
1

Avoiding the Top 43 Embedded
Software Risks

May 2, 2011

Philip Koopman
Carnegie Mellon University

http://BetterEmbSW.BlogSpot.com/

© Copyright 2011, Philip Koopman

2

Make sure we have metrics
 defects/KLOC typical
 Lines of code per hour

3

Overview
 How to mitigate embedded software risks
 Data from 90+ design reviews spanning a decade
 What teams got right and 43 areas they got wrong

 Best practice areas that can mitigate these risks
 17 general areas that address the risks
 Specific practices that address all 43 areas

 Most teams don’t have resources to do them all
 But most teams should be doing some
 Which you should do depends upon your situation
 Pick the low hanging fruit first to get best payoff

4

My Background

5

Types of Systems Surveyed
 Transportation
 Automotive, train, navigation

 Chemical processing
 Metering, flow control, analysis, automation

 Buildings
 Heating/Ventilation/Cooling, building security, elevators
 Lighting, electrical switching, domestic hot water

 Telecommunications and data centers
 Climate control, power regulation, power

switching, power backup, monitoring
 Underlying technology
 Real time, safety, security, dependability

 Mostly excludes:
 Consumer electronics, robotics, DSP

6

Developer Background
 No “typical” embedded developer, except what they are NOT

 Almost no formally trained software engineers; few computer scientists
 A distinct minority are formally trained computer engineers

 Most common development teams and environments:
 Engineering domain experts: mechanical, electrical, automotive, HVAC, …
 Smallish team sizes: 1 to 25 developers
 Embedded languages: C, C++, assembly, a little Java; no custom ICs
 Small to medium projects: 1000-1M lines of code
 Medium size production runs: 1,000-20,000 units; Cost $20-$20K/unit
 Old-school process models: Waterfall, Vee
 Senior designers in US; common to have China, India team members
 Small systems had no RTOS, bigger systems had one

 But, encountered at least one of almost everything
 All-China team, all-Italy team, more/fewer units/year, Agile, …
 And this advice will generally help all of them

7

Design Review Approach
 General approach:
 Pre-visit review of available documents (if any)
 On-site high level review of product

 Use a risk screening checklist to hunt for additional risks
 Reviewer selected subset of 120+ questions based on pre-

review (full list is proprietary)
 Graded as “red” / “yellow” / “green”
 (Some reviews didn’t use checklist,

so we did after-the-fact binning)

 What we care about: “Red” Issues

8

Study Methodology
 Retrospective of review reports (10+ years; 90+ reviews)

 Tallied risk list bins in reports
 In some cases mapped ad hoc description to bins

 Results:
 A list of 43 distinct red flag bins

 “Red Flag” means “don’t ship until you fix this”
 Not simply “you should do this because it is best practice”…

… but rather “this will cause a big problem for this project”

9

Technical Risks
 Most developers had little formal computer education

 Usually a senior developer who had learned the hard way
 Generally capable engineers … self-taught from books/eval kits

 I expected to find lots of technical issues
 There were some, but … not that many rookie technical mistakes
 Mostly problems with complexity or advanced embedded topics

 In general, technical problems:
 Corresponded with common holes in intro embedded textbooks
 Mostly were things that were hard to find in simple testing

 In other words, most projects got the basic functionality right
 The problem areas tended to be things they didn’t do

(lack of time; lack of knowledge)

10

The 43 Risk Areas
1. Informal development process
2. Not enough paper
3. No written requirements
4. Requirements omit extra-functional aspects
5. Requirements with poor measurability
6. No defined software architecture
7. Poor code modularity
8. Too many global variables
9. No message dictionary for embedded network
10. Design skipped or created after code is written
11. Flowcharts are used in place of statecharts
12. Inconsistent coding style
13. Ignoring compiler warnings
14. No peer reviews
15. No real time schedule analysis
16. Use of home-made RTOS
17. Inadequate concurrency management
18. No methodical approach to user interface design
19. No test plan
20. No stress testing
21. No defect tracking

22. No run-time fault instrumentation nor error logs
23. Defect resolution for 3rd party software
24. Disaster recovery not tested
25. Insufficient consideration of reliability/availability
26. Insufficient consideration of safety
27. Insufficient consideration of security
28. No IP protection plan
29. No or incorrect use of watchdog timers
30. Inadequate system reset approach
31. High requirements churn
32. No version control
33. No backward compatibility plan
34. No software update plan
35. Lessons learned not being recorded
36. Acting as if software is free
37. Use of cheap tools instead of good ones
38. High turnover and developer overload
39. No training for managing outsource relationships
40. Resources too full
41. Too much assembly language
42. Project schedule not taken seriously
43. No Software Quality Assurance (SQA) function

11

What Is The Big Picture?
 Most problems are with process omissions
 But, we still have technical areas to talk about too!

