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 Very brief CMU overview

 Autonomous vehicle & robotic software safety
• Goes beyond current software safety standards

 Automated robustness testing
• Finds significant software defects

 Run-time safety monitors
• Used on large autonomous vehicle to ensure safety

 ASTAA project: automated stress testing of robots
• ASTAA = Robustness stress testing + simple safety monitors

 Some future challenges
• Getting from demos to full scale deployment will be hard!
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[Koopman 2013]



© 2014 Carnegie Mellon University, all rights reserved. 

 In current systems, system-level testing is useful and important
• It can find unexpected component interactions

 But, it is impracticable to test everything at the vehicle/system level
• There are too many possible operating conditions
• There are too many possible timing sequences of events
• There are too many possible faults
• All possible combinations of component failures and memory corruptions
• Multiple software defects activated by a sequence of operations
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Test coverage over 
high‐dimensional inputs

Sensitivity to calibration

Nonlinear behaviors

Adaptive 
systems

Validation of machine learning results

Non‐linear motion planning

[Wagner/Koopman]



© 2014 Carnegie Mellon University, all rights reserved. 

 Fuzz testing [Miller98] uses a random input stream
• Finds interesting failures
• But can be inefficient

 Ballista (1996..2008) uses “dictionaries” of values
• Combinations of exceptional and ordinary values
• More efficient, but still scalable, approach to robustness testing
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 Generates test cases based on parameter data types

• Ignoring functional ‘correctness’ provides scalability [Koopman / Ballista]
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[Koopman99]
Normalized Failure Rate

Ballista Robustness Tests for 233 Posix Function Calls
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 “Abort” failures are a core dump
• Individual process crash rather

than system crash
• Whether a process crash matters

depends upon your system & philosophy

 Most failures found were highly
repeatable, “one-liner” calls

• Not race conditions (surprise!)
• Not long complex sequences (surprise!)

 HP-UX gained a system-killer in
upgrade from Version 9 to 10
• In newly re-written memory management functions…

… which had a 100% failure rate under Ballista testing!
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Robustness Failures of RTI 1.3.5 for Digital Unix 4.0
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Important vulnerabilities 
have been found in over 
twenty systems tested on 
our project so far
… 
more to come
…
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 ** toyota $1.4B class action suit
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APD (Autonomous Platform Demonstrator)
How did we make this scenario safe?

TARGET GVW: 8,500 kg  
TARGET SPEED: 80 km/hr

Approved for Public Release. TACOM Case #20247 Date: 07 OCT 2009

17



© 2014 Carnegie Mellon University, all rights reserved. 

The Autonomous 
Platform Demonstrator 
(APD) was the first UGV 
to use a Safety Monitor 
as part of its safety 
case. 

As a result, the U.S. 
Army approved APD for 
demonstrations 
involving soldier 
participation.

U.S. Army cites high 
quality of APD safety 
case and turns to NREC 
to improve the safety of 
unmanned vehicles.

Approved for Public Release – Distribution is Unlimited 
(NREC case #: STAA-2012-10-17)
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Ballista Stress-Testing Tool
Robustness testing of defined interfaces
• Most test cases are exceptional
• Test cases based on best-practice software

testing methodology
• Detects software hanging or crashing
Earlier work looked at stress-testing COTS 
operating systems
Uncovered system-killer crash vulnerabilities 
in top-of-the-line commercial operating 
systems

NREC Safety Monitor
Monitors safety invariants at run-time
• Designed as run-time safety shutdown

box for UAS applications
Independently senses system state to 
determine whether invariants are 
violated
Firewalls safety-criticality into a small, 
manageable subset of a complex UAS; 
prototype deployed on Autonomous 
Platform Demonstrator (APD), a 9-ton 
UGV capable of reaching 80 km/hr

+

Approved for Public Release – Distribution is Unlimited 
(NREC case #: STAA-2012-10-17)
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 Automated Stress Testing of Autonomy Architectures
• Three-year project sponsored by the Test Resource 

Management Center within the Office of the Secretary of 
Defense

• The project continues through September 2014

 Project goals: 
• Use automatic software stress-testing to uncover safety 

problems in unmanned systems that wouldn’t otherwise be 
found during system testing

• Implement testing tools that interface with software 
components in an unobtrusive way

Approved for Public Release – Distribution is Unlimited 
(NREC case #: STAA-2012-10-17)
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 Mature (6 years old) “RECBot” vehicle tested with initial tool set
• No access to source code or design details; just interface specification
• ASTAA elicited a speed-limit violation
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Distribution Statement A - Approved for public release; 
distribution is unlimited. NAVAIR Public Affairs Office 
tracking number 2013-74, NREC internal case number 
STAA-2012-10-23
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DISTRIBUTION A – NREC case number STAA‐2013‐10‐02
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DISTRIBUTION A – NREC case number STAA‐2013‐10‐02
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In this example:
 CAN Interceptor

• Isolates actuators from 
ECU by splitting the 
CAN bus

• Modifies J1939 status 
messages from by-
wire controllers before 
forwarding to ECU

• Reads messages for 
invariant evaluation

 ASTAA Test Runner
• Instructs CAN 

interceptor about how 
to modify incoming 
CAN messages

• Monitors invariants
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DISTRIBUTION A – NREC case number STAA‐2013‐10‐02



© 2014 Carnegie Mellon University, all rights reserved. 

