock cycle. The flip-flop in figure
3 is forced to the CLOCKI state whenever
a new instruction is clocked into the IR
and changes to the CLOCK2 state when-
ever the IR is not clocked.

The most tedious part of a hard-wired
control design is creating the logic gate
networks to decode instructions into con-
trol signals. I have derived the required
logic equations shown in figure 4 from the
functional specifications in table 4. Figure
5 shows the Karnaugh map for deriving
the first equation (ALUO) in figure 4. (See
W. Fletcher’s An Engineering Approach
to Digital Design [Prentice-Hall, 1980] for
a discussion of Karnaugh maps.)

The don’t-care conditions are vital in
reducing the complexity of the gate net-
works, since they allow freedom to ignore
some op-code bits or state bits to minimize
decoding logic. A good example of a
don’t-care condition is the ALU control
signals; they do not depend on whether
the controller is currently in the CLOCKI
or CLOCK2 mode.

continued
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Figure 3: Hard-wired controller schematic. Note that none of the ALU signals
depend on whether the controller is in the CLOCKI or CLOCK2 mode.
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ALUG = OP3 OP2 OP® + OP2 OP1 + OP1 OP@
ALU1 = OP3 OP1 + OP2 + OP3 OP1

ALU2 = OP3 OP1 OPO® + OP2 OP® + OP3 OP1 OPO
ALU3 = OP3 OP2 + OP3 OP1 OP® + OP1 OP@

ALUMODE = OP2 OP1 OP@ + OP3 OP1 OP@
+ OP2 OP1 + OP3 OP1 OP@

ALUCIN = OP1

CLOCK[ACC]) = ( OP3 OP2 + OP3 OP2 + OP3 OP@ ) CLOCKT
CLOCK[IR] = OP3 CLOCK1 + CLOCK2

ADDR=IR = OP3 CLOCK1

CLOCK[PC] = OP3 OP2 OP1 OP® CLOCK1

INC[PC] = OP3 CLOCK1 + CLOCK2 '
WRITE[RAM] = OP3 OP2 OP1 OP® CLOCK1

Figure 4: Logic equations for Toy’s hard-wired implementation.

OP1,0P0 -
OP3,0P2 o0 o0 10:
PG, S [ 1 k] - -
%0} 1 o |2 1 x ]
] 5 7 ] ‘ s|—-—- OP CODE VALUE
01| o 0 0 1 0 «—— VALUE OF ALUO
L1 FOR THAT OP CODE
12 13 15 14
1y ox X X x X = DON'T CARE
[ 9 ujl___ o
10] o 0 1 1
OP CODE CORRESPONDING
NUMBERS BIT VALUES EQUATION
REGION  :2,6,10,18 | OP1=1, OPO=0 oP1. OFD
REGION :2,3,10,11 | OP2:0,0P1=1 0P2.0P1
REGION  : 0,2 OP3:0, OP2:0,0P0=0 | OP3+ OP2+ OPO
ALUO = OF3 « OF2+ OPO + OF2 » OP1 + OP1 OFO

Figure §: 7o show how the Boolean equations in figure 4 were derived
from table 4, here is the Karnaugh map used 10 minimize the ALUO
Boolean equation. The Xs are the don't-care bits, and the number in the
upper right corner of each box is the op code.
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To implement the hard-wired controller,
the complementary outputs of the
CLOCKI1/CLOCK?2 flip-flop and the in-
puts from the current op code in the IR
are fed throughout the system by the lines
at the left of figure 3. These inputs are then
fed through logic-gate combinations
specified by the equations in figure 4. You
can implement these logic-gate combina-
tions with TTL logic gates or, if you want
to save board space, program them into
hardware, such as a PAL.

As an example of how these decoding
gates work, consider the generation of the
signal INC[PC]. The INC[PC] signal
should be a 1 for op codes 8 to 15 on the
first clock cycle and for op codes 0 to 7
on the second clock cycle. But, since op
codes 8 to 15 are all single-cycle op codes,
any signals generated from them during
the second cycle can be ignored. This
gives the result that INC[PC] can be 1 for
all op codes during the second cycle. The
logic for INC[PC] then becomes the AND
of the highest op-code bit (OP3) and
CLOCKI!. with the result ORed with
CLOCK2.

Because the time required for a signal
to pass through a simple logic gate is only
a few nanoseconds with most current
technologies, hard-wired control can pro-
vide the fastest possible decoding of
machine language instructions. It also is
the most flexible design method for speci-
fying unique and complex control flows
within a CPU because the designer can
specify any decoding gate combinations
and any control-flow hardware.

One drawback to using hard-wired con-
trol methodology is that it requires a con-
siderable amount of Boolean algebra
manipulation. Another drawback is that
the CPU must be completely and correctly
specified before you design a hard-wired
control unit.

Any additions or modifications to the
specification can require a major redesign
of the control unit. If you want a feel for
the impact a design change can have on
a hard-wired controller, try redoing the
logic equations with two op codes
switched, such as op codes 5 and 9. or
with op code 15 defined as a two-cycle
logical NAND instruction.

Microcoded Control
Microcoded design differs from hard-
wired design in that the control-logic gates
are replaced by a memory array (usually
a ROM) to generate the required control-
logic signals. While ROMs are slower
than random logic within the same price
and performance categories, using a ROM
simplifies the design process and signifi-
cantly reduces time and costs for imple-
menting a CPU control circuit.

Figure 6 shows the schematic for a
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microcoded control circuit for Toy. The
op code and a flip-flop similar to the one
used in the hard-wired controller are fed
in as an address to the microprogram
ROM. The outputs of the ROM directly
drive the control signals for the CPU.
Each ROM location contains the proper
bit settings to control a single clock cycle
of an op code’s execution, as shown in
figure 7.

The control signals for the first cycle of
each op code are placed in the even
memory addresses (which are addressed
when the flip-flop in the controller out-
puts a O for the first clock cycle). and the
second cycle op codes are placed in odd
memory addresses. I have arbitrarily
assigned the value 0 to all don't-care bits
from table 4 and copied the rest of the bits
directly from table 4 to figure 7.

The main advantage to microcoded con-
trol is that it lets the designer change the
CPU’s functional description by changing
the bits in any ROM address without hav-
ing to redesign the machine’s logic-
decoding gate structure. Microcoded ma-
chine design also lends itself to simply
structured. low-component-count com-
puters such as those built using bit-slice
technology. Most modern microproces-

continued
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Figure 7: Contents of ROM for the microcode.

sors and large computers use microcoded
design techniques because the design costs
associated with hard-wired control are too
high.

In some cases. a computer will use
RAM instead of ROM for its microcoded
memory, providing a “writable control
store.” A sophisticated programmer can
use this to modify and extend the ma-
chine's instruction set for special applica-
tions. By using multiple sets of ROM or
RAM within a machine, the programmer
can make a computer emulate more than
one machine-code instruction set for dif-
ferent computing environments.

The method of microcoding I used in
Toy is called horizontal microcoding.
since each bit of the ROM directly feeds
a control line for the CPU. A hybrid
design method known as vertical micro-

coding compacts some control signals
together to save ROM bits. It then uses
decoding logic much like that used by the
hard-wired approach to regenerate the
signals.

In general, hard-wired control is used
for computer designs that are simple or
that require fast execution speeds, while
microcoded control is used in complex
computer designs to keep design costs low.
Both design methods can implement
CPUs that are much more complex than
the Toy architecture. ®
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