Risk Items
0 2 4 6 8 10 12 14 16

Process Gap

Process Failure

Things Not Written Down

Inadequate Written Down

Management Dysfunction & People

Technical Risks

Process
Problems

12

17 Good Practice Areas

1. Define your development
process

2. Write good requirements
3. Use a good architecture
4. Create a written design
5. Use good coding style
6. Use peer reviews
7. Use real time analysis
8. Manage concurrency
9. Design a user interface

10. Follow a test plan
11. Manage issues/defects
12. Design for quality attributes
13. Use watchdog timer

correctly
14. Manage change
15. Don’t think software is free
16. Have slack resources
17. Make sure you follow your

process

13

A Tour Of Good Practices
 Remember, you don’t have to do all of these
 But, you should harvest the low hanging fruit

 Some of this sounds like “software engineering”
 … but really it is just “good engineering”
 It’s about why you do things, not just about paperwork

 Knowing how to solder doesn’t make you a hardware
engineer

 Knowing how to write lines of code doesn’t make you a
software engineer

 Knowing how to solder and write lines of code doesn’t
make you an embedded systems engineer

14

Define Your Development Process

(Risk #1: Informal development process)
 Development process is a set of steps,

e.g.,
 Define Requirements
 Write Code
 Acceptance Test
 Ship

 If the steps aren’t well defined,
you don’t have a roadmap
 (If you don’t really have one,

get some help to define one!)

15

Is This A Well Defined Process?
 Any missing pieces?

 How do we know what the
design is?

 How do we know the
product is ready to ship?

Write User
Stories

Product

Unit
Test

Design

Write Code

16

A Good Development Plan Has:
 Development steps
 Activities inside process boxes

 Defined output from each step
 Paper, code, etc. – what are the work products?
 Artifacts” in software-engineer speak

 A risk management approach
 Exception handling, actual

“management” of process
 A way to measure success
 Is the product good enough to sell?

If it isn’t written down, it didn’t happen
PLAN

17

A Better Process Example
 Activities
Work Products
 Risk management
 Where is that in this picture?
 Is test before ship enough?

 A way to measure success
 “Passes acceptance test”

 Process usually has many more steps
 Agile, Waterfall, Vee, etc…
 But has to be defined including both

processes (boxes) and artifacts (arrows)

Define
Requirements

User Stories + Other Requirements

Product Build

Design

Product

Acceptance
Test

Design

Write Code

18

Using The Right Amount of Paper
(#2 Not enough paper)
 Use the right amount of paperwork (not zero)

 Be clever in minimizing paperwork

 Product package should include at least:
 Development approach (the development plan)
 Requirements
 Architecture
 Design
 Test plan & test results
 Implementation
 Reviews
 Maintenance

19

Keeping “Paper” Light
 If it isn’t written down it didn’t happen…
 … but it doesn’t have to be a 1000 page novel!

 Make use of:
 Spreadsheets
 Fill-in-the-blank templates
 Powerpoint

 The most effective paperwork:
 Fits on a single “sheet”
 Can be found via searching
 Provides useful value … so it actually gets made

20

Modest Proposals For Paperwork
 Every development step should produce “paper”
 Every process arc has paper in defined format
 Make it the simplest paper you can justify
 But, zero paper is not acceptable

 If paper gets out of date, throw it
and the associated code away –
right now
 If it’s not important enough to do

well, why are you doing it at all?

 If you decide to skip paper,
throw the project away when
the developer stops working on it

21

 Really great software has been created without paper
 Works best if all your developers are well above average
 And nobody ever changes jobs, taking knowledge with them
 But that just doesn’t scale

 Five Forebodes Failure
 Teams with exactly 5 developers often failed

 Usually previous project had 3 or 4
 Teams of 6 or more had heavier process

 My conclusion: with 5 people you need “paper”
 Max 4 people can informally coordinate (neighbors)
 Larger projects have more coordination overhead
 High risk if you use an ad hoc process for >4 people

“But, We Don’t Need Paper”

22

Write Good Requirements
(#3 No written requirements)
(#4 Requirements omit extra-functional aspects)

 You can’t keep things straight without having written requirements
 Saying “just like last system except” is a problem too

 Rigorously written
 Precise: “X shall do Y” or “supports following sequence of operations”
 Unambiguous: good technical writing practices
 Describes “what” rather than “how” – it’s not a design

 Traceable: how do you make sure you met it
 E.g., each one has a number that traces to acceptance tests

 Covers:
 What the system should do
 What the system should not do
 Extra-functional aspects (security, safety, dependability, performance)
 Standards, constraints, certifications

23

Making Requirements Measurable
(#5 Requirements with poor measurability)
 Requirements should also be measurable
 If you can’t measure it, you can’t know you met it
 Beware of subjectivity, e.g., “User Friendly”

 Don’t require perfection
 You can’t get it … and you can’t measure it

 If in doubt, write a test metric with
the requirement
 “Never crashes”

“Does not crash in 1 week of stress testing”

 Collect field data with a flight recorder to confirm outcomes

24

Use A Good Architecture
(#6 No defined software architecture)

 Would you build a house without a floor plan?
 (If you did, how would it turn out?)

