

Prof. Philip Koopman

Carnegie Mellon University

Autonomous Vehicles and Software Safety Engineering

ICSE Keynote, May 2022

INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING

Overview

Autonomous Vehicles almost "solved"

- But ... "almost" is misleading
- Huge challenge: safety
 - AVs present additional challenges
 - Perception edge cases are a limiting factor
 - Testing alone won't get us to safety

Safety requires a standards + safety case approach

- Life cycle argument supporting deployment safety
- ANSI/UL 4600 standard for #DidYouThinkofThat ?

General Motors

AV Problem 98% Solved For 25+ Years

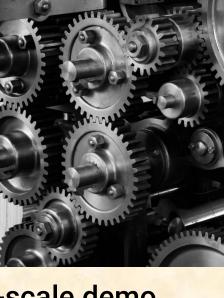
D.C. to San Diego

- CMU Navlab 5
- Dean Pomerleau & Todd Jochem https://www.cs.cmu.edu/~tjochem/nhaa/nhaa_home_page.html
- AHS San Diego demo Aug 1997
- Remaining challenges:
 - That last 2% ... and the safety driver

Carnegie

CMU NREC: 35+ Years Of Cool Robots

Software Safety Engineering


Carnegie

University

- Safety is a system property
 - Correctness is not enough for safety
- Safety engineering emphasis on hazard mitigation
 - Identify hazards: if X goes wrong, could result in loss event
 - Includes hardware failures, tool defects, environmental surprises
 - Predict risk = probability * consequence
 - The tricky part is: "Probably Never * Catastrophic"
 - Mitigate risk via:
 - Engineering rigor: process quality, analysis, test, redundancy patterns
 - Functional safety: detect and shut down malfunctioning equipment
 - Safety of Intended Function (SOTIF): resilience to requirements gaps, inconsistent sensor data, unexpected environments
 © 2022 Philip Koopman

Why Is AV Safety Complicated?

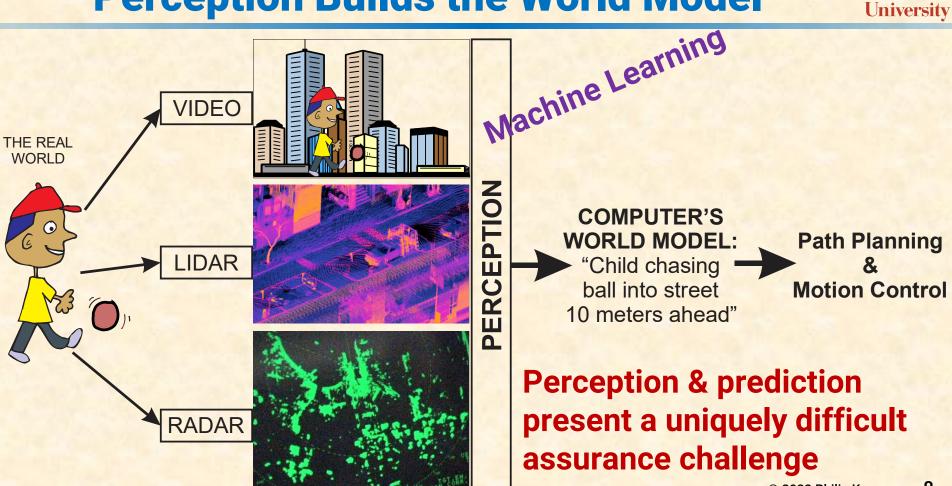
- Public expectations
 - Expect super-human machine performance
 - Trust too easily given, backlash when broken
- Technical challenges
 - Machine Learning safety is work in progress
 - Statistical approach vs. high severity rare events
- Historical industry culture clash
 - Autonomy researchers: it's all about the cool small-scale demo
 - Silicon Valley: move fast + break things
 - Automotive: blame driver for not mitigating equipment failures
 - Regulators: test-centric; weak digital safety expertise

2022 Philip Koopman 6

Carnegie

Should You Trust an AV?

Heaviest technical lift is perception/prediction safety



Ford VSSA 2021 https://bit.ly/3njionT

Carnegie Mellon

University

Perception Builds the World Model

© 2022 Philip Koopman 8

Carnegie

Mellon

Edge Cases As A Limiting Factor

- Machine learning is best at what it has already seen
 - But the world is full of novelty
 - Perception/prediction poor at recognizing it is just guessing
- Is this a Person or Chicken?
- Edge Case are surprises
 - You won't see these in testing

animal 0.90

https://www.clarifai.com/demo

→ Edge cases are the stuff you didn't think of!

PREDICTED CONCEPT	PROBABILITY
bird	0.997
no person	0.990
one	0.975
feather	0.970
nature	0.963
poultry	0.954
outdoors	0.936
color	0.910
animal	0.908

The Challenge Is Covering Everything

Carnegie Mellon University

Have you covered the possible unknowns?

