## Lecture #18

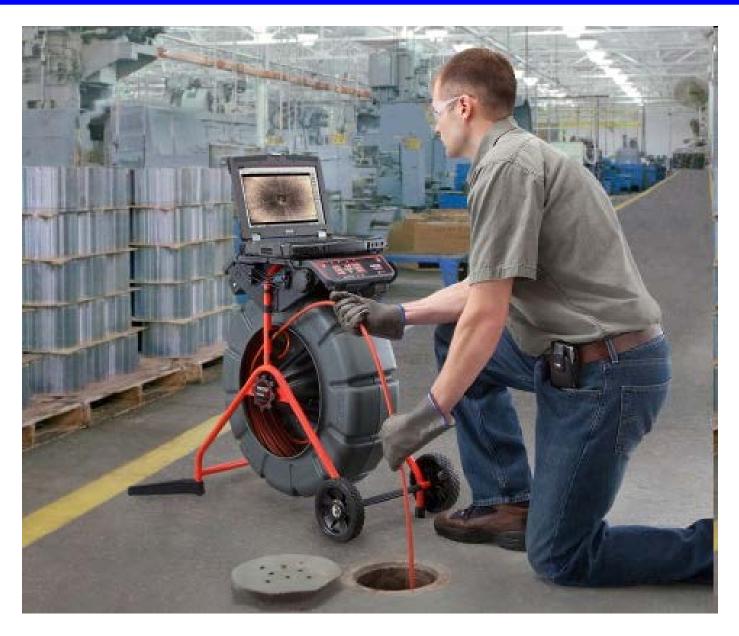
# Introduction To Scheduling

18-348 Embedded System Engineering Philip Koopman Wednesday, 23-Mar-2016





# **Sewer And Pipe Inspection Camera**



# Where Are We Now?

#### Where we've been:

- Interrupts
- Context switching and response time analysis
- Concurrency

#### Where we're going today:

Scheduling

#### Where we're going next:

- Analog and other I/O
- System booting, control, safety, ...
- In-class Test #2, Wed 20-April-2016
- Final project due finals week. No final exam.

# **Preview**

- What's Real Time?
- **♦** Scheduling will everything meet its deadline?
  - Schedulability
  - 5 key Assumptions

## Application of scheduling

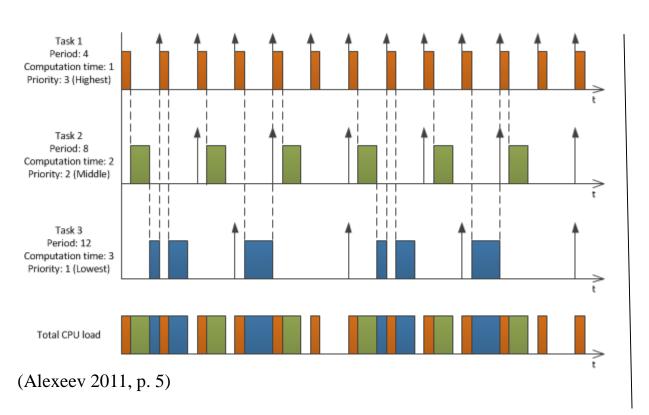
- Static multi-rate systems
- Dynamic priority scheduling: Earliest Deadline First (EDF) and Least Laxity
- Static priority preemptive systems (Rate Monotonic Scheduling)

## Related topics

- Blocking time
- Sporadic tasks

# **Real Time Scheduling Overview**

- Hard real time systems have a deadline for each periodic task
  - With an RTOS, the highest priority active task runs while others wait
  - System fault occurs every time a task misses a deadline
  - Mathematical analysis is accepted practice for ensuring deadlines are met
    - We'll build up to Rate Monotonic Analysis in this lecture



#### **Schedulability**

Meeting hard deadlines is one of the most fundamental requirements of a real-time operating system and is especially important in safety-critical systems. Depending on the system and the thread, missing a deadline can be a critical fault.

Rate monotonic analysis (RMA) is frequently used by system designers to analyze and predict the timing behavior of systems.

