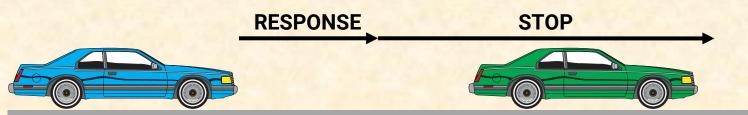


Prof. Philip Koopman

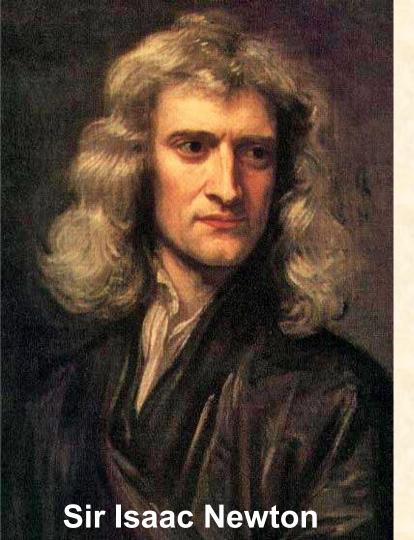
Carnegie Mellon University

AV Trajectories: Newtonian Mechanics vs. The Real World

Overview



- Limits on trajectory control
 - Vehicle capability
 - Environmental conditions
- Uncertainty
 - About vehicle conditions
 - About environment
- Managing ODD variations
 - Micro-ODDs as an approach



Example: Safe Following Distance

- Follower stops with space left behind leader (RSS example)
 - Different initial speeds
 - Follower initially accelerating during response time
 - Different braking capabilities
 - Considered safe if any gap between vehicles at rest

F=MA

Not Just A Good Idea

•••

It's the Law!

But, Where Does the "A" Come From?

- $F = MA \rightarrow A = M/F$
 - BUT ... F is limited by tire friction force

$$F_{\text{friction}} = \mu * F_{\text{normal}}$$
 (6)

where:

- F_{friction} is the force of friction exerted by the tires against the roadway
- µ is the coefficient of friction, which can vary for each tire
- F_{normal} is the force with which the vehicle presses itself onto the road surface

Example: braking depends upon:

- Ability of vehicle to exert force on roadway (F_{friction})
- Driver applying full F_{friction} via brakes (braking capacity)

5

Road Conditions Affecting Braking

Slopes

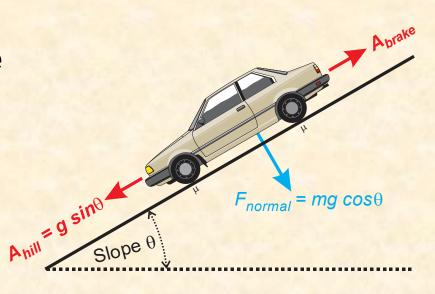
Decreases friction AND pulls car

Curves:

- Friction maintains centripetal force
- Banking (superelevation)
 - Reverse bank reduces normal force

Road surface condition

Dry concrete


 $\mu = 0.75$

Snow

 $\mu = 0.2 - 0.25$

• Ice

 $\mu = 0.1 - 0.15$

Other Factors Affecting Brake Force

Braking capability:

- Tire capability ("sticky" tires might have μ > 1)
- Brake maximum friction (pad wear)

Equipment condition

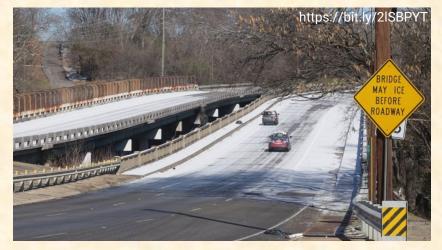
- Tire condition: temperature, pressure, tread
- Brake condition: hot, wet, damaged, ...
- Vehicle suspension, weight distribution, ...

Braking controls

- Driver leg strength and willingness to brake hard
- Braking assist force (multiplies driver leg strength)
- Aerodynamics, suspension, debris, ...

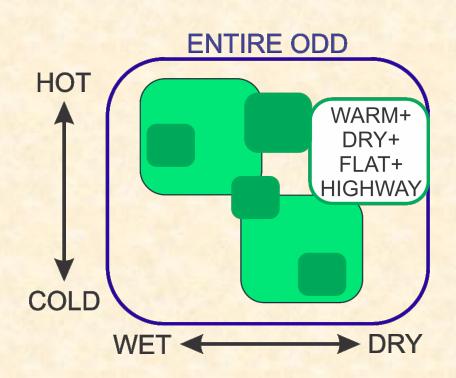
Epistemic Uncertainty – Vehicles

- Own vehicle weak braking (less than expected)
 - Brake wear & failures
 - Loss of brake assist
 - High tire pressure / bald tires
 - Brakes hot from recent use
 - Brakes wet from recent puddle
- Other vehicle strong braking
 - Braking capability for vehicle type
 - Aftermarket brake upgrade?
 - Aftermarket tire upgrade? Low tire pressure?
 - Leg strength of lead driver to press brakes?



Epistemic Uncertainty – Environment

- Road surface of own vehicle
 - Might not be same as lead vehicle surface
- Road surface of lead vehicle
 - Might have dramatically different friction properties



Segmenting Into Micro-ODDs

- A single huge ODD leads to poor permissiveness
 - Want better performance on a warm dry day
- Approach: break up ODDs into pieces
 - Default cautious behavior
 - Prove safe trajectory for an ODD segment
 - Optimize segments based on customer value

Micro-ODD Benefits

Turns ODD growth on its head:

- Over time: Improve permissiveness for fixed ODD size
- Operate across a diverse ODD safely (and cautiously!)
- Incrementally improve performance in high value ODD segments
- Use finer grain ODD segments for high value operational situations
 - Note: important to address transition between segments

References:

- Micro-ODD paper: https://arxiv.org/abs/1911.01207
- ODD parameter paper: https://bit.ly/33K26uA
- UL 4600
 - Sections 8.2 (ODD) & 8.8 (Trajectory & Control)

11

Conclusions

- Proofs are great, but rely upon assumptions
 - In particular, about environment & behaviors
 - Permissiveness vs. safety tradeoffs
- Proofs push uncertainty into the assumptions
 - Uncertainty about own system
 - Uncertainty about other actor behaviors
 - Uncertainty about the environment
- You might forget the edge cases...

... but they won't forget you!

