
© 2014 Carnegie Mellon University. All rights reserved.
Approved for Public Release – Distribution is Unlimited

(NREC case #: STAA-2012-10-17)

This material is based upon work supported by the Test Resource Management Center (TRMC) Test and Evaluation/Science &
Technology (T&E/S&T) Program through the U.S. Army Program Executive Office for Simulation, Training and Instrumentation

(PEO STRI) under Contract No. W900KK-11-C-0025, “Stress Testing for Autonomy Architectures (STAA)”.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Test Resource Management Center (TRMC) Test and Evaluation/Science & Technology

(T&E/S&T) Program and/or the U.S. Army Program Executive Office for Simulation, Training and Instrumentation (PEO STRI).

Prof. Phil Koopman
koopman@cmu.edu

&Electrical Computer
ENGINEERING

© 2014 Carnegie Mellon University, all rights reserved.

 Very brief CMU overview

 Autonomous vehicle & robotic software safety
• Goes beyond current software safety standards

 Automated robustness testing
• Finds significant software defects

 Run-time safety monitors
• Used on large autonomous vehicle to ensure safety

 ASTAA project: automated stress testing of robots
• ASTAA = Robustness stress testing + simple safety monitors

 Some future challenges
• Getting from demos to full scale deployment will be hard!

© 2014 Carnegie Mellon University, all rights reserved.

© 2014 Carnegie Mellon University, all rights reserved.

Guangzhou, China.
Dual-degrees for MS & PhD in ECE

Contact: Jimmy Zhu,
jzhu@ece.cmu.edu

Kigali, Rwanda.
MS degree in Information

Technology

Contact: Bruce Krogh,
krogh@ece.cmu.edu

Silicon Valley, CA.
MS degrees in Software Engineering,

Soft. Management, IT, ECE &
PhD in ECE

Contact: Martin Griss,
martin.griss@sv.cmu.edu

Pittsburgh, PA.
BS, MS & PhD degrees in ECE

Contact: Ed Schlesinger,
ed@ece.cmu.edu

ICTI, Portugal
PhD degrees in ECE

Contact: Jose Moura,
moura@ece.cmu.edu

Singapore
PhD in ECE

Contact: Ed Schlesinger,
ed@ece.cmu.edu

Dehli, India.
BS degree in ECE

Contact: Ed Schlesinger,
ed@ece.cmu.edu

ECE Department:
~100 Faculty
~150 undergrads/yr
~500 grad students
(Note: Computer Science is a whole school)

&Electrical Computer
ENGINEERING

© 2014 Carnegie Mellon University, all rights reserved.

1985 1990 1995 2000 2005 2010

DARPA
Grand

Challenge

DARPA
LAGR

ARPA
Demo II

DARPA
SC-ALV

NASA
Lunar
Rover

NASA
Dante II

Auto
Excavator

Auto
Harvesting

Auto
Forklift

Mars Rovers

Urban
Challenge

DARPA
PerceptOR

DARPA
UPI

Auto
Haulage

Auto
Spraying

Laser Paint
Removal

Army
FCS

NREC:
~175 Faculty, staff, students
Off-campus Robotics Institute facility, SCS
Engineering & Technology Transfer

© 2014 Carnegie Mellon University, all rights reserved.

[Koopman 2013]

© 2014 Carnegie Mellon University, all rights reserved.

 In current systems, system-level testing is useful and important
• It can find unexpected component interactions

 But, it is impracticable to test everything at the vehicle/system level
• There are too many possible operating conditions
• There are too many possible timing sequences of events
• There are too many possible faults
• All possible combinations of component failures and memory corruptions
• Multiple software defects activated by a sequence of operations

O
P

E
R

AT
IO

N
A

L
S

C
E

N
A

R
IO

S

TIMING AND SEQUENCING

FAILURE

TYPES

TOO MANY
POSSIBLE

TESTS

[Koopman 2013]

© 2014 Carnegie Mellon University, all rights reserved.

Test coverage over
high‐dimensional inputs

Sensitivity to calibration

Nonlinear behaviors

Adaptive
systems

Validation of machine learning results

Non‐linear motion planning

[Wagner/Koopman]

© 2014 Carnegie Mellon University, all rights reserved.