(Kleidermacher 2001 pg. 30)

# **Real Time Definitions**

#### Reactive:

## Computations occur in response to external events

- Periodic events (e.g., rotating machinery and control loops)
  - Most embedded computation is periodic
- Aperiodic events (*e.g.*, button closures)
  - Often they can be "faked" as periodic (e.g., sample buttons at 10 Hz)

#### Real Time

- Real time means that correctness of result depends on both functional correctness and time that the result is delivered
- Too *slow* is usually a problem
- Too *fast* sometimes is a problem

# **Flavors Of Real Time**

#### Soft real time

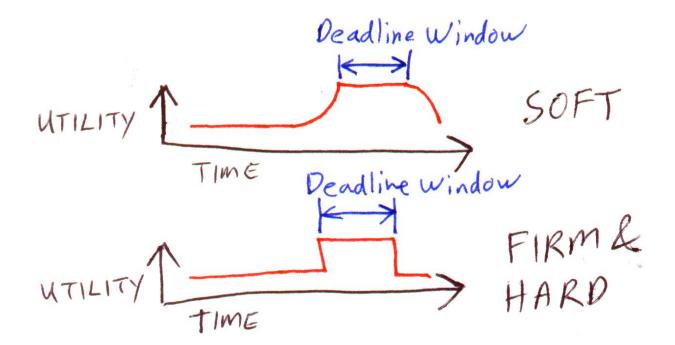
Utility degrades with distance from deadline

#### Hard real time

System fails if deadline window is missed

#### Firm real time

• Result has no utility outside deadline window, but system can withstand a few missed results



# "Real Time" != "Really Fast"

- "Real Time" != "Really Fast"
  - It means not too fast and not too slow
  - Often the "not too slow" part is more difficult, but it's not the only issue
  - Also, a whole lot faster than you need to go can be wasteful overkill
  - Often, ability to be consistently on time is more important than "fast"

## Consider what happens when a CPU goes obsolete

- Is it OK to write a software simulator on a really fast newer CPU?
  - Will timing be fast enough?
  - Will it be too fast?
  - Will it vary more than the old CPU?
- What do designers actually do about this?

# **Types of Real-Time Scheduling**

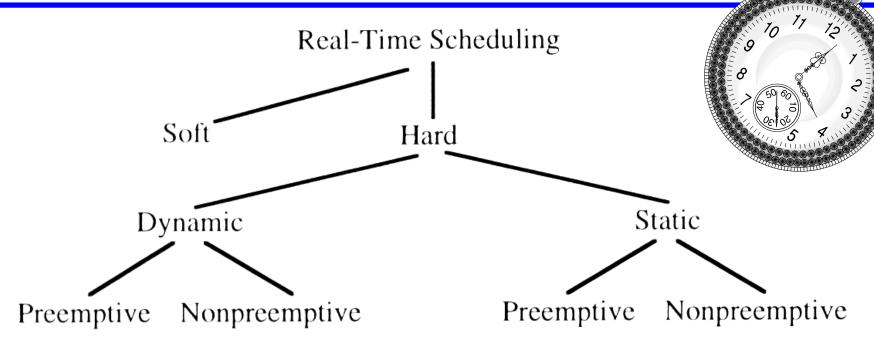


Figure 11.1: Taxonomy of real-time scheduling algorithms.

[Kopetz]

- Dynamic vs. Static
  - Dynamic schedule computed at run-time based on tasks really executing
  - Static schedule done at compile time for all *possible* tasks
- Preemptive permits one task to preempt another one of lower priority

# **Schedulability**

## **♦** NP-hard if there are any resource dependencies at all

- So, the trick is to put cheaply computed bounds/heuristics in place
  - Prove it definitely can't be scheduled
  - Find a schedule if it is easy to do so
  - Punt if you're in the middle somewhere