 Would you build a computer without a block diagram
 (If you did, how would it turn out?)

 So why do we think it is OK to just write code without an
architecture?
 The IT guys always have a SW architecture diagram

 Are we so smart we don’t need one?
 Or are our systems so trivial it isn’t worth the bother?

25

The Basics of Software Architecture
 Create a “boxes-and-arrows” diagram
 Boxes are objects or activities
 Arrows are flows (data, control, …)

 Need to be able to say:
“Here is a picture of my high level software organization.”

 Helpful guidelines (similar to HW block diagrams)
 Every box and arrow has a defined meaning
 Fits legibly one on letter size sheet of paper
 Can be hierarchically nested to multiple sheets
 Can have more than one type for the system

 Call graph, data flow diagram, class diagram, etc.

26

METHODS

DATA

OBJECT "BUS"

METHODS

DATA

METHODS

DATA

Send/receive
Method Calls

Send/receive
Method Calls

Send/receive
Method Calls

PHASE 1

TABLE 1

PHASE 2

TABLE 2

INIT FINISH

Customization
Data Read

Customization
Data Read

Pass Control
To Next

Pass Control
To Next

Pass Control
To Next

27

Black line = “is comprised of” Black box = SW function
Blue line = “analog connection” Blue box = I/O hardware
Numbers are replication counts

28

Global Variables Are Evil
(#7 Poor code modularity)
(#8 Too many global variables)
 Good architectures are modular

 Low coupling
(different parts are unrelated)

 High cohesion
(each part is homogeneous)

 Meaningful levels of decomposition and abstraction
 Global variables are shared across modules

 Minimize using them (use local variables when possible)
 If you are using them because you have insufficient RAM, see discussion

on “software isn’t free” later
 If you must use them:

 Ensure only one place each is written
 Limit visibility to a single module (“static” keyword)
 Try to keep them together so they are easy to find

29

Embedded Network Architecture
(#9 No message dictionary

for embedded network)
 Always have a message

dictionary
 All message types
 Header and other info
 Data meaning and format
 Sender/receivers, period,

deadline, etc.
 Globally visible network variables, if applicable

 If you must use a custom protocol, document it
 What happens if the one guy who knows the protocol wins

the lottery and retires?

30

Example CAN Message Dictionary

31

Create A Written Design
(#10 Design skipped or is created after code is written)
 Would you design an engine with no drawings?
 Would you lay out a circuit board with no schematic?
 Would you write lines of code with no design?

 A design lets you think at a high level
 Concentrate on overall flow –

not coding details
 Get reviews more efficiently

 Self-documenting code isn’t
 Designs extracted from the code are a waste of time
 JavaDoc documents code, but is not a design

32

Always Use Statecharts
(#11 Flowcharts used in place of statecharts)
 Flowcharts can help with design, but…
 Most embedded systems are state based
 States represent operating modes

(idle, run, ramp-up, ramp-down)
 States represent display modes (think digital watch)
 States create model of external environment

 Flowcharts are OK for memory-less control flow
 If you have duplicated “if” conditions, statechart might be better
 Psuedocode is too loose – not good in practice most times

 Model based design can help, but is not a magic wand

STATE
1

STATE
4

STATE
2

STATE
3

33

Statechart Example
 “Guard” is condition that must

be true for branch to be taken
 Stays in same state if no

guard is true

SPDBUTTON or O
NOFF

SP
DBU

TT
ON

SPD
BU

TT
ON

SPDBUTTON

ONOFF

ONOFF

ONOFF

S2. SLOW
Speed Slow

S3. MEDIUM
Speed Med

S4. FAST
Speed Fast

S1. OFF
Speed Stop

Sys
tem

Res
et

34

Switch-Based Statechart Code

35

Use Good Coding Style
(#12 Inconsistent coding style)
 Everyone has their favorite coding style
 It doesn’t matter (much) which style you use
 But have everyone use the same defined style

 Include things such as:
 Title block contents
 Commenting guidelines
 Assertions
 Language usage rules
 Naming conventions

