
18
Distributed Time

Distributed Embedded Systems
Philip Koopman

Nov. 9, 2015

© Copyright 2000-2015, Philip Koopman

2

Preview
 Distributed time

 When things happen; chain of causal events
 Relating messages to causality

 Clocks and time ticks
 It is fundamentally impossible for all nodes to have exactly the same clock time
 Limitations of network messaging affect clock synchronization

(if you use the same network to distribute time and announce events, it is
difficult to have a time base more precise than event announcement jitter)

 Clock synchronization algorithms
 Heavy duty distributed time algorithms are grad.-level material

 Kopetz book: Chapter 3 goes into graduate-level descriptions
 The ideas are (almost) all in this lecture, but with more intuitive explanations

3

Why Is Distributed Time Difficult?
 Fundamentally, it is impossible to have a perfect, common time base

 So, we hope relativistic effects don’t matter
 We put in hacks for network delay time

– Measure typical propagation delays
– Measure typical time variations (drift, jitter)
– Assume that they don’t change a lot, and add in fudge factors to account for them

 But, EVEN THEN, “closely spaced” events are always a problem

4

The Same Problem on a Network
 Variations in time between event and sending network package

 A/D conversion speeds
 Sampling jitter (interrupt priority/interference OR polling loop time delay)
 Operating system task scheduling jitter
 Network interface jitter & message prioritization

5

Causality & Time -- An Example
 Let’s say that a pipe breaks, causing a spill

6

Causal Order -- How Did It Happen?
 Pump overspeed caused pressure and vibration, breaking the pipe

 Assume the storage tank was full, so input flow zero despite pump
 (Assume the pipe was defective, and overspeed stressed the latent defect)

 Once the pipe is broken and pump stops, the tank empties

7

Message Delivery Order -- Can Be Arbitrary
 Messages can be delayed by:

 Priority-based blocking (e.g., if storage tank low level has highest priority)
 Multi-hop routing (e.g., if pump overspeed must traverse 5 network bridges)
 Other system loads (e.g., if pump overspeed computer is doing a non-

interruptible computation)

Possible
Message
Delivery
Order

8

An Obvious Solution -- Time Stamps
 This is why time matters on a distributed system

 Provides a global sense of when things happened
 Provides notion of dead time from sense to actuate for distributed control loops

 BUT:
 Consumes bandwidth
 Requires synchronized time-of-day at every node

9

A Less Obvious Solution – Implicit Time Stamps
 Send every message in a cyclic pattern (Another Time Triggered Idea)

 Cycle #1: Message #1
 Cycle #1: Message #2
 Cycle #1: Message #3
 Cycle #2: Message #1
 …

 Ensure that each message has the most recent data value when it is sent
 Best case is that message has brand new data
 Worst case is that message has data almost one cycle old
 Implicit time stamps consist of fact that data is never more than 1 cycle out of

date (and, possibly, have an explicit cycle number attached)
– This is the basis for the Π /∆ precedence discussion in Kopetz
– The kinder, gentler version follows

 But first, a word about accuracy, precision & time ticks

10

Time Measurement Inaccuracy Sources
 Variations

 Synchronization difference (impossible to sync all clocks exactly)
 Clock drift (too fast, too slow, maybe time-varying)

 Quantization effects
 Micro-tick size limitation on a single node
 Across-network Tick size limitation on a system

11

Physical Clock
 Typical source: oscillator circuit, perhaps augmented

with GPS time signal
 R/C timing circuit; somewhat stable
 Commodity crystal oscillator; perhaps 10-6 /sec stability (14-pin DIP size)

– Oven-controlled for wireless communications; perhaps 10-11 /sec stability
 Micro-rubidium atomic oscillator

– perhaps 10-11 /month stability
– 0.7 kg weight
– 0.3 liter volume

12

Simple Real-World Clock Drift Example
 A gizmo has a crystal oscillator running at 32,768 Hz + 0.002%

 32,768 Hz is a quartz watch crystal; 15-bit divider gives 1 Hz
 (.002% is a 2*10-5 drift rate)
 The product specification requires accuracy of 2 seconds/day
 Will the oscillator meet the specification?

(.00002 sec/sec drift rate * (60 sec * 60 min * 24 hr)
= 1.728 sec drift per day (so it meets the spec.)

 How far will it drift over a 2-year battery life?