 Fuzz testing [Miller98] uses a random input stream
• Finds interesting failures
• But can be inefficient

 Ballista (1996..2008) uses “dictionaries” of values
• Combinations of exceptional and ordinary values
• More efficient, but still scalable, approach to robustness testing

INPUT
SPACE

RESPONSE
SPACE

VALID
INPUTS

INVALID
INPUTS

SPECIFIED
BEHAVIOR

SHOULD
WORK

UNDEFINED

SHOULD
RETURN
ERROR

MODULE
UNDER

TEST

ROBUST
OPERATION

REPRODUCIBLE
FAILURE

UNREPRODUCIBLE
FAILURE

[Koopman / Ballista]

&Electrical Computer
ENGINEERING

© 2014 Carnegie Mellon University, all rights reserved.
 Generates test cases based on parameter data types

• Ignoring functional ‘correctness’ provides scalability [Koopman / Ballista]

API

TESTING
OBJECTS

write(int filedes, const void *buffer, size_t nbytes)

write(FD_OPEN_RD, BUFF_NULL, SIZE_16)

TEST
VALUES

TEST CASE

FILE
DESCRIPTOR
TEST OBJECT

MEMORY
BUFFER
TEST OBJECT

SIZE
TEST
OBJECT

FD_CLOSED

FD_OPEN_WRITE
FD_DELETED
FD_NOEXIST
FD_EMPTY_FILE
FD_PAST_END
FD_BEFORE_BEG
FD_PIPE_IN
FD_PIPE_OUT
FD_PIPE_IN_BLOCK
FD_PIPE_OUT_BLOCK
FD_TERM
FD_SHM_READ
FD_SHM_RW
FD_MAXINT
FD_NEG_ONE

FD_OPEN_READ
BUF_SMALL_1
BUF_MED_PAGESIZE
BUF_LARGE_512MB
BUF_XLARGE_1GB
BUF_HUGE_2GB
BUF_MAXULONG_SIZE
BUF_64K
BUF_END_MED
BUF_FAR_PAST
BUF_ODD_ADDR
BUF_FREED
BUF_CODE
BUF_16

BUF_NEG_ONE
BUF_NULL

SIZE_1

SIZE_PAGE
SIZE_PAGEx16
SIZE_PAGEx16plus1
SIZE_MAXINT
SIZE_MININT
SIZE_ZERO
SIZE_NEG

SIZE_16

© 2014 Carnegie Mellon University, all rights reserved.

[Koopman99]
Normalized Failure Rate

Ballista Robustness Tests for 233 Posix Function Calls

0% 5% 10% 15% 20% 25%

AIX 4.1

QNX 4.22

QNX 4.24

SunOS 4.1.3

SunOS 5.5

OSF 1 3.2

OSF 1 4.0
1 Catastrophic

2 Catastrophics

Free BSD 2.2.5

Irix 5.3

Irix 6.2
Linux 2.0.18

LynxOS 2.4.0

NetBSD 1.3

HP-UX 9.05

1 Catastrophic

1 Catastrophic

HP-UX 10.20

Abort Failures
Restart Failure

1 Catastrophic

[Koopman / Ballista]

© 2014 Carnegie Mellon University, all rights reserved.

 “Abort” failures are a core dump
• Individual process crash rather

than system crash
• Whether a process crash matters

depends upon your system & philosophy

 Most failures found were highly
repeatable, “one-liner” calls

• Not race conditions (surprise!)
• Not long complex sequences (surprise!)

 HP-UX gained a system-killer in
upgrade from Version 9 to 10
• In newly re-written memory management functions…

… which had a 100% failure rate under Ballista testing!

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

OSF1 3.2

SunOS 5.5SunOS 4.1.3QNX 4.24QNX 4.22OSF1 4.0BNetBSD 1.3
LynxOS 2.4.0Linux 2.0.18IRIX 6.2IRIX 5.3HP-UX A.09.05

AIX 4.1

HP-UX B.10.20FreeBSD 2.2.5

D
ev/C

lass-Specific

Synchronization

C
locks &

 Tim
ers

C
 Library

Process Prim
s.