36

Static Analysis & Warnings
(#13 Ignoring compiler warnings)
 Use static checking to keep your code clean
 It’s like getting a free automated (partial) design review
 Compiler warnings tell you something is fishy

 Language definition ambiguities
 Risky language use
 Common mistakes

 Code should compile with no warnings
 Some embedded compilers give poor warnings
 Try a higher-end compiler
 Try using splint (a “lint” tool that does static checking)

37

Example Warnings
 if (a=b) { …. Do something… }

 // feet & meters are int typedefs
feet a; meters b;
b = a;

 Uninitialized variable
 Unreachable code
 Failure to conform to a language subset
 E.g., Misra C language subset for safety critical SW

QUESTIONABLE
CODE

38

Use Peer Reviews
(#14 No peer reviews)
 Peer reviews are the most cost effective way to find bugs
 Good embedded coding rate is 1-2 lines of code/person-hr

 (Across entire project, including reqts, test, etc.)
 A person can review 100 times faster than they can write code

 How much does peer review cost?
 4 people * 100-200 lines of code reviewed per hour
 Say 300 lines; 4 people; 2 hrs review + 1 hr prep

= 25 lines of code reviewed / person-hr
 Reviews are only about 5%-10% of your project cost

 Good peer reviews find about half the bugs!
 And they find them early, so cost to fix is lower

$
$$$$

$$$$$

39

What Should You Review?
 Review everything that is in writing
 (From earlier, every project activity

should produce a written artifact)
 Early reviews have higher bang-for-buck
 Review requirements and designs
 Don’t wait until you are at code to start reviews
 Most reviews happen before testing, so possible to

reduce total cost of bugs dramatically with reviews
 Things you can review:
 Requirements, architecture, design,

implementation, test plan, user guide, schedule,
development plan, real time schedule, …

40

How Formal Should Reviews Be?
 The more formal the review,

the higher the payoff
 Formal reviews take more effort;

more productive
 We mean use these: “Fagan style inspections”

 Formal reviews of absolutely everything should still be
less than perhaps 10% of total project cost
 In return, you find half of your bugs much earlier

 Informal reviews are better than nothing
 Pair programming, shoulder surfing, e-mail pass-

arounds are better than nothing
 Payback for on-line review tools is a question mark

 Reduces social interaction, training of junior developers

41

42

Use Real Time Analysis
(#15 No real time schedule analysis)
 If you need to meet real time deadlines,

you need to do a formal real time analysis
 List tasks, deadlines, periods, compute times
 Use a well understood scheduling theory

 Understand assumptions and limitations
 If you do something ad hoc, eventually you’ll be burned

 Use the simplest scheduling technique you can
 Cyclic executive works great
 Interrupts are tasks and need to be accounted for
 If you use preemptive non-ISR tasks, use Rate Monotonic

Scheduling
 Don’t use earliest deadline first

43

Rate Monotonic Scheduling 101
 Assume:
 All tasks are periodic; Period = Deadline
 Worst case compute time known for each task
 All tasks are independent (no mutexes)
 Task switching has zero latency and cost
 Task periods are harmonic multiples (permits 100% CPU use)

 To schedule:
 Assign priorities based on period (fastest = highest priority
 If CPU utilization is less than 100%, it will work

 The 100% limit is due to harmonic multiple periods

 If you need to violate assumptions, read up on this
 It is easy to get things “almost” right wrong

44

Example Rate Monotonic Schedule

Task # Period
(Pi)

Compute
(Ci)

T1 5 1

T2 16 2

T3 6 2

T4 60 3

T5 30 4

Task # Priority Utilization
µ

T1 1 1/5 = 0.200

T3 2 2/6 = 0.333

T2 3 2/16 = 0.125

T5 4 4/30 = 0.133

T4 5 3/60 = .05

TOTAL: 0.841

743.0)(841.0

5 N ;)12(

≤=

=−≤= ∑

not

N
p
c N

i

i

µ

µ
Not Schedulable!

45

Example Harmonic Rate Monotonic Schedule

1916.0

60} 30, 15, {5, Parmonic ; 1 i

≤=

≤= ∑

µ

µ H
p
c

i

i

Schedulable, even though
usage is higher!

Task # Period
(Pi)

Compute
(Ci)

T1 5 1

T2 15 2

T3 5 2

T4 60 3

T5 30 4

Task # Priority Utilization
µ

T1 1 1/5 = 0.200

T3 2 2/5 = 0.400

T2 3 2/15 = 0.133

T5 4 4/30 = 0.133

T4 5 3/60 = .05

TOTAL: 0.916

46

Don’t Use A Home Grown RTOS
(#16 Use of home-made RTOS)
 If you need a preemptive RTOS, use 3rd party one

 Getting an RTOS right is really, really hard
 Even if you can get it right, it is a lot of work
 Even if you do get it right, what happens

in 10 years when you aren’t maintaining it?