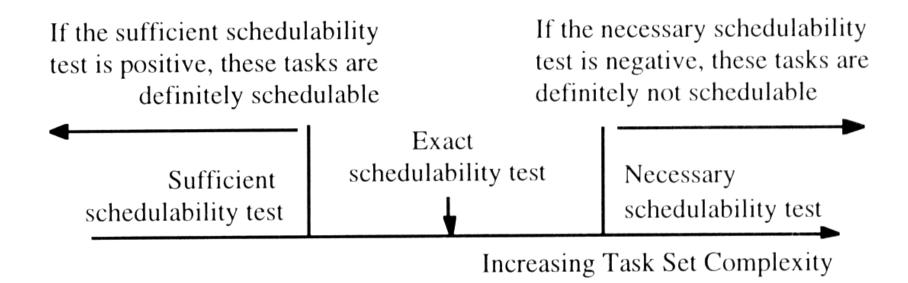
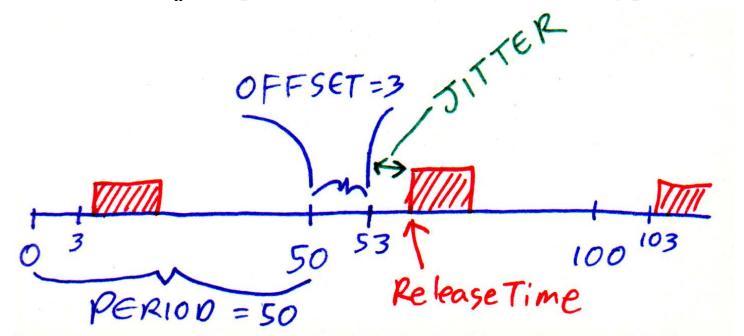


Figure 11.2: Necessary and sufficient schedulability test.

[Kopetz]

# **Periodic Tasks**

- "Time-triggered" (periodic) tasks are common in embedded systems
  - Often via control loops or rotating machinery
- Components to periodic tasks
  - Period (e.g, 50 msec)
  - Offset past period (e.g., 3 msec offset/50 msec period -> 53, 103, 153, 203)
  - Jitter is random "noise" in task release time (*not* oscillator drift)
  - Release time is when task has its "ready to run" flag set
  - Release  $time_n = (n*period) + offset + jitter$ ; assuming perfect time precision



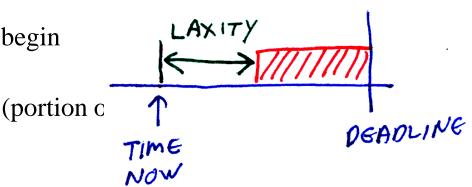
# **Scheduling Parameters**

# Set of tasks {T<sub>i</sub>}

- Periods p<sub>i</sub>
- Deadline d<sub>i</sub>
   (completion deadline after task is queued)
- Execution time c<sub>i</sub> (amount of CPU time to complete)
- Worst case latency to complete execution W<sub>i</sub>
  - This is something we solve for, it's not a given

## Handy values:

- Laxity  $l_i = d_i c_i$ (amount of slack time before Ti *must* begin execution)
- Utilization factor  $\mu_i = c_i/p_i$ CPU used)



# **Major Assumptions**

- **♦** Five assumptions are the starting point for this area:
  - 1. Tasks  $\{T_i\}$  are periodic, with hard deadlines and no jitter
    - Period is P<sub>i</sub>
  - 2. Tasks are completely independent
    - B=0; Zero blocking time; no use of a mutex; interrupts never masked
  - **3.** Deadline = period
    - $P_i = D_i$
  - 4. Computation time is known (use worst case)
    - C<sub>i</sub> is always the same for each execution of the task
  - 5. Context switching is free (zero cost)
    - Executive takes zero overhead, and task switching has zero latency
- **♦** These assumptions are often not realistic
  - But sometimes they are close enough in practice
  - Significantly relaxing these assumptions quickly becomes a grad school topic
    - We're going to show you the common special cases that are "easy" to use

# **Easy Schedulability Test**

- ♦ System is schedulable (i.e., it "works") if for all i,  $W_i \le D_i$ 
  - In other words, all tasks complete execution before their deadline
- μ is processor utilization (fraction of time busy) must be less than 1

$$\mu = \sum \frac{c_i}{p_i} \le 1$$

• "You can't use more that 100% of available CPU power!"

#### **♦** This is *necessary*, but not sufficient

- Sometimes even very low percent of CPU power used is still unschedulable
- e.g., if blocking time exceeds shortest deadline, impossible to schedule system
- e.g., several short-deadline tasks all want service at exactly the same time, but rest of time system is idle

# Remember this? Multi-Rate Round Robin Approach

#### Simple brute force version

- Put some tasks multiple times in single round-robin list
- But gets tedious with wide range in rates

#### More flexible version

- For each PCB keep:
  - Pointer to task to be executed
  - Period (number of times main loop is executed for each time task is executed)
     i.e., execute this task every kth time through main loop.
  - Current count counts down from Period to zero, when zero execute task

```
typedef void (*pt2Function)(void);

struct PCB_struct
{ pt2Function Taskptr; // pointer to task code
  uint8     Period; // execute every kth time
  uint8     TimeLeft; // starts at k, counts down
  uint8     ReadyToRun; // flag used later
};

PCB_struct PCB[NTASKS]; // array of PCBs
```

