Usenet Nuggets

by Mark Thorson
mmm@cup .portal.com

This column consists of selected traffic from
the comp.arch newsgroup, a forum for
discussion of computer architecture on
Usenet—the international network of Unix-
based computers.

As always, the opinions expressed in this
column are the personal views of the authors.
and do not necessarily represent the
insttutions to which they are affiliated.

Text which sets the context of a message
appears in italics; this is usually text the
author has quoted from earlier Usenet traffic.
The code-like expressions below the authors’
names are their addresses on Usenet.

Stack Machines
Phil Koopman
koopman@utrcgw.utc.com

This is a consolidated attempt to address
some of the points people have been bringing
up about stack-based architectures. It's
written from the point of view of someone
who has actually made a living designing and
selling them (first with WISC Technologies,
later with Harris Semiconductor RTX
family).

Pipelining

Stack processors don't need to be pipetined
for ALU and operands, because the operands
are immediately available in the top of stack
buffer registers. Access to the on-CPU stack
RAM can be completely hidden by
pipelining. Access to off-chip memory 1is
typically not pipelined in current
implementations, but can be (P. Koopman,
Some ldeas for Stack Computer Design,
1991 Rochester Forth Conference, pg. 58). It
makes sense that the false dependencies
introduced by stack addressing could be

overcome with a superscalar implementation
if one were so inclined (but, I'm not).

Stack Size and Interrupts

On-chip stack buffers only need to be about
16 deep. Spilling can be done by stack
overflow interrupts (or, for that matter,
statically scheduled by the compiler the same
as register spills). Cost for interrupt-driven
overflows is less than 1% for only 16
registers and essentially 0% for 32 registers
for reasonable programs (P. Koopman, Stack
Computers, pp. 139-146).

A neat thing about stack CPUs is that context
switching for interrupts takes essentially zero
time—no registers need to be saved; you just
put the ISR values onto the top of the stack
and clean them off when you're done
(presumes enough stack space is available—
no big deal to arrange). (P. K.oopman, Stack
Computers, pp. 146-152.)

Program Size

Program size doesn't matter (much) for
workstations. But, for embedded control it
matters a lot, especially when you're limited
to on-CPU chip memory, and the CPU has to
cost less than $5-$10. Anecdotal evidence
indicates stack computer program size can be
smaller than CISC programs by a factor of
2.5 to 8 (and, another factor of 1.5 to 2.5
smaller than RISC, depending whom you
want to believe). This comes not just from
compact opcodes, but also from reuse of
short code segments and implicit argument
passing with subroutine calls. Code size
comparisons ['ve seen don't take this into
account. (P. Koopman, Stack Computers,
pg. 118-121))

Compilers

Stack compilers aren't currently very
efficieni—but that's because no-one has
really tried all that hard. I've published an
algorithm and experimental results that
suggest that stacks can be made about as
efficient as registers in terms of keeping local
varicbles at the top level of the memory

hierarchv. The work is based on GNU C
intermediate code (P. Koopman, A
Preliminary Exploration of Optimized Stack
Code Generation. 1992 Rochester Forth
Conference, in press: uuencoded postscript
copy of paper available upon request).

I'm currently working (at hobby level) on a
GNU C stack-based compiler that will
generate very compact code. Of course, one
could always argue that trying tomap C to a
stack machine will necessarily be less
efficient than mapping a stack-friendly
language such as Forth to a stack machine.
The issue starts to have more to do with
marketing than technology, but seems like a
neat challenge.

Applications

Overall, I'd sayv stack machines are now an
excellent fit for high performance in a low
cost system (not necessarily highest
performance given unlimited cost). They
should do especially well in embedded
applications.

Cache Size and Garbage Collection
Paul R. Wilson
wilson@cs.utexas.edu

Since I'll have some money to spend real
soon now, I've been pondering whether we
should switch from Sun 10 HP. The usual
benchmark results suggest that a change
might result in faster execution of our pet
program, a large "theorem prover" written in
Lisp. From the Specint92 results, one
should expect a performance increase of
about a factor of 2 when switching from a
S§52 1o either a SS10-30 or HP720.
Unfortunately, both machines turned out 1o
be just 30% faster than a SS2 when running
our svstem (for which ps never shows a
resident set under 3—4 MB, not even on an
8MB machine). Any explanations at hand?
Did we encounter a bottleneck berween CPU
and memory, or what?

Could be. If you don't have a generational
garbage collector (GC), vour locality is going
to be the pits. If vou allocate a lot of data
between garbage collections, you'll tvpically
incur a cache miss and a writeback for every
block of memory vou allocate. That's
because vou can't reuse memory until you
know 1t's garbage, so voure always

allocating something you haven't used for a
long time, i.e., at least since the last garbage
collection.

What you want is a generational garbage
collector and a cache large enough to hold the
youngest generation. This lets vou allocate
less-than-a-cache-full of data between
garbage collections, reclaim most of the
space, and reuse it at the next GC cycle.

The youngest generation should generally be
>100KB for basic GC efficiency reasons
(space-time tradeoffs), so you can't really
expect to stay in a first-level cache for your
heap allocations. You could stay in a
megabyte-range second or third level cache.

What performance should 1 expect from a
§810-41 or §S10-52 (which have a larger
cache, but still not large enough to hold the
Lisp’s resident set. And if I'm not mistaken,
the large cache results in a longer time spent
for non-cache memory accesses [6 cycles
instead of 3]). What performance should I
expect from an HP735?

If cache misses on allocation are your
problem, you're limited by the rate of
allocation and the cache miss service time,
plus something for write backs. (You'll
typically incur a write-back of a dirty block
for each block of heap data you allocate,
since the cache will be mostly full of
relatively recently allocated—hence wrntten—
garbage. This can overload your write
buffers in a hurry for some programs.)

You also need to add something extraif it's a
direct-mapped cache—GC'ed systems are
especially sensitive to DM cache conflicts.
(Actually, it's kinda weird—DM works berter
if the youngest generation almost fits in the

cache, but not quite.)

So if you know the rate of allocation in your
application, you should be able to figure a
ballpark cache miss cost without much

trouble.

(For more on this, see Wilson, Lam, a.rnd
Moher, Caching Considerations jor
Generational Garbage Collection, ACM Lisp
and Functional Programming '92.)

[can buy enough memory so that disk spged
is no criterion. Should I wait for machines
with 8MB of cache? Should I shoot myself?
Should I give you the money? :-)