 Ask yourself: is RTOS writing a core competency?
 Shouldn’t you be spending that time on your products?
 (See “software is free” later in this talk)
 It’s not hard to find a mostly free RTOS these days

 But it might be more cost effective to pay for one!

RTOS

47

Manage Concurrency
(#17 Inadequate concurrency management)
 Race conditions and data sharing problems

 Tough to reproduce; tough to pin down
 Very difficult to find and fix
 You probably won’t find them in normal testing

 Consider concurrency for every shared variable
 Use a mutex if you have to
 Use something easier if you can (e.g., Fifo; mask interrupts)
 Use standard approaches

 You aren’t good enough to invent a new approach
(and neither am I)

 Realize that this breaks scheduling independence assumption
 Look up “Mars Priority Inversion”

48

Example Mutex (“Mutual Exclusion”)
Mystruct Foo; // Foo is shared by multiple tasks
volatile uint8 FooMutex = 0; // 0 is nobody using

// 1 is in use (locked)

… somewhere in a task …
uint8 InitialValue; // Use “Test-and-Set” approach
do { SEI(); // Mask Interrupts

InitialValue = FooMutex; // Save old value
FooMutex = 1; // Attempt to lock
CLI(); // Unmask Interrupts

} while (InitialValue != 0); // Try until 0

Foo.a = <newval>; // We own Foo; make changes
Foo.zz = <newval>;
FooMutex = 0; // Done with Foo; unlock it

49

Design A User Interface
(#18 No methodical approach to user interface design)
 Most engineers are terrible at user interface design…

… because most engineers aren’t “normal”
 And most engineering depts. aren’t that diverse

 Do “user testing” where real users try things out
 There are people who do user interaction for a living!
 User interface principles: consistent, simple, user-centered

 Take into account use demographics & scenarios
 Color-blind, arthritis, left-handed, hearing impaired, age
 Polarized sun glasses, gloves, ear plugs
 Internationalization, time zones, daylight savings time
 A user interface checklist with the above can help

50

Follow A Test Plan
(#19 No test plan)
(#20 No stress testing)
 Key to testing is coverage
 Each type of test has different coverage

 Unit test – might use code coverage
 Did every line of code get exercised?

 Integration test – test component interfaces
 Did every method and option flag get exercised?

 Acceptance test – traces to requirements
 Did every requirement of system get checked?

 Test early to find bugs while they are cheap to fix
 Usually: unit test, subsystem test, integration test, stress test,

acceptance test, beta test

TEST
PLAN

51

Written Test Plan
 Best approach is a written test plan
 Usually this is a spreadsheet for embedded systems
 For each test:

 Traceability of test (e.g., which requirement)
 Initial conditions
 Test procedure
 Expected result
 Actual result and pass/fail

 Plan specifies desired coverage
 Often can be a spreadsheet – one row per test
 For each type of testing, how thorough should it be?
 Bug prioritization
 How you know you are done testing

TEST
RESULTS

52

How Much Test Is Enough
 Get a reasonably good level of coverage
 But, how much does test and other QA cost?

 For embedded systems,
probably 50%-65% of total system cost(!)
 Tester : Developer Web Apps: 1 : 5

Ratios OK IT Code: 1 : 1
Safety Critical Code: 5 : 1

 If it really has to work, you need perhaps 2 : 1
 Embedded projects with marginal quality often at 1 : 1

 The good news: all verification/validation counts
 Unit test, peer reviews --- all count as “test”!
 So does other testing (and probably SQA)

53

Manage Issues and Defects
(#21 No defect tracking)

 If defects are written on sticky notes, you will lose track
 Use Bugzilla (or even just a spreadsheet!)
 Record any problem that isn’t fixed right away
 Track to resolution to make sure it is fixed

 Or marked as “we’re not going to fix this one”

 Ideally, identify root causes to fix them
 Many times root cause reveals a process problem (e.g.,

skipped design review, or ineffective testing)
 Do some data analysis to find common problems
 If a particular module is a bug farm, throw it away and

start over instead of forever fixing yet another bug

54

Defect Prioritization
 Prioritize defects based on importance to company
 Not just how spectacular the results are
 A risk matrix may be helpful:

55

Run-Time Instrumentation
(#22 No run-time fault instrumentation nor error logs)

 If you get a returned unit that works OK…
 Was it a software defect you can’t reproduce?
 Was it an intermittent hardware defect?
 Was it a distributor reducing inventory size?