# **Time-Based Prioritized Cooperative Tasking**

Assume timer\_ticks is number of TCNT overflows recorded by ISR

```
struct PCB struct
{ pt2Function Taskptr; // pointer to task code
 uint8
             Period: // Time between runs
 uint8 NextTime; // next time this task should run
};
... init PCB structures etc. ...
for(;;)
  { for (i = 0; i < NTASKS; i++)
    { if (PCB[i].NextTime < timer ticks)
      {PCB[i].NextTime += PCB[i].Period; // set next run time
             // note - NOT timer ticks + Period !!
      PCB[i].Taskptr();
      break; // exit loop and start again at task 0
```

- **♦** This executes tasks in a particular order based on period and task #
  - But, there is no guarantee that you will meet your deadlines in the general case!

# **Static Multi-Rate Periodic Schedule**

#### **Assume non-preemptive system with 5 Restrictions:**

- 1. Tasks  $\{T_i\}$  are perfectly periodic
- $2. \quad \mathbf{B=0}$
- $3. \quad P_i = D_i$
- 4. Worst case C<sub>i</sub>
- 5. Context switching is free

## Consider least common multiple of periods p<sub>i</sub>

- This considers all possible cases of period phase differences
- Worst case is time that is LCM of all periods
  - E.g., LCM(5,10,35) = 5 \* 2 \* 7 = 70
- If you can figure out (somehow) how to schedule statically this, you win
  - Program in a static schedule that runs tasks in exactly that order at those times
  - Schedule repeats every LCM time period (e.g., every 70 msec for LCM=10)
  - This is a long-running computational problem for large task sets!

#### Performance

- Optimal if all tasks always run; can get up to 100% utilization ( $\mu = 1.00$ )
- If it runs once, it should always work

# Example Static Schedule – Hand Positioned Tasks

| Task<br># | Period (P <sub>i</sub> ) | Compute (C <sub>i</sub> ) |
|-----------|--------------------------|---------------------------|
| <b>T1</b> | 5                        | 1                         |
| T2        | 10                       | 2                         |
| Т3        | 15                       | 2                         |
| T4        | 20                       | 3                         |
| T5        | 25                       | 4                         |

Ensuring schedulability requires hand-selecting the start time of every task (not the same as the previous scheduler code)!

| Start | Task #     | C <sub>i</sub> | Elapsed                 |
|-------|------------|----------------|-------------------------|
| Time  |            |                | Time For T <sub>i</sub> |
| 0     | T1         | 1              |                         |
| 1     | T5         | 4              | •••                     |
| 5     | <b>T</b> 1 | 1              | 5-0=5                   |
| 6     | T2         | 2              |                         |
| 8     | Т3         | 2              |                         |
| 10    | <b>T</b> 1 | 1              | 10-5=5                  |
| 11    | T4         | 3              |                         |
| 14    | ldle       | 1              | n/a                     |
| 15    | T1         | 1              | 15-10=5                 |
| 16    | T2         | 2              | 16-6=10                 |
| 18    | ldle       | 2              | n/a                     |
| 20    | T1         | 1              | 20-15=5                 |
| 21    | Idle       | 2              | n/a                     |
| 23    | Т3         | 2              | 23-8=15                 |
| 25    | T1         | 1              | 25-20=5                 |
| 26    | T2         | 2              | 26-16=10                |

# Preemptive, Prioritized Schedulability

- **♦** To avoid missing deadlines, <u>necessary</u> for all the tasks to fit
  - Time to complete task T<sub>i</sub> is W<sub>j</sub>
  - (i.e., we need to find out if this task set is "schedulable?")

$$\forall_j: W_j \stackrel{?}{\leq} P_j$$

- If true, we are schedulable; if false we aren't
- Note that this is W = time to complete task
  - It's  $\underline{not}$  R = time to start execution of task (response time)
  - For cooperative scheduling,  $W_i = R_i + C_i$
  - BUT, for preemptive scheduling W can be longer because of additional preemptions
- In other words, schedulable if task completes before its period
  - Always true if time to complete task T<sub>i</sub> doesn't exceed period
  - True because we assumed that  $P_i = D_i$