 An invariant is an expression involving SUT state that takes the 
form of a guard and predicate (“FAIL” or “WARN”)

 State machines track the system’s state
• Transition guards are inputs from the SUT

 Each state activates potentially different invariants

DISTRIBUTION A – NREC case number STAA‐2013‐10‐02
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DISTRIBUTION A – NREC case number STAA‐2013‐10‐02
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 Communications: Message serialization and 
routing

 Control: motion control, I/O
 Perception: terrain perception, terrain 

classification, obstacle detection, map building
 Planning: path tracking, motion planning, 

obstacle avoidance

 Stress testing finds bugs in autonomy 
software
• Over 50 vulnerabilities have been found in over 

twenty systems tested on our project so far

DISTRIBUTION A – NREC case number STAA‐2013‐10‐02



© 2014 Carnegie Mellon University, all rights reserved. 

 Improper handling of floating-point numbers
• Failure to handle exceptional values (e.g., NaN, Inf)
• Normalization of floating-point angles

 Array indexing and allocation
• E.g., images, point clouds, evidence grids 
• Segmentation faults due to arrays that are too small
• Many forms of buffer overflow, especially dealing with complex data 

types
• Large arrays and memory exhaustion

 Time
• Time flowing backwards, jumps
• Not rejecting stale data

 Problems handling dynamic state
• E.g., lists of perceived objects or command trajectories
• Race conditions permit improper insertion or removal of items
• Vulnerabilities in garbage collection allow memory to be exhausted or 

execution to be slowed down
 Assertions that have not been disabled

DISTRIBUTION A – NREC case number STAA‐2013‐10‐02
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Ballista Robustness Testing (1997 – 2002)
Safety and Security for Embedded Systems      
(1997 – )
System Safety for Autonomous Robots      
(2008 – )
Automated Stress Testing of Autonomy 
Architectures (2011 – )

A Ballista is an ancient siege weapon for hurling 
large projectiles at fortified defenses.
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 Elevators
• Building codes describe required mechanisms
• Electromechanical safeties (avoid trusting SW)

 Rail systems
• Dual redundant hardware protection systems
• Rigorously developed software EN-50126/8/9
 Customers typically require these standards
 “Safety net” architecture minimizes critical SW

• Fail-stop approach – shut down if unsafe

[Koopman 2014, Transportation CPS Workshop]
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 “Safe” might be 1e-9/hr catastrophic failures
 (It is easy to argue cars must be safer than that)
 Single fatalities at perhaps 1e-7/hr (probably less)

• Simplex hardware tends to fail at 1e-5 to 1e-6/hr
 Cosmic rays result in bit flips (yes, really!)
 Other things go wrong at about this rate

• Thus, need redundancy to be safe
 No single point failure end-to-end in the system
 Takes some effort to get redundant

components to properly synch.


 Infeasible to test to 1e-9/hr
• Need testing time 3x-10x longer

than failure rate

[Koopman 2014, Transportation CPS Workshop]
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 Aviation
• Do-178 and other FAA standards
• Federal certifying agency (FAA)
 Testing + examination of how system is designed

• Fail operational; significant redundancy

 Automotive
• NHTSA does not proactively certify safety
 FMVSS don’t really address SW safety

• Some redundancy; tough cost constraints
 Steering & brakes must fail (partially) operational

• MISRA Guidelines  ISO 26262 safety standard
 But neither is really intended to cover autonomous vehicles

[Koopman 2014, Transportation CPS Workshop]
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 Testing does not make software safe!
• You can’t test all SW corner cases
• Proving correctness is not enough for safety either
 How do you know your requirements are correct?
 Have you proven correctness under all fault conditions?

 Software safety requires process
in addition to testing

• Follow standards (e.g., ISO 26262)
 List of practices based on SW criticality
 Ensure development process quality

• Testing checks you really did it right
 Testing is not “debugging” – test for absence of bugs

• Adaptive/robot software can go beyond existing SW safety

[Koopman 2014, Transportation CPS Workshop]
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Extreme contrast No lane infrastructure Poor visibility

Unusual obstacles Construction Water (note that it appears flat!)

So just getting all the obvious cases
covered is challenging[Wagner 2014]
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 Specifying safety
• Artfully select subset of functionality to equal safety
• Need a realistic role for human operator

 Unconstrained environments
• Uncontrolled, unpredictable urban

roadways
• Can inductive-based algorithms

cover enough corner cases?
 Trusting validation

• How do you know you are really safe?
• How do you know someone else’s

system is really safe when you cooperating with it? 

[Koopman 2014, Transportation CPS Workshop]
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