S
ystem

 D
atabs

Process Env.

Files & Dirs

I/O
 P

rim
itives

M
essaging

M
em

ory M
ng.

Scheduling

R
ob

us
tn

es
s

Fa
ilu

re
 R

at
e

System Killer
Was Here!

[Koopman / Ballista]

© 2014 Carnegie Mellon University, all rights reserved.

Robustness Failures of RTI 1.3.5 for Digital Unix 4.0

0

10

20

30

40

50

60

70

80

90

100

RTI functions

%
fa

ilu
re

 p
er

 fu
nc

tio
n

Restart
Segmentation Fault
Unknown exception
RTI Internal Error exception

RTI::AttributeHandleValuePairSet->getValueLength

RTI::ParameterHandleValuePairSet->getValueLength

rtiAmb.requestFederationSave

rtiAmb.resgisterObjectInstance

rtiAmb.queryFederateTime

rtiAmbqueryLBTS

rtiAmb.queryLookahead

rtiamb.queryMinNextEventTime

STATED GOAL OF HLA: 100% Robust[Koopman / Ballista]

© 2014 Carnegie Mellon University, all rights reserved. Approved for Public Release – Distribution is Unlimited
(NREC case #: STAA-2012-10-17)

Important vulnerabilities
have been found in over
twenty systems tested on
our project so far
…
more to come
…

© 2014 Carnegie Mellon University, all rights reserved.

 ** toyota $1.4B class action suit

© 2014 Carnegie Mellon University, all rights reserved.

© 2014 Carnegie Mellon University, all rights reserved.

APD (Autonomous Platform Demonstrator)
How did we make this scenario safe?

TARGET GVW: 8,500 kg
TARGET SPEED: 80 km/hr

Approved for Public Release. TACOM Case #20247 Date: 07 OCT 2009

17

© 2014 Carnegie Mellon University, all rights reserved.

The Autonomous
Platform Demonstrator
(APD) was the first UGV
to use a Safety Monitor
as part of its safety
case.

As a result, the U.S.
Army approved APD for
demonstrations
involving soldier
participation.

U.S. Army cites high
quality of APD safety
case and turns to NREC
to improve the safety of
unmanned vehicles.

Approved for Public Release – Distribution is Unlimited
(NREC case #: STAA-2012-10-17)

© 2014 Carnegie Mellon University, all rights reserved.

INPUT
SPACE

RESPONSE
SPACE

VALID
INPUTS

INVALID
INPUTS

SPECIFIED
BEHAVIOR

SHOULD
WORK

UNDEFINED

SHOULD
RETURN
ERROR

MODULE
UNDER

TEST

ROBUST
OPERATION

REPRODUCIBLE
FAILURE

UNREPRODUCIBLE
FAILURE

Ballista Stress-Testing Tool
Robustness testing of defined interfaces
• Most test cases are exceptional
• Test cases based on best-practice software

testing methodology
• Detects software hanging or crashing
Earlier work looked at stress-testing COTS
operating systems
Uncovered system-killer crash vulnerabilities
in top-of-the-line commercial operating
systems

NREC Safety Monitor
Monitors safety invariants at run-time
• Designed as run-time safety shutdown

box for UAS applications
Independently senses system state to
determine whether invariants are
violated
Firewalls safety-criticality into a small,
manageable subset of a complex UAS;
prototype deployed on Autonomous
Platform Demonstrator (APD), a 9-ton
UGV capable of reaching 80 km/hr

+

Approved for Public Release – Distribution is Unlimited
(NREC case #: STAA-2012-10-17)

© 2014 Carnegie Mellon University, all rights reserved.

 Automated Stress Testing of Autonomy Architectures
• Three-year project sponsored by the Test Resource

Management Center within the Office of the Secretary of
Defense

• The project continues through September 2014

 Project goals:
• Use automatic software stress-testing to uncover safety

problems in unmanned systems that wouldn’t otherwise be
found during system testing

• Implement testing tools that interface with software
components in an unobtrusive way

Approved for Public Release – Distribution is Unlimited
(NREC case #: STAA-2012-10-17)

© 2014 Carnegie Mellon University, all rights reserved.