# What's Latency For Preemptive Tasks?

## **♦** For the same 5 assumptions

- And prioritized tasks (static priority priority never changes)
  - Note that equation includes execution time of task, not just response time

$$W_{m,0} = B + C_0$$

$$W_{m,i+1} = B + \sum_{j=0}^{j=m} \left( \left\lfloor \frac{W_{m,i}}{P_j} + 1 \right\rfloor C_j \right)$$

- Note that in this math we are including the C term for task m in the summation
- Highest priority task has only blocking time B as latency
- Start the recursion with task 0, which could always execute first
- Schedulable if:  $\forall_i: W_i \leq P_i$
- **♦** This math is complex, and easy to get wrong
  - Is there an easier way to make sure we can't mess this up?

# Remember the Major Assumptions

- **♦** Five assumptions throughout this lecture
  - 1. Tasks  $\{T_i\}$  are perfectly periodic
  - 2. **B**=0
  - $3. \quad P_i = D_i$
  - 4. Worst case C<sub>i</sub>
  - 5. Context switching is free

# **EDF: Earliest Deadline First**

Assume a preemptive system with <u>dynamic priorities</u>, and { same 5 restrictions }

## Scheduling policy:

- Always execute the task with the nearest deadline
  - Priority changes on the fly!
  - Results in more complex run-time scheduler logic

#### Performance

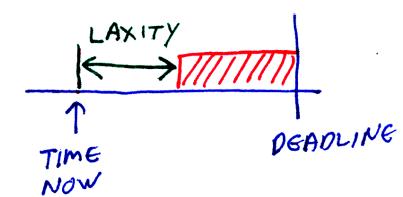
- Optimal for <u>uniprocessor</u> (supports up to 100% of CPU usage in all situations)
  - If it can be scheduled but no guarantee that can happen!
  - Special case where it works is very similar to case where Rate Monotonic can be used:
    - » Each task period must equal task deadline
    - » But, still pay run-time overhead for dynamic priorities
- If you're overloaded, ensures that a lot of tasks don't complete
  - Gives everyone a chance to fail at the expense of the later tasks

# **Least Laxity**

◆ Assume a *preemptive* system with <u>dynamic priorities</u>, and

## Scheduling policy:

• Always execute the task with the smallest laxity  $l_i = d_i - c_i$ 



#### Performance:

- Optimal for <u>uniprocessor</u> (supports up to 100% of CPU usage in all situations)
  - Similar in properties to EDF
  - If it can be scheduled but no guarantee that can happen!
- A little more general than EDF for multiprocessors
  - Takes into account that slack time is more meaningful than deadline for tasks of mixed computing sizes
- Probably more graceful degradations
  - Laxity measure permits dumping tasks that are hopeless causes

# **EDF/Least Laxity Tradeoffs**

#### Pro:

- If it works, it can get 100% efficiency (on a uniprocessor)
- Does not restrict task periods
- Special case works if, for each task, Period = Deadline

#### Con:

- It is not always feasible to prove that it will work in all cases
  - And having it work for a while doesn't mean it will always work
- Requires dynamic prioritization
- EDF has bad behavior for overload situations (LL is better)
- The laxity time hack for global priority has limits
  - May take too many bits to achieve fine-grain temporal ordering
  - May take too many bits to achieve a long enough time horizon

#### Recommendation:

- Avoid EDF/LL if possible
  - Because you don't know if it will really work in the general case!
  - And the special case doesn't buy you much, but comes at expense of dynamic priorities

# Remember the Major Assumptions

## **♦** Five assumptions throughout this lecture

- 1. Tasks  $\{T_i\}$  are perfectly periodic
- 2. **B**=0
- $3. \quad P_i = D_i$
- 4. Worst case C<sub>i</sub>
- 5. Context switching is free

## Problems with previous approaches

- Static scheduling can be difficult to find a schedule that works
- EDF & LL run-time overhead of dynamic priorities
- Wanted: an easy rule for scheduling with:
  - Static priorities
  - Guaranteed schedulability

# **Rate Monotonic Scheduling**

- 1. Sort tasks by period (i.e., by "rate")
- 2. Highest priority goes to task with shortest period (fastest rate)
  - Tie breaking can be done by shortest execution time at same period
- 3. Use prioritized preemptive scheduler
  - Of all ready to run tasks, task with fastest rate gets to run

