
18-742 Test 1 October 8, 1997 SOLUTIONS

1

18-742 Advanced Computer Architecture

Exam I -- October 8, 1997

SOLUTIONS

1. Cache Policies.

Consider two alternate caches, each with 4 sectors holding 1 block per sector and one 32-bit word
per block. One cache is direct mapped and the other is fully associative with LRU replacement
policy. The machine is byte addressed on word boundaries and uses