 Run-time instrumentation gives you a clue
 Log reboots and up-times
 Log assertion violations “assert(X==Y);”
 Log fault codes or other anomalies

56

Related Defect/Issue Topics
(#23 Defect resolution for 3rd party software)
 If a 3rd party package has a bug, what happens?

 What happens to your fixes for new
versions?
 What if it is a new “feature” and

not really a bug?

(#24 Disaster recovery not tested)
 If you need to rebuild an old system, can you?
 Are you sure the files are still there?
 When was the last time you tested recovery?

57

Design For Quality Attributes
 Build it in; don’t add it on
 Performance (better algorithms)

and other attributes

(#25 Insufficient consideration of reliability/availability)

 How often is your software allowed to crash?
 “Never” is unrealistic
 Is quick reboot good enough to keep running

 Use basic techniques to improve reliability
 Periodic reboot (especially if you allow “malloc”)
 Watchdog timer
 Improve software quality with good testing & reviews

58

Safety
(#26 Insufficient consideration of safety)
 A mishap usually involves uncontrolled release of energy

 Most embedded systems have actuators…
 … so in principle could result in a mishap

 Thought experiment:
 Suppose you intentionally tried to cause an accident by writing

malicious software
 Could you bypass hardware safeties with software?
 If you could, you need to address safety

 Lots of details to get safety right. Short version:
 Establish a Safety Integrity Level (SIL) based on risks
 Follow procedures to design to that SIL
 Examples: IEC 61508 (process), ISO 26262 (automotive)

!

59

[IEC 61508-3]

60

Security
(#27 Insufficient consideration of security)
(#28 No IP protection plan)
 Most embedded systems have security

concerns
 If there is money to be made or

reputation to be gained, attacks
will eventually happen

 If someone wants to reverse engineer
your product they will
 (At surprisingly low cost)

61

62

Security Plan
 Written plan for security approach
 Goals
 What does being secure mean for you?

 Plausible attacks & consequences
 Countermeasures and monitoring
 Update/patch strategy

 Do-it-yourself security is a bad idea
 Bake-your-own crypto is an especially bad idea
 Security via obscurity doesn’t work

 Avoid: modems with unlisted numbers, home-made
crypto, home-made secret key generators, secret master
keys, secret network unlock incantations, head-in-the-sand

63

Use Watchdog Timer Correctly
(#29 No or incorrect use of watchdog timers)
 Common mistakes:
 Watchdog turned off
 Watchdog hooked up to HW counter/timer
 Watchdog kicked by low priority ISR (what

about main loop?)
 Watchdog kicked inside loop of a

single task

 Key best practices
 Kick watchdog in only one place in the code
 If any task hangs, don’t kick watchdog

Microcontroller
CPU

KICKRESET

WATCHDOG
TIMER

64

Incorrect Watchdog Timer Use

 Consider a preemptive tasking system
 Assume there is a watchdog timer (a COP timer)
 kick() restarts the watchdog time at initial value

void Task0(void) {..Do stuff..; Kick(); …more… ;}
void Task1(void) {..Do stuff..; Kick(); …more… ;}
void Task2(void) {..Do stuff..; Kick(); …more… ;}
void Task3(void) {..Do stuff..; Kick(); …more… ;}

 Some tasks might be ISRs, others might be RTOS tasks

 What’s wrong with the above approach?

INCORRECT
CODE

65

Better Multi-Tasking Watchdog Approach
void Task0(void) { .. Do stuff..; Alive(0x1); …more… ;}
void Task1(void) { .. Do stuff..; Alive(0x2); …more… ;}
void Task2(void) { .. Do stuff..; Alive(0x4); …more… ;}
void Task3(void) { .. Do stuff..; Alive(0x8); …more… ;}

 Main idea – each task sets a bit indicating it has run
 Separate watchdog monitor task kicks watchdog only when every task reports in
 Needs to be modified to account for task periods, but this is the basic idea

uint16 WatchFlag = 0;
void Alive(uint16 x)
{ SEI(); // Disable Interrupts
WatchFlag |= x;
CLI(); // Enable Interrupts

} // set task’s “I’m Alive” bit

void TaskW(void) // run periodically
{ if (WatchFlag == 0x0F) // if all tasks alive
{ Kick(); // kick watchdog
WatchFlag = 0; // erase flags

}
}

66

System Reset Gotchas
(#30 Inadequate system reset approach)
 Is there a way to reset your system manually?
 If there is a carry-through capacitor, how long does it last?