## Static priority

• Priorities are assigned to tasks at design time; priorities don't change at run time

#### Preemptive

- When a high priority task becomes ready to run, it preempts lower priority tasks
- This means that ISRs have to be so short and infrequent that they don't matter

#### Variation: Deadline Monotonic

- Use min(period, deadline) to assign priority rather than just period
- Works the same way, but handles tasks with deadlines shorter than their period

# **Rate Monotonic Scheduling (RMS)**

Assume a preemptive system with <u>static</u> priorities, N tasks, and { same 5 restrictions } +

$$\mu = \sum \frac{c_i}{p_i} \le N(\sqrt[N]{2} - 1)$$
 ;  $\mu \le \ln(2) \approx 0.693$  for large N

("CPU load less than about 70%")

#### **♦** Why not 100%?

- Two tasks with slightly different periods can drift in and out of phase
- At just the wrong phase difference, there may not be time to meet deadlines

#### Performance:

- Provides a *guarantee* for schedulability with CPU load of ~70%
  - Even with *arbitrarily* selected task periods
  - Can do better if you know about periods & offsets
- BUT if you load CPU more than 69.3%, you might miss deadlines!

# Example of a Missed Deadline at 79% CPU Load

| TOTAL CPU LOAD:     |        | 79%    | for all tasks |        |
|---------------------|--------|--------|---------------|--------|
|                     | Task 1 | Task 2 | Task 3        | Task 4 |
| Period:             | 19     | 24     | 29            | 34     |
| Compute:            | 5      | 5      | 5             | 5      |
| <b>Utilization:</b> | 26.3%  | 20.8%  | 17.2%         | 14.7%  |

No Place To Schedule RUN 5
Task 5 Misses Its Deadline of 34

- **♦** Task 4 misses deadline
  - This is the worst case launch time scenario
- Missed deadlines can be difficult to find in system testing
  - 5 time units per task is worst case
    - Average case is often a bit lighter load
  - Tasks only launch all at same time once every 224,808 time units

LCM(19,24,29,34) = 224,808(LCM = Least Common Multiple)



# **Harmonic RMS**

- ◆ In most real systems, people don't want to sacrifice 30% of CPU
  - Instead, use harmonic RMS
- Make all periods harmonic multiples
  - P<sub>i</sub> is evenly divisible by all shorter P<sub>i</sub>
  - This period set is harmonic: {5, 10, 50, 100}
    - 10 = 5\*2; 50 = 10\*5; 100 = 50\*2; 100 = 10\*5\*2
  - This period set is *not* harmonic: {3, 5, 7, 11, 13}
    - -5 = 3 \* 1.67 (non-integer), etc.
- **♦** If all periods are harmonic, works for **CPU** load of 100%
  - Harmonic periods can't drift in and out of phase avoids worst case situation

$$\mu = \sum \frac{c_i}{p_i} \le 1$$
;  $\forall_{p_j < p_i} \{p_j \text{ evenly divides } p_i\}$ 

# Practical Harmonic Deadline Monotonic Scheduling

- This is what you should do in most smaller embedded control systems
  - Assumes you need a preemptive scheduler
- Use Min(period,deadline) as the scheduling logical "period"
  - Ensures that deadline will be met even if shorter than period
  - But, set aside resources just as if tasks really were repeating at that period
  - This is the part that makes it "deadline" monotonic

## Use harmonic multiples of logical period

- Every shorter period is a factor of every longer period (e.g., 1, 10, 100, 1000)
- Avoids worst case of slightly out-of-phase periods that all clump together at just the wrong time
- Speed up some tasks if needed to get harmonic multiples
  - $E.g., \{1, 5, 11, 20\} \Rightarrow \{1, 5, 10, 20\}$
  - Results in lower CPU requirement even though some tasks run faster!

