

Prof. Philip Koopman

Carnegie Mellon University

Autonomous Vehicle Standards & Open Challenges

October 2022

www.Koopman.us

Overview

Autonomous Vehicle safety standards

- ISO 26262 & ISO 21448
- ANSI/UL 4600
- SAE J3018
- The hard bits beyond that are:
 - Fail operational architecture
 - Building an accurate, predictive world model
 - Safety beyond the driving task
 - How safe is safe enough?

[General Motors]

Core AV Design Standards

- ISO 26262 Functional Safety
 - Covers run-time faults & design defects
 - Assume requirements are complete
- ISO 21448 SOTIF
 - SOTIF: "Safety Of The Intended Function"
 - Iteratively discover & mitigate unknowns
- ANSI/UL 4600: #DidYouThinkofThat?
 - A technically substantive safety argument
 - Evidence of coverage initially + feedback from surprises
 - Aggressive field feedback based on lessons learned

Standards-Based Engineering Approach

SYSTEM SAFETY	ANSI/UL 4600		Safety Beyond Dynamic Driving	HIC
DYNAMIC DRIVING FUNCTION	ISO 21448	SaFAD/ISO TR 4804	Environment & Edge Cases	VEF SAI
FUNCTIONAL SAFETY	ISO 26262		Equipment Faults	ANS 40
CYBER- SECURITY	SAE J3061	SAE 21434	Computer Security	
VEHICLE SAFETY	FMVSS	NCAP	Basic Vehicle Functions	

HIGHLY UTOMATED VEHICLE SAFETY CASE ANSI/UL 4600

> ROAD TESTING SAFETY SAE J3018

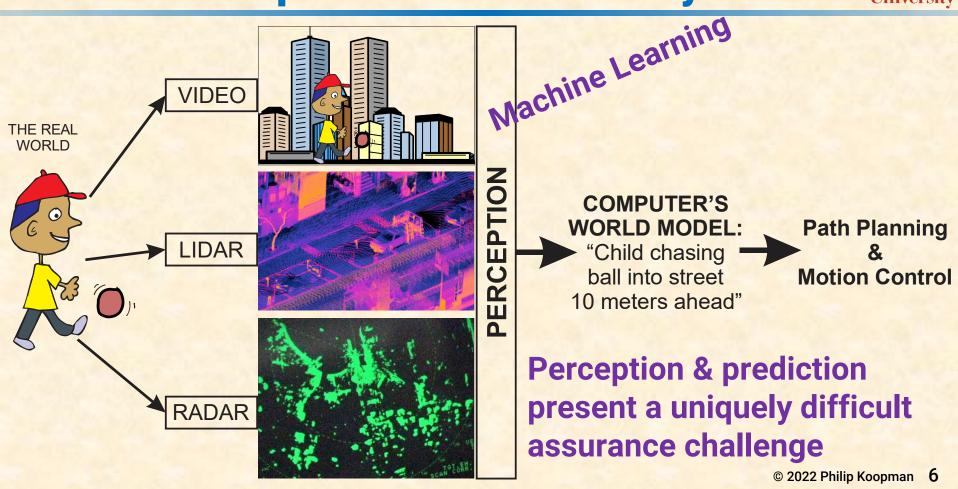
AVs Must Fail Operational

- "Fail Safe" (fail stop) is not enough
 - Detect failure
 - Switch over to a redundant capability
 - E.g., gracefully terminate mission

Safety architecture challenges

"Redundancy" is not necessarily enough

- Safety limited by common mode failures across the redundancy
 - "Diversity" is difficult to measure in all dimensions
- If two computations disagree, which do you believe?
 - Disagreement is likely for nondeterministic algorithms


Carnegie

University

Perception Limits To Safety

Carnegie

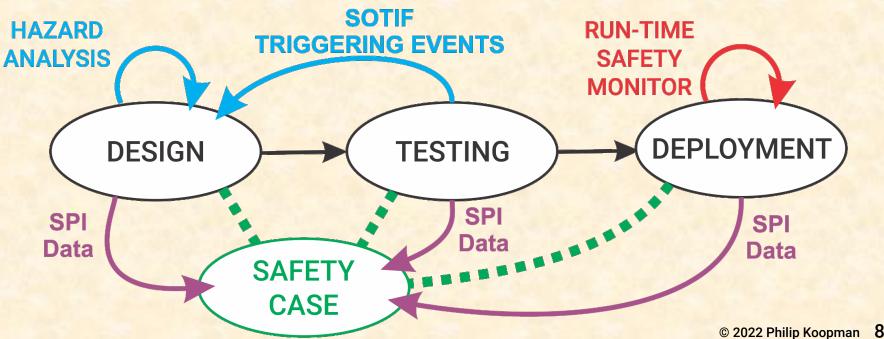
Mellon University

Safety Requires an Accurate World Model

- Good prediction based on the world model
 - Classification accuracy affects prediction
 - Probability cloud for object motion
- Safety limited by heavy tail scenarios (rare, important)
 - Probabilities might be context dependent
 - Rare cases tend to dominate safety

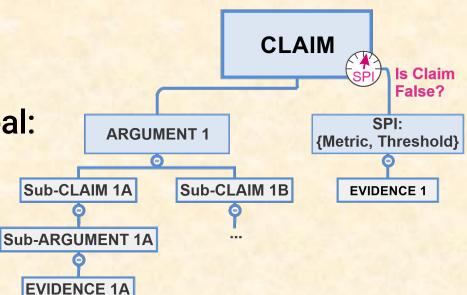
Carnegie

Mellon University


Field Engineering Feedback

Architectures will need to support lifecycle field feedback

Carnegie


Mellon University

- Safety Performance Indicators (SPI) data linked to safety case
 - Transition from safety recall model to continuous improvement

SPIs and Lifecycle Feedback

- SPI: direct measurement of safety case claim failure
 - Independent of reasoning ("claim is X ... yet here is ~X")
- A falsified safety case claim:
 - Safety case has some defect
- Root cause analysis might reveal:
 - Product or process defect
 - Invalid safety argument
 - Issue with supporting evidence
 - Assumption error
- Continual Safety case improvement

Carnegie

Vlellon University

Role of Humans

There is no "captain of the ship"

- Autonomy must assume responsibility
- Interacting with people
 - Occupants, cargo loading
 - Pedestrians & mobility device users
 - Potential abuse, misuse
- Role of humans as drivers?

Is it safe to drive now?

- Remote operators and wireless data have their limits
- Avoid "Moral Crumple Zone" operational concept
- Safety culture for all stakeholders

Carnegie

University

Safe Behavior & Safe Enough

- Contextual safety for safe vehicle shutdown
 - Is in-lane stop in fast moving highway "safe"?
 - What if stopped AV blocks an emergency vehicle?
- Where is the "safe enough" bar set?
 - Better than human, but...
 - Prediction uncertainty
 - Equity & risk redistribution issues
 - Safety engineering reduces uncertainty
 - Field feedback of SPIs manages uncertainty
- Governance model: who decides to deploy?
 - What basis is used for decision?

PHILIP KOOPMAN

HOW SAFE IS SAFE ENOUGH?

Measuring and Predicting Autonomous Vehicle Safety

Summary

Follow safety standards for a foundation

- Identify & mitigate hazards
 - Within vehicle
 - Presented by operational environment
 - At system level, beyond driving task
- Safety engineering beyond just road testing
- Be prepared to wrestle with these parts:
 - Fail operational architecture
 - Accuracy of building a world model
 - Safety beyond the driving task
 - How safe is safe enough?

Carnegie

University