 Mature (6 years old) “RECBot” vehicle tested with initial tool set
• No access to source code or design details; just interface specification
• ASTAA elicited a speed-limit violation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90

Ve
hi
cl
e
Sp
ee
d
[m

/s
]

Time [sec]

RECbot Speed Limit Tests

cmd = 1 m/s
No speed limit violation

cmd = 3 m/s
Speed limit enforced

cmd = Inf
Speed limit enforced

cmd = NaN
Speed limit violated

End of test

Speed-limit violation occurred
when exceptional input sent as
speed command

Distribution Statement A - Approved for public release;
distribution is unlimited. NAVAIR Public Affairs Office
tracking number 2013-74, NREC internal case number
STAA-2012-10-23

© 2014 Carnegie Mellon University, all rights reserved.

Safety Requirements
System Design (IDD)

Message Dictionary (ICD)

Existing Documentation

Invariants &
Interfaces
(XML)

ASTAA Test Specification

Au
to
m
at
ed

(O
ff
lin

e)
Au

to
m
at
ed

(O
nl
in
e)

G
ui
de

d
M
an

ua
l

System Under Test

Test Generator

Test Runner

Test Cases
(XML)

Test Results
(XML)

DISTRIBUTION A – NREC case number STAA‐2013‐10‐02

© 2014 Carnegie Mellon University, all rights reserved.

Injection

Injection with log replay
or running component

Interleaving during
injection

Interception
Component B

SUT

ASTAA

Component A

SUTASTAA

Component B
SUT

ASTAA

Component A

Component B
SUT

ASTAA PM

DISTRIBUTION A – NREC case number STAA‐2013‐10‐02

© 2014 Carnegie Mellon University, all rights reserved.

In this example:
 CAN Interceptor

• Isolates actuators from
ECU by splitting the
CAN bus

• Modifies J1939 status
messages from by-
wire controllers before
forwarding to ECU

• Reads messages for
invariant evaluation

 ASTAA Test Runner
• Instructs CAN

interceptor about how
to modify incoming
CAN messages

• Monitors invariants

Test
Injector

Invariant
Monitor

Interception test
values

from test case

Parameters for checking
invariants

(e.g. no throttle while braking)

ASTAA Test Runner

Commands

CA
N

In

te
rc

ep
to

rBy-wire
controller
s (steer,
brake,

throttle)

ECU
Modified

status
messages

Status messages

Commands
(Forwarded)

Existing CAN BUS ECU isolated on
ASTAA CAN bus

DISTRIBUTION A – NREC case number STAA‐2013‐10‐02

© 2014 Carnegie Mellon University, all rights reserved.

 An invariant is an expression involving SUT state that takes the
form of a guard and predicate (“FAIL” or “WARN”)

 State machines track the system’s state
• Transition guards are inputs from the SUT

 Each state activates potentially different invariants

DISTRIBUTION A – NREC case number STAA‐2013‐10‐02

© 2014 Carnegie Mellon University, all rights reserved.

DISTRIBUTION A – NREC case number STAA‐2013‐10‐02

© 2014 Carnegie Mellon University, all rights reserved.

 Communications: Message serialization and
routing

 Control: motion control, I/O
 Perception: terrain perception, terrain

classification, obstacle detection, map building
 Planning: path tracking, motion planning,

obstacle avoidance

 Stress testing finds bugs in autonomy
software
• Over 50 vulnerabilities have been found in over

twenty systems tested on our project so far

DISTRIBUTION A – NREC case number STAA‐2013‐10‐02

© 2014 Carnegie Mellon University, all rights reserved.