## Watch out for blocking!

# **Example Deadline Monotonic Schedule**

| Task #    | Period (P <sub>i</sub> ) | Deadline (D <sub>i</sub> ) | Compute (C <sub>i</sub> ) |
|-----------|--------------------------|----------------------------|---------------------------|
| <b>T1</b> | <u>5</u>                 | 15                         | 1                         |
| T2        | <u>16</u>                | 23                         | 2                         |
| Т3        | 30                       | <u>6</u>                   | 2                         |
| <b>T4</b> | <u>60</u>                | 60                         | 3                         |
| Т5        | 60                       | <u>30</u>                  | 4                         |

| Task # | Priority | μ            |
|--------|----------|--------------|
| T1     | 1        | 1/5 = 0.200  |
| Т3     | 2        | 2/6 = 0.333  |
| T2     | 3        | 2/16 = 0.125 |
| T5     | 4        | 4/30 = 0.133 |
| T4     | 5        | 3/60 = .05   |
|        | TOTAL:   | 0.841        |

$$\mu = \sum \frac{c_i}{p_i} \le N(\sqrt[N]{2} - 1)$$
 ;  $N = 5$ 

0.743  $\mu = 0.841 \quad (not \leq)$ 

$$N = 5$$

Not Schedulable!

(might be OK with fancy math)

# Example Harmonic Deadline Monotonic Schedule

| Task #    | Period (P <sub>i</sub> ) | Deadline (D <sub>i</sub> ) | Compute (C <sub>i</sub> ) |
|-----------|--------------------------|----------------------------|---------------------------|
| <b>T1</b> | <u>5</u>                 | 15                         | 1                         |
| T2        | <u>15</u>                | 23                         | 2                         |
| Т3        | 30                       | <u>5</u>                   | 2                         |
| <b>T4</b> | <u>60</u>                | 60                         | 3                         |
| Т5        | 60                       | <u>30</u>                  | 4                         |

| Task #    | Priority | μ                                      |
|-----------|----------|----------------------------------------|
| T1        | 1        | 1/5 = 0.200                            |
| T3        | 2        | $2/\underline{5} = \underline{0.400}$  |
| <b>T2</b> | 3        | $2/\underline{15} = \underline{0.133}$ |
| T5        | 4        | 4/30 = 0.133                           |
| T4        | 5        | 3/60 = .05                             |
|           | TOTAL:   | 0.916                                  |

$$\mu = \sum \frac{c_i}{p_i} \le 1$$

 $\mu = \sum \frac{c_i}{p_i} \le 1 \qquad ; Harmonic periods \{5, 15, 30, 60\}$ 

$$\mu = 0.916 \leq 1$$

Schedulable, even though usage is higher!

# **Handling Non-Zero Blocking**

## **♦** Rate monotonic, but task blocking can occur

- B<sub>k</sub> is time task k can be blocked (e.g., interrupts masked by lower prio task)
- For highest priority task
  - Can ignore lower priority tasks, because we are preemptive
  - But, need to handle blocking time (possibly caused by lower priority task)

$$\mu_1 = \left(\frac{c_1}{p_1}\right) + \frac{B_1}{p_1} \le 1(\sqrt[1]{2} - 1)$$

- For 2<sup>nd</sup> highest priority task
  - Can ignore lower priority tasks, because we are preemptive
  - Have to account for highest priority task preempting us
  - Need to handle blocking time
    - » Possibly caused by lower priority task
    - » But, can't be caused by higher priority task (since that preempts us anyway)
    - » Does this sound a lot like the reasoning behind ISR scheduling???

$$\mu_2 = \left(\frac{c_1}{p_1}\right) + \left(\frac{c_2}{p_2}\right) + \frac{B_2}{p_2} \le 2(\sqrt[3]{2} - 1)$$

# **Rate Monotonic With Blocking**

## **♦** Rate monotonic, but task blocking can occur

•  $B_k$  is blocking time of task k (time spent stalled waiting for resources)

$$\forall k; \mu_k = \sum_{i \le k} \mu_i = \sum_{i \le k} \left(\frac{c_i}{p_i}\right) + \frac{B_k}{p_k} \le k(\sqrt[k]{2} - 1) \quad \approx 0.7 \text{ for large k}$$

[Sha et al. 1991]

- Worst case blocking time for each task counts as CPU time for scheduling
- Note that B includes all interrupt masking (ISRs <u>and</u> tasks waiting for CLI)
- Harmonic periods make right hand side 100%, as before
- Need on a per-task basis because blocking time can be different for each task

#### Performance:

- In worst case, time waiting while blocked is counted as burning additional CPU or network time
- This is yet another reason to use skinny ISRs!
- If low priority task gets a mutex needed by a hi prio task, it extends B!
- If RTOS takes a while to change tasks, that counts as blocking time too