1.728 sec/day * (365.25 days * 2 years) = 21 minutes drift over 2 years

 Observations:
 10-6 or 10-7 is probably desirable for consumer products that keep time
 There are a lot of seconds in a year (31.6 million of them)

– Roughly Pi * 107

13

Distributed Time Ticks
 Micro-tick: granularity of clock

(counter/timer interrupts)
 Length of time used on single node for time

keeping
 Multiple of the local process oscillator speed

 Global Tick: clock events generated in global
time
 Length of time used to coordinate events across

nodes
 Usually many micro-ticks per global tick
 Sometimes called a Macro-tick
 A network-wide notion of time, independent of

micro-tick size

 Key attribute: stability over operating time
 Global ticks have to happen often enough to keep

things from skewing too far apart at nodes

14

Global Time Tick
 Global time granularity g is the size of global time stamp

increments
 To be reasonable, g has to be > Precision Π
 Events must be 2 or more ticks apart to establish unambiguous temporal

order
– Event A might be up to 1 tick faster than a notional “reference clock”
– Event B might be up to 1 tick slower than a notional “reference clock”
– But, difference is < 2 ticks (i.e., temporal ordering certain at >= 2g time

difference)

 (For time-triggered network messages, “g” in terms of event ordering is
based on message periods)

 How long does an event last?
 Up to 2g error on start of event
 Up to 2g error at end of event
 (Assumes that event start, event end, and elapsed time observer happen at

different nodes)

15

Example, When Does the Bus Come?
(A gentle version of Π /∆ precedence)

 Say that the 61C bus comes every 5 minutes
per the schedule
 8:05 bus
 8:10 bus
 8:15 bus

 You get on a bus at 8:11; which bus was it?
 If buses run +/- 6 minutes early/late, it could have been any of the three
 If buses run +/- 5 early/late, it was the 8:10 or the 8:15
 If buses run < +/- 4 early/late, it could only be the 8:10

(Moral of the story:
don’t bother with a bus schedule if average jitter exceeds scheduled inter-arrival time)

 Now consider messages sent in a network...
 How do you connect message order to event sequence?

16

A Graphical Explanation
 Assume that time period g is slightly larger than precision

 So there is always an instant at which all nodes have the same period number

 An event could happen at one instant and appear to be:
 Period 7 in one node; period 8 in a second (leftmost vertical arrow)
 Period 8 in both nodes
 Period 8 in one node; period 9 in a second (rightmost vertical arrow)
 BUT NOT: Period 7 in one, and Period 9 in a second one
 There is no instant in which period number differ by 2 or more

– So, any events with period numbers >= 2 apart have unambiguous order

Period 7 Period 8 Period 9

Period 7 Period 8 Period 9

Assume Period=g is slightly larger than precision.

17

Why Is It 2g Instead of 1g?
 Assume order unknown (e.g., RMA scheduled Network or RTOS)

 In above example:
 Assume time-triggered messages sent somewhere within each global tick
 Event 2 is reported by its message almost 2 ticks before Event 1

– (If messages take “zero” time, events have to be >= 2 ticks apart to guarantee order)
 Idea of “sparse time” – time stamps only increment at macro-tick boundaries

18

Need Only 1g Separation For Ordered Messages
 If message order is always the same (e.g., TDMA network)

only need 1g separation to guarantee unique order
 Any messages that arrive > 1g apart are guaranteed to be in correct order

(assuming no lost/dropped messages)
 But, this assumes you know network schedule, which might not be true

19

Distributed Time Measurement Errors
 Offset: difference in time at a particular instant per an omniscient observer
 Precision: (Π) maximum offset between any two clocks within system
 Accuracy: (A) offset between system time and the “real” time

Given this information:
“Real” correct time: 14
Node #1: 18
Node #2: 13
Node #3: 17

What is:
Offset: Node 1 vs. Node 2 ____ Node 3 vs. Node 2: ____
Precision: _______
Accuracy: Node 1 ____ Node 2____ Node 3___

20

Clock Synchronization
 Every once in a while, clocks must be reset to the “correct” time

 Consensus among nodes (improving precision)
 Consensus with notional reference clock (improving accuracy)

 State correction
 Agree on the time and fast-forward/rewind to that time
 Simple, but introduces discontinuities in time base

 Rate correction
 Speed up/slow down tick rate to converge to better time
 More difficult to implement, less chance of a problem
 GPS time is “rate steered”