Brute Force AV Validation: Public Road Testing

Carnegie Mellon University

Good for identifying "easy" cases Expensive and potentially <u>dangerous</u>

Autonomy Testing Risks

- Uber ATG fatality, Tempe AZ/US: March 2018
 - Uber ATG closed: January 2021
- Local Motors injury, Whitby CA: Dec. 2021
 - Company closed: Jan. 2022
- Pony.Al crash: CA/US: Oct. 2021
 - Uncrewed test permit revoked
- WeRide sleeping test driver: Oct. 2021
 - Company deflects issue / no apparent regulator action
- Easymile shuttle phantom braking injuries: (2019, 2020)
- SAE J3018 standard for testing safety (2015; 2020 update)
 - Only Argo.Al publicly pledges conformance

Brute Force Road Testing

If 100M miles/critical mishap...

- Test 3x−10x longer than mishap rate
 → Need 1 Billion miles of testing
- That's ~25 round trips on every road in the world

...

- With fewer than 10 critical mishaps
- Start over for each software update

→ Brute force testing impracticable

WolframAlpha computational knowledge engine

Carnegie

Closed Course Testing

Safer, but expensive

- Not scalable
- Only tests things you have thought of!

Volvo / Motor Trend

Carnegie Mellon

University

Simulation

Highly scalable; less expensive than road testing

- Simulation validation ("tool qualification")
- Only tests things you have thought of!

© 2022 Philip Koopman 15

How Much Do You Trust Simulation?

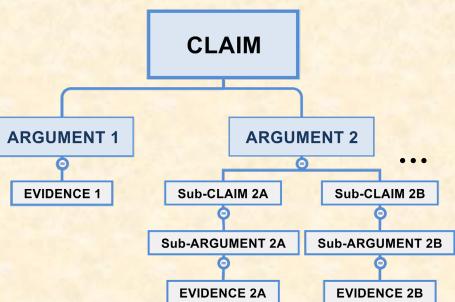
Would you put your child in front of this self driving car:

- 10,000M simulation miles
 ... perhaps with a simulator error?
- 100M miles data collected
 ... perhaps missing some relevant scenarios?
- 10M of road testing
 ... that missed high risk situations?
- Designed with research-quality tooling ... with no safety qualification?
- With 5% labeling errors in training data?
- Need simulation and other tool qualification

Carnegie

Industry Safety Standards Can Help

- ISO 26262 Functional Safety
 - Covers run-time faults & design defects
 - Assumes complete requirements known
- ISO 21448 SOTIF
 - SOTIF: "Safety Of The Intended Function"
- Iteratively mitigate discovered "unknowns"
 Also need: #DidYouThinkofThat? lists
 - A technically substantive safety argument
 - Evidence of coverage initially + feedback from surprises
 - Continuously improve based on lessons learned
 - A way to organize everything to ensure safety



Safety Cases To Organize Safety Argument

Carnegie Mellon University

- Claim a property of the system "System avoids pedestrians" Argument – why this is true "Detect & maneuver to avoid" **ARGUMENT 1** Evidence – supports argument **EVIDENCE 1** • Tests, analysis, simulations, ... Sub-claims/arguments address complexity
 - "Detects pedestrians" // evidence
 - "Maneuvers around detected pedestrians" // evidence
 - "Stops if can't maneuver" // evidence

Lifecycle, Maintenance & Supply Chain

Safety related maintenance

- What maintenance is required for safety?
- How do you know it is done effectively?
- Safety related aspects of lifecycle
 - Requirements/design/ML training
 - Handoff to manufacturing; deployment
 - Supply chain
 - Field modifications & updates
 - Operation, retirement & disposal

Safety case kept updated during system lifecycle

© 2022 Philip Koopman 19

Carnegie

University

UL 4600 – An Autonomy Safety Standard

Evaluation of a Safety Case

- Independently assess safety case
- Mix & match supporting standards
- Discourages questionable practices
- Extensive #DidYouThinkofThat? lists
- "Unknowns" are first class citizens
 - Balance between analysis & field experience
 - Field monitoring used for continual safety case improvement
 - Assessment findings & field data used to update practices
- ANSI/UL 4600 2nd Edition issued March 2022
 - 3rd edition to address heavy trucks in progress

Evaluation of Autonomous Products
UL Standard
Scope
Summary of Topics
Standard 4600, Edition 2
Edition Date: March 15, 2022
ANSI Approved: March 15, 2022

Carnegie

The Path To Achieving AV Safety

- Cultural reconciliation within industry
 - Safety for on-road testing (driver & vehicle)
 - Mature beyond a rushed demo mentality
- Stakeholder trust for acceptable safety
 - System-level safety for machine learning
 - Independent safety assessments
- Use industry safety standards
 - Reform "standards optional" regulations
 - Traditional software safety ... PLUS ...
 - Account for unknown unknowns at deployment
 - UL 4600 Autonomous Vehicle Safety Standard

http://bit.ly/2MTbT8F (sign modified)

Carnegie

BoF Discussion Starters

- **Autonomous Vehicles and Software Safety Engineering**
- Should software developers share blame for a fatality?
 - Ethics of when to deploy "beta" software on public roads
- Machine learning how do we:
 - Ensure training data coverage of operational domain
 - Account for high risk heavy tail events (see SEAMS talk)
- Commercial/research software for life critical systems
 - Simulator software & simulation object models
 - Machine Learning development toolchains
 - DevOps, cloud infrastructure, and SaaS toolchains
- Gaps between ICSE research results and AV system level safety

Carnegie

Mellon University

Trolley Problem is irrelevant for practical AVs https://youtu.be/ 30YiMc1k2Xw

© 2022 Philip Koopman 22