# **Applied Deadline Monotonic With Blocking**

- Use min(period, deadline) for each task as logical period
  - Use harmonic logical periods
  - Assign tasks by priority
  - Otherwise, same as for deadline monotonic
- For each task,

$$\mu_{1} = \left(\frac{c_{1}}{p_{1}}\right) + \frac{B_{1}}{p_{1}} \le 1$$

$$\mu_{2} = \left(\frac{c_{1}}{p_{1}}\right) + \left(\frac{c_{2}}{p_{2}}\right) + \frac{B_{2}}{p_{2}} \le 1$$

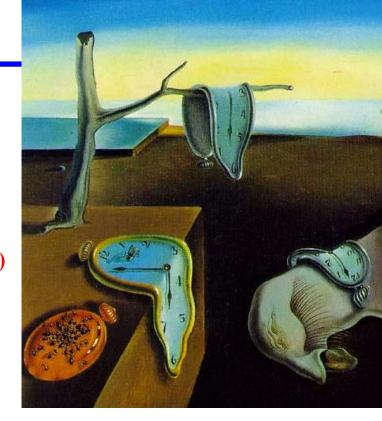
$$\mu_{3} = \left(\frac{c_{1}}{p_{1}}\right) + \left(\frac{c_{2}}{p_{2}}\right) + \left(\frac{c_{3}}{p_{3}}\right) + \frac{B_{3}}{p_{3}} \le 1$$

$$\forall k; \mu_k = \sum_{i \le k} \mu_i = \sum_{i \le k} \left(\frac{c_i}{p_i}\right) + \frac{B_k}{p_k} \le 1$$
; for harmonic periods

# **But Wait, There's More**

#### WHAT IF:

- 1. Tasks  $\{T_i\}$  are NOT periodic
  - Use maximum fastest inter-arrival time
- 2. Tasks are NOT completely independent
  - Worry about dependencies (another lecture)
- 3. Deadline NOT = period
  - Use Deadline monotonic
- 4. Worst case computation time c<sub>i</sub> isn't known
  - Use worst case computation time, if known
  - Build or buy a tool to help determine Worst Case Execution Time (WCET)
  - Turn off caches and otherwise reduce variability in execution time
- 5. Context switching is free (zero cost)
  - Gets messy depending on assumptions
  - Might have to include scheduler as task
  - Almost always need to account for blocking time B



# **Review**

#### Real time definitions

- Hard, firm, soft
- **♦** Scheduling will everything meet its deadline?
  - $\mu \leq 1$
  - All  $W_i \le P_i$

## Application of scheduling

- Static multi-rate systems
- Rate Monotonic Scheduling
  - $\mu$  ≤ 1 *if harmonic periods*; else more like 70%
  - Works by assigning priorities based on periods (fastest tasks get highest prio

## Related topics

- Earliest Deadline First (EDF) and Least Laxity
- Blocking
- Sporadic server

# **Review**

Five Standard Assumptions

# (memorize them in exactly these words – notes sheet too):

- 1. Tasks  $\{T_i\}$  are perfectly periodic
- 2. **B**=0
- $3. P_i = D_i$
- 4. Worst case C<sub>i</sub>
- 5. Context switching is free
- Statically prioritized task completion times:

$$W_{m,0} = C_0$$

$$W_{m,i+1} = B + \sum_{j=0}^{j=m} \left( \left\lfloor \frac{W_{m,i}}{P_j} + 1 \right\rfloor C_j \right)$$

# **Review**

## Schedulability bound for Rate Monotonic with Blocking

$$\mu_{1} = \left(\frac{c_{1}}{p_{1}}\right) + \frac{B_{1}}{p_{1}} \le 1$$

$$\mu_{2} = \left(\frac{c_{1}}{p_{1}}\right) + \left(\frac{c_{2}}{p_{2}}\right) + \frac{B_{2}}{p_{2}} \le 1$$

$$\mu_{3} = \left(\frac{c_{1}}{p_{1}}\right) + \left(\frac{c_{2}}{p_{2}}\right) + \left(\frac{c_{3}}{p_{3}}\right) + \frac{B_{3}}{p_{3}} \le 1$$

$$\forall k; \mu_{k} = \sum_{i \le k} \mu_{i} = \sum_{i \le k} \left(\frac{c_{i}}{p_{i}}\right) + \frac{B_{k}}{p_{k}} \le 1 \text{ ; for harmonic periods}$$