
©2018 Carnegie Mellon University

Robustness Testing of Autonomy Software

Milda Zizyte, PhD Candidate advised by Dr. Philip Koopman, ECE dept.

Casidhe Hutchison, Milda Zizyte, Patrick E. Lanigan, David Guttendorf, Michael Wagner, Claire
Le Goues, and Philip Koopman. 2018. Robustness Testing of Autonomy Software. In ICSE-SEIP
’18: 40th International Conference on Software Engineering: Software Engineering in Practice
Track, May 27-June 3 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3183519.3183534
Distribution Statement A. NAVAIR Public Release 2017-35 ‘Approved for Public Release;
distribution is unlimited’

©2018 Carnegie Mellon University

Overview

2

• Autonomy system safety is important
• Robots interact with people and environment
• Failures can cause life, property, monetary loss

• Robustness testing can help evaluate safety
• Previous work in traditional SW domains
• How do autonomy systems differ?

• ASTAA tested 17 robotics systems over five years
• Unique access to robotics systems at NREC

©2018 Carnegie Mellon University

Defining autonomy systems
• Software systems that interact with the physical world

• Assist or automate some human task

• Comprise components that communicate via bus

• Usually safety-critical

https://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

3

©2018 Carnegie Mellon University

Traditional Systems vs. Autonomy Systems

Traditional SW Systems are typically… Autonomy Systems are typically…
Procedural Stateful
Transformational Temporal
Monolithic Distributed
Devoid of feedback Cyber-physical

4

 How do these differences inform robustness testing of autonomy
systems?

©2018 Carnegie Mellon University

Traditional SW Robustness Test
Send invalid inputs to SW and observe result

Past work: Fuzzing (Bart Miller), Ballista (Philip Koopman)

5

Input selection Test case execution Test evaluation

Ballista: exceptional
value dictionary

int:
MAXINT,
MININT

, …

void*:
NULL

…
….
…

float:
NaN
0.0
-0.0
…

API
write(int

filedes, const
void* buffer,
size_t nbytes)

API call
write(FD_CLOSED,

BUFF_NULL,
SIZE_16)

Observed result:
Catastrophic?

Crash?
Hang?

©2018 Carnegie Mellon University

Autonomy Robustness Testing - ASTAA
• Ballista-like exceptional value dictionary approach

• Robots are stateful, temporal, distributed, cyber-physical:
• What is the interface to a robot?
• How to deal with complexity of a robot system?
• How to enforce safety properties?

6

©2018 Carnegie Mellon University

Traditional SW Test vs. ASTAA

7

Input selection Test case execution Test evaluation

Ballista: exceptional
value dictionary

int:
MAXINT,
MININT

, …

void*:
NULL

…
….
…

float:
NaN
0.0
-0.0
…

API
write(int

filedes, const
void* buffer,
size_t nbytes)

API call
write(FD_CLOSED,

BUFF_NULL,
SIZE_16)

Observed result:
Catastrophic?

Crash?
Hang?

Robot interface:
messages passed

between components

Safety properties:
Invariant monitoring

if ESTOP_ON,
v = 0.0

within 2 s

Complexity management:
Interception testing

Comp
A

Comp
B

Interceptor

©2018 Carnegie Mellon University

Testing Experiences

From “RIOT Expanded Technical Brief, NAVAIR Public Release- 2016-842 'Approved for Public Release;
distribution is unlimited'.

Researchers evaluated 150 bugs from 11 distinct projects over 4 years

8

©2018 Carnegie Mellon University

Bug classification
• ASTAA logged 150 bugs in 11 projects

• Three authors analyzed each bug report independently
• Scaffolding messages
• Invariants
• Dimensionality
• Wrappers

• Resolved disagreements through deliberation

• Allows for broad qualitative discussion of autonomy systems

9

©2018 Carnegie Mellon University

Autonomy bugs are low-dimensionality
Many bugs are triggered by a very small number of inputs

• Dimensionality is more difficult to define than for desktop systems
• Interfaces: field, message, multiple
• Instances: single, multiple

• Most bugs (93) were activated by a single instance of one message or a single field

10

©2018 Carnegie Mellon University

Wrappers are effective
Many bugs in autonomy systems would have been avoided by using wrappers

• Sanitization: exceptional value checks

• Consistency: enforcement between values

• Only 14 bugs not preventable by using wrappers

NAVAIR Public Release- 2017-35 'Approved for Public Release; distribution is unlimited'.
11

©2018 Carnegie Mellon University

Scaffolding messages are neccessary
Many bugs in robotics systems can only be activated with sufficient scaffolding
messages

• Startup messages for initialization

• Turnover messages to keep the system running

• 74 out of 133 classified bugs required scaffolding

NAVAIR Public Release- 2017-35 'Approved for Public Release; distribution is unlimited'.

12

©2018 Carnegie Mellon University

Invariant monitoring is valuable
Important autonomy bugs would remain uncaught if ASTAA only identified crashes or
hangs

• Some systems had no safety spec and therefore no invariants

• For systems with a safety spec: majority of crashes were invariant violations
(image shows results for one such system)

NAVAIR Public Release- 2017-35 'Approved for Public Release; distribution is unlimited'.
13

©2018 Carnegie Mellon University

Takeaways
Having tested a large body of autonomy systems highlighted the differences and
similarities vs. traditional software systems

• Autonomy systems as software systems
• Low-dimensionality faults
• Sanitization is effective

• Unique aspects of autonomy systems
• Scaffolding messages
• Invariants

14

©2018 Carnegie Mellon University

What recommendations came from ASTAA?
• Recurring lessons observed by ASTAA team

• Protect your robots from data assumptions
• Don’t trust that your configuration is valid
• Time is not always monotonic
• Violations can happen between semantically redundant fields

• Floats and NaNs are useful but dangerous
• Do not use floats as iterators
• NaNs propagate

• Plan for the system to fail
• Nodes should not fail silent
• Good logging is invaluable

• May be common sense, but keep coming up again and again in practice!

15

©2018 Carnegie Mellon University

Robot Arm Example
Mature robot built on ROS sent an exceptional but logical arm angle

https://www.youtube.com/watch?v=kK6iKwjKA54

16

©2018 Carnegie Mellon University

Summary
• ASTAA expands traditional SW testing techniques for autonomy systems

• Built for stateful, temporal, distributed, cyber-physical autonomy systems
• Messages as interface, interception, invariants

• Testing autonomy systems provides insight into their behavior
• Opportunity at NREC to test many industry robots in academic setting
• Autonomy systems are similar to traditional SW systems:

• Bugs are low-dimensionality
• Sanitization is effective

• Testing autonomy systems requires novel approaches:
• Scaffolding messages are important
• Invariant monitoring is important

• Robustness testing can inform autonomy development practices

17

	Robustness Testing of Autonomy Software�
	Overview
	Defining autonomy systems
	Traditional Systems vs. Autonomy Systems
	Traditional SW Robustness Test
	Autonomy Robustness Testing - ASTAA
	Traditional SW Test vs. ASTAA
	Testing Experiences
	Bug classification
	Autonomy bugs are low-dimensionality
	Wrappers are effective
	Scaffolding messages are neccessary
	Invariant monitoring is valuable
	Takeaways
	What recommendations came from ASTAA?
	Robot Arm Example
	Summary
	ADDITIONAL SLIDES
	Robustness Testing
	Husky Robot Behavior
	Ballista overview
	Expanded ASTAA Architecture
	Testing shortcuts
	RECBot Example