 Do all the outputs reset to a safe value?
 What if the system freezes during

initialization?
 Do you sample all sensors to get new values?
 Do you re-init all integrators to warm up

control loops after a reset?
 What if reset reboots repeatedly

(yo-yo mode)?
 Track reboot frequency (log time while up)
 After repeated reboots, need a Plan B

http://en.wikipedia.org/wiki/Image:1791-Yo-Yo-Bandalore.jpg

67

Manage Change
(#31 High requirements churn)
 If requirements change every day,

you’ll never finish
 But, requirements change is a fact of life

 Pick a model compatible with your change rate
 E.g., incremental development for high change rates

 Ensure that cost of change is accounted for
 Almost no change is truly “free”
 Extend schedule, increase cost, or delete other features

 Impose a freeze date
 At some point changes go into next version

 Identify a “Change Control Board” – yes/no decision owner
 Make sure they are incentivized in a sensible manner

68

Version Management
(#32 No version control)
 Make sure you can recreate any version
 Unroll changes
 Create old version for bug recreation & fixes
 That includes tools used to build old version

(#33 No backward compatibility plan)
 If you have many products, do they inter-operate?
 Combinatorial explosion of many old versions
 Have a policy, e.g., support last 2-3 versions

69

Software Updates
(#34 No software update plan)
 Your software will have bugs!
 How do users know they need patches?

 How are patches deployed?
 Do patches require a service call?
 How much will it cost to US Mail SD cards with

patches to all your customers?
 Can the user brick the system by botching a patch?
 Are you worried about malicious fake patches?
 Do patch connections open security vulnerabilities?

70

Processes Change Too
(#35 Lessons learned not being recorded)
 You only get smarter if you pay attention
 Hold an end-of-cycle retrospective

 Tribal wisdom isn’t inherited
 It must be taught
 Do you set aside time to teach all of it?

 Wisdom only sticks if you write it down
 If you found something broken, fix the process
 If you have a new idea, update the process
 Jettison stuff that isn’t working; augment stuff that is

 For example, design review checklists, coding style, test plans

71

Don’t Think Software Is Free
(#36 Acting as if software is free)
 Good software is expensive
 Bad software is even more expensive … eventually

 Embedded software is ballpark $20-$40 /SLOC
 Productivity is usually 1-2 Source Line of Code/hr

 Examples of pretending software is free
 Add a new function; keep end date the same
 Lose a team member; keep end date the same
 Optimize for a smaller CPU; keep identical budget
 Manage by head count and not project size
 Set aside zero budget for old-version maintenance
 Ignoring effort to port code & interact with “free” software

community to obtain maintenance

72

“Free” Tools Aren’t Free
 “I’ll spend a month porting a free compiler”
 Is that really worth ~$10K of cost savings?
 Even if the “free” compiler is really good?

 “I’ll write my own RTOS and save money”
 5000 SLOC @ $40/line = $200,000
 You’re dreaming if you think RTOS code is $40/SLOC if

you really want it to work
 And, most of us aren’t good enough to get it right

(#37 Use of cheap tools instead of good ones)
 We can’t afford a good compiler, so we use a cheap one
 … with terrible compiler warnings
 … with bugs to work around
 … that is hard to debug with … etc.

73

Developer Burnout
(#38 High turnover and developer overload)
 If you abuse your developers:
 By assuming they can write 2x the code at 1x the cost
 By jerking them around with requirement churn
 By not giving them the time to improve skills & process
 ….

 Don’t be surprised if they bail out
 And you have no idea what is in the code
 And you have lost your tribal knowledge
 …

74

Even Smart People Need Training
(#39 No training for managing outsource relationships)
 If you are off-shoring effort, need training for
 Better process to create clean hand-offs
 Management of outsource partners who have a different

business model than you do
 Cultural differences

 Also need training for:
 Design reviews and other helpful non-offshore processes
 Deeper embedded systems skills, especially for domain

experts who are self-taught at computers

75

Have Slack Resources
(#40 Resources too full)
 For typical embedded

hardware/software costs:

 If production run is less
than 1 MILLION units
 Resources should be no

more than 80% full

 If production run is less
than 10K units
 Resources should be no

more than 50% full

(Source: Barry Boehm, 1975)

76

Zero Is The Right Amount of Assembly Code

(#41 Too much assembly language)
 It takes 4-5 lines of assembler to match 1 C line
 Cost scales proportional to source code size
 Cost/line relatively independent of language

 Bug rate scales at least proportional to code size
 Probably higher for assembly – no variable typing

 Portability is severely reduce in assembly
 Assembly costs 4x-5x as much as C
 Unless software is free, get a bigger CPU
 (Don’t forget: #36 Acting as if software is free)

77

Make Sure You Follow Your Process
(#42 Project schedule not taken seriously)
 Lip service worse than a waste of time
 Because it fools you into thinking

you are making progress

 Which of these scenarios is a problem?
 Management determined schedule before defining

project content
 # developers determined by head count restrictions

rather than size and schedule estimates
 Developers are running behind … steal time from test
 Software developers get weekends off to be with their

families

78

Is Your Process Working?
(#43 No Software Quality Assurance (SQA) function)
 QA – Quality Assurance
 Usually this refers to software testing
 But, it is only a partial predictor of software quality!