 Improper handling of floating-point numbers
• Failure to handle exceptional values (e.g., NaN, Inf)
• Normalization of floating-point angles

 Array indexing and allocation
• E.g., images, point clouds, evidence grids
• Segmentation faults due to arrays that are too small
• Many forms of buffer overflow, especially dealing with complex data

types
• Large arrays and memory exhaustion

 Time
• Time flowing backwards, jumps
• Not rejecting stale data

 Problems handling dynamic state
• E.g., lists of perceived objects or command trajectories
• Race conditions permit improper insertion or removal of items
• Vulnerabilities in garbage collection allow memory to be exhausted or

execution to be slowed down
 Assertions that have not been disabled

DISTRIBUTION A – NREC case number STAA‐2013‐10‐02

© 2014 Carnegie Mellon University, all rights reserved.

Ballista Robustness Testing (1997 – 2002)
Safety and Security for Embedded Systems
(1997 –)
System Safety for Autonomous Robots
(2008 –)
Automated Stress Testing of Autonomy
Architectures (2011 –)

A Ballista is an ancient siege weapon for hurling
large projectiles at fortified defenses.

© 2014 Carnegie Mellon University, all rights reserved.

 Elevators
• Building codes describe required mechanisms
• Electromechanical safeties (avoid trusting SW)

 Rail systems
• Dual redundant hardware protection systems
• Rigorously developed software EN-50126/8/9
 Customers typically require these standards
 “Safety net” architecture minimizes critical SW

• Fail-stop approach – shut down if unsafe

[Koopman 2014, Transportation CPS Workshop]

&Electrical Computer
ENGINEERING

© 2014 Carnegie Mellon University, all rights reserved.

 “Safe” might be 1e-9/hr catastrophic failures
 (It is easy to argue cars must be safer than that)
 Single fatalities at perhaps 1e-7/hr (probably less)

• Simplex hardware tends to fail at 1e-5 to 1e-6/hr
 Cosmic rays result in bit flips (yes, really!)
 Other things go wrong at about this rate

• Thus, need redundancy to be safe
 No single point failure end-to-end in the system
 Takes some effort to get redundant

components to properly synch.

 Infeasible to test to 1e-9/hr
• Need testing time 3x-10x longer

than failure rate

[Koopman 2014, Transportation CPS Workshop]

© 2014 Carnegie Mellon University, all rights reserved.

 Aviation
• Do-178 and other FAA standards
• Federal certifying agency (FAA)
 Testing + examination of how system is designed

• Fail operational; significant redundancy

 Automotive
• NHTSA does not proactively certify safety
 FMVSS don’t really address SW safety

• Some redundancy; tough cost constraints
 Steering & brakes must fail (partially) operational

• MISRA Guidelines ISO 26262 safety standard
 But neither is really intended to cover autonomous vehicles

[Koopman 2014, Transportation CPS Workshop]

© 2014 Carnegie Mellon University, all rights reserved.

 Testing does not make software safe!
• You can’t test all SW corner cases
• Proving correctness is not enough for safety either
 How do you know your requirements are correct?
 Have you proven correctness under all fault conditions?

 Software safety requires process
in addition to testing

• Follow standards (e.g., ISO 26262)
 List of practices based on SW criticality
 Ensure development process quality

• Testing checks you really did it right
 Testing is not “debugging” – test for absence of bugs

• Adaptive/robot software can go beyond existing SW safety

[Koopman 2014, Transportation CPS Workshop]

O
P

E
R

AT
IO

N
A

L
SC

E
N

AR
IO

S

TIMING AND SEQUENCING

FAILURE

TYPES

TOO MANY
POSSIBLE

TESTS

© 2014 Carnegie Mellon University, all rights reserved.

Extreme contrast No lane infrastructure Poor visibility

Unusual obstacles Construction Water (note that it appears flat!)

So just getting all the obvious cases
covered is challenging[Wagner 2014]

© 2014 Carnegie Mellon University, all rights reserved.
[Koopman14]

© 2014 Carnegie Mellon University, all rights reserved.

 Specifying safety
• Artfully select subset of functionality to equal safety
• Need a realistic role for human operator

 Unconstrained environments
• Uncontrolled, unpredictable urban

roadways
• Can inductive-based algorithms

cover enough corner cases?
 Trusting validation

• How do you know you are really safe?
• How do you know someone else’s

system is really safe when you cooperating with it?

[Koopman 2014, Transportation CPS Workshop]

© 2014 Carnegie Mellon University, all rights reserved.

