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Overview
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• Autonomy system safety is important
• Robots interact with people and environment
• Failures can cause life, property, monetary loss

• Robustness testing can help evaluate safety
• Previous work in traditional SW domains
• How do autonomy systems differ?

• ASTAA tested 17 robotics systems over five years
• Unique access to robotics systems at NREC
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Defining autonomy systems
• Software systems that interact with the physical world

• Assist or automate some human task

• Comprise components that communicate via bus

• Usually safety-critical

https://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
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Traditional Systems vs. Autonomy Systems

Traditional SW Systems are typically… Autonomy Systems are typically…
Procedural Stateful
Transformational Temporal
Monolithic Distributed
Devoid of feedback Cyber-physical
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 How do these differences inform robustness testing of autonomy 
systems?
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Traditional SW Robustness Test
Send invalid inputs to SW and observe result

Past work: Fuzzing (Bart Miller), Ballista (Philip Koopman)
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Input selection Test case execution Test evaluation

Ballista: exceptional 
value dictionary

int:
MAXINT, 
MININT

, …

void*:
NULL

…
….
…

float:
NaN
0.0
-0.0
…

API
write(int

filedes, const
void* buffer, 
size_t nbytes)

API call
write(FD_CLOSED, 

BUFF_NULL, 
SIZE_16)

Observed result:
Catastrophic?

Crash?
Hang?
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Autonomy Robustness Testing - ASTAA
• Ballista-like exceptional value dictionary approach

• Robots are stateful, temporal, distributed, cyber-physical:
• What is the interface to a robot?
• How to deal with complexity of a robot system?
• How to enforce safety properties?
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Traditional SW Test vs. ASTAA
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Input selection Test case execution Test evaluation

Ballista: exceptional 
value dictionary

int:
MAXINT, 
MININT

, …

void*:
NULL

…
….
…

float:
NaN
0.0
-0.0
…

API
write(int

filedes, const
void* buffer, 
size_t nbytes)

API call
write(FD_CLOSED, 

BUFF_NULL, 
SIZE_16)

Observed result:
Catastrophic?

Crash?
Hang?

Robot interface: 
messages passed 

between components

Safety properties:
Invariant monitoring

if ESTOP_ON, 
v = 0.0 

within 2 s

Complexity management:
Interception testing

Comp 
A

Comp 
B

Interceptor
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Testing Experiences

From “RIOT Expanded Technical Brief, NAVAIR Public Release- 2016-842 'Approved for Public Release; 
distribution is unlimited'.

Researchers evaluated 150 bugs from 11 distinct projects over 4 years
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Bug classification
• ASTAA logged 150 bugs in 11 projects

• Three authors analyzed each bug report independently
• Scaffolding messages
• Invariants
• Dimensionality
• Wrappers

• Resolved disagreements through deliberation 

• Allows for broad qualitative discussion of autonomy systems
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Autonomy bugs are low-dimensionality
Many bugs are triggered by a very small number of inputs

• Dimensionality is more difficult to define than for desktop systems
• Interfaces: field, message, multiple
• Instances: single, multiple

• Most bugs (93) were activated by a single instance of one message or a single field
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Wrappers are effective
Many bugs in autonomy systems would have been avoided by using wrappers

• Sanitization: exceptional value checks

• Consistency: enforcement between values

• Only 14 bugs not preventable by using wrappers

NAVAIR Public Release- 2017-35  'Approved for Public Release; distribution is unlimited'.
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Scaffolding messages are neccessary
Many bugs in robotics systems can only be activated with sufficient scaffolding 
messages

• Startup messages for initialization

• Turnover messages to keep the system running

• 74 out of 133 classified bugs required scaffolding

NAVAIR Public Release- 2017-35  'Approved for Public Release; distribution is unlimited'.
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Invariant monitoring is valuable
Important autonomy bugs would remain uncaught if ASTAA only identified crashes or 
hangs

• Some systems had no safety spec and therefore no invariants

• For systems with a safety spec: majority of crashes were invariant violations 
(image shows results for one such system)

NAVAIR Public Release- 2017-35  'Approved for Public Release; distribution is unlimited'.
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Takeaways
Having tested a large body of autonomy systems highlighted the differences and 
similarities vs. traditional software systems

• Autonomy systems as software systems
• Low-dimensionality faults
• Sanitization is effective

• Unique aspects of autonomy systems
• Scaffolding messages
• Invariants
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What recommendations came from ASTAA?
• Recurring lessons observed by ASTAA team

• Protect your robots from data assumptions
• Don’t trust that your configuration is valid
• Time is not always monotonic
• Violations can happen between semantically redundant fields

• Floats and NaNs are useful but dangerous
• Do not use floats as iterators
• NaNs propagate 

• Plan for the system to fail
• Nodes should not fail silent
• Good logging is invaluable

• May be common sense, but keep coming up again and again in practice!
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Robot Arm Example
Mature robot built on ROS sent an exceptional but logical arm angle

https://www.youtube.com/watch?v=kK6iKwjKA54
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Summary
• ASTAA expands traditional SW testing techniques for autonomy systems

• Built for stateful, temporal, distributed, cyber-physical autonomy systems
• Messages as interface, interception, invariants

• Testing autonomy systems provides insight into their behavior
• Opportunity at NREC to test many industry robots in academic setting
• Autonomy systems are similar to traditional SW systems:

• Bugs are low-dimensionality
• Sanitization is effective

• Testing autonomy systems requires novel approaches:
• Scaffolding messages are important
• Invariant monitoring is important

• Robustness testing can inform autonomy development practices
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