– GPS time is typically accurate within 200 ns to 1 microsecond

 Fault Tolerant correction
 Usually, drop the lowest and highest clocks, then average the rest
 (Advanced theory and correctness proofs apply here…)

21

Master Clock Synchronization
 Master node says “it is now 1:32 PM”

 Assume that master node has access to high-quality time reference
 Assume that master node never fails, or is redundant
 Assume that master node messages have high priority

 Embellishments:
 Use multiple round-trip messages to establish message latency; compensate

time for message latency
 Use a broadcast message instead of individual messages to each node
 Use periodic broadcasts, and establish a local phase-locked-loop with master

clock at each node

22

Distributed Time Synchronization
 Improve precision by reducing variation

 Nodes vote to establish mean time value
 Nodes adjust time to conform to mean
 Only works well when:

– Adjustments are tweaked to total zero in aggregate (to avoid system drift)
– Node time drift is completely random (unbiased)

 This is good enough if the time in the outside world doesn’t matter
 If accuracy matters, use an external time base as one of the node times

 Distributed time synch is used in most dependable embedded systems

23

g in an Embedded Network
 Basic granularity limit is 2 tpd in an embedded network

 Node A starts sending a bit
 Node B “sees” a bit 1 tpd later (tpd = propagation delay)

– Might have started sending a bit of its own during that tpd interval
 Node A “sees” results of potential interference from B yet another tpd later

 Consequences:
 Takes special care to achieve clock synchronization better than 2 tpd

 Bit times on some networks are limited to 2 tpd in size to synchronize state
machines controlling network protocol

 And, of course, gate delays in network interface logic make it worse

 Example:
 1 Mbit CAN network; assume speed of signal in wire = 0.5 C
 Maximum length: 2 tpd = 1 μsec length = 0.5 C * tpd = 150 meters

– But, tall buildings might be > 350 meters high... Have worse than 1 μsec synch.

24

Daylight Savings Time & Time Zones
 Daylight savings time switches

 Which are declared annually by Congress and have been known to change
– WW II had war-time daylight savings time to save energy
– “Energy Crisis” in the 70’s resulted in year-round daylight savings time
– Only the Navajo nation within Arizona does DST (not the state; not the Hopi resv.)

 http://www.energy.ca.gov/daylightsaving.html
– Beginning in 2007, Daylight Saving Time extended:
– 2 a.m. on the Second Sunday in March to

2 a.m. on the First Sunday of November.
– This does not correspond to European dates!

www.time.gov

26

Problems With Time in the Real World
 Coordinated Universal Time (UTC; the world time

standard)
 Is not a continuous function due to leap seconds

(and is only monotonic by putting 61 seconds in a minute just before midnight)
 And, of course, leap year also causes discontinuities, although they’re more

predictable

 Time zones
 Not just on hourly boundaries – Venezuela is UTC/GMT -4:30 hours; no DST
 VCR auto-time-set might sync to channel from wrong time zone via cable feed

 DST changeover date changes fairly often
 With little warning compared to a 10-20 year embedded system lifetime

 “Y2K”
 The GPS 1024 week time rollover (a ship got lost at sea…)
 And Unix rollover problem (January 19, 2038 03:15:07 GMT)
 Leap year occurs more often … but still a problem

28

F-22 Raptor Date Line Incident
 February 2007

 A flight of six F-22 Raptor fighters attempts to deploy US to Japan
 $360 million per aircraft (Perhaps $120M RE, rest is NRE)

 Crossing the International Date Line, computers crash
– No navigation
– No communications
– No fuel management
– Almost everything gone!
– Escorted to Hawaii by tankers
– If weather had been bad, might

have caused loss of aircraft

 Cause: “It was a computer glitch
in the millions of lines of code,
somebody made an error in a
couple lines of the code and
everything goes.”

[DoD]

[Wikipedia]

29

2013: NASA Declares End to Deep Impact Comet Mission

http://news.nationalgeographic.com/news/2013/09/1309
20-deep-impact-ends-comet-mission-nasa-jpl/

http://apod.nasa.gov/apod/
image/0505/art1_deepimpact.jpg

30

Review
 Distributed time

 When things happen; chain of causal events
 Relating messages to causality

 Clocks and time ticks
 It is fundamentally impossible for all nodes to have exactly the same clock time
 Limitations of network messaging affect clock synchronization

(if you use the same network to distribute time and announce events, it is
difficult to have a time base more precise than event announcement jitter)

 Clock synchronization approaches
 Tradeoff of changing rate of change or changing value