 Understanding true quality requires understanding process too

 SQA – Software Quality Assurance
 This is about whether you are following your process
 Did you actually do what you said you’d do?

 Regardless of how heavy/light that may be
 SQA should be perhaps 6% of your effort
 Half to define, maintain, train on processes
 Half to audit, collect metrics, and monitor

79

About The Dark Side Of SQA

 Avoid SQA “process police” mentality
 Especially if developers don’t see

value in the processes
 But, you still need to see what’s really happening

 A “Coach” style can be positive:
 Help developers define what they actually want to do
 Help find ways to improve development outcomes
 Help developers find times when they aren’t actually doing what

they said they wanted to do
 Spot quality problems early, before the train wreck

 Requires taking and monitoring lightweight metrics
 Give developers cover during time crunches

 SQA should not sign off if shortcuts were taken on development

80

An Initial Agenda For Better Quality
 Hire good people. Process doesn’t fix incompetence.
 Define your process (steps & artifacts) on one page

 You can’t get there without a map
 Do peer reviews early, often, and effectively

 Biggest bang-for-buck there is
 Do balanced, planned testing

Define & track coverage
 Start test planning & testing before the end

 Track if your process is healthy
 Are you generating all the artifacts in your process?
 Is peer review finding about half the bugs?
 Are you spending 50%-65% of total project effort on

reviews, test, quality, SQA?
 Are defects clustering into bug farms (product or

process)?

81

Questions?
 For after-session questions, mail to:
 Koopman@cmu.edu

 Please indicate if:
 It is OK to quote your question on my blog
 It is OK to mention your full name, just your first name, or call

you “anonymous”

 Questions of general interest that
I can post onto my blog will receive
highest response priority

 Advanced embedded system course lectures at:
 http://www.ece.cmu.edu/~koopman/ece649

http://www.ece.cmu.edu/%7Ekoopman/ece649

	Avoiding the Top 43 Embedded Software Risks��
	Make sure we have metrics	
	Overview
	My Background
	Types of Systems Surveyed
	Developer Background
	Design Review Approach
	Study Methodology
	Technical Risks
	The 43 Risk Areas
	What Is The Big Picture?
	 17 Good Practice Areas
	A Tour Of Good Practices
	Define Your Development Process
	Is This A Well Defined Process?
	A Good Development Plan Has:
	A Better Process Example
	Using The Right Amount of Paper
	Keeping “Paper” Light
	Modest Proposals For Paperwork
	“But, We Don’t Need Paper”
	Write Good Requirements
	Making Requirements Measurable
	Use A Good Architecture
	The Basics of Software Architecture
	Slide Number 26
	Slide Number 27
	Global Variables Are Evil
	Embedded Network Architecture
	Example CAN Message Dictionary
	Create A Written Design
	Always Use Statecharts
	Statechart Example
	Switch-Based Statechart Code
	Use Good Coding Style
	Static Analysis & Warnings
	Example Warnings
	Use Peer Reviews
	What Should You Review?
	How Formal Should Reviews Be?
	Slide Number 41
	Use Real Time Analysis
	Rate Monotonic Scheduling 101
	Example Rate Monotonic Schedule
	Example Harmonic Rate Monotonic Schedule
	Don’t Use A Home Grown RTOS
	Manage Concurrency
	Example Mutex (“Mutual Exclusion”)
	Design A User Interface
	Follow A Test Plan
	Written Test Plan
	How Much Test Is Enough
	Manage Issues and Defects
	Defect Prioritization
	Run-Time Instrumentation
	Related Defect/Issue Topics
	Design For Quality Attributes
	Safety
	Slide Number 59
	Security
	Slide Number 61
	Security Plan
	Use Watchdog Timer Correctly
	Incorrect Watchdog Timer Use
	Better Multi-Tasking Watchdog Approach
	System Reset Gotchas
	Manage Change
	Version Management
	Software Updates
	Processes Change Too
	Don’t Think Software Is Free
	“Free” Tools Aren’t Free
	Developer Burnout
	Even Smart People Need Training
	Have Slack Resources
	 Zero Is The Right Amount of Assembly Code
	Make Sure You Follow Your Process
	Is Your Process Working?
	About The Dark Side Of SQA
	An Initial Agenda For Better Quality
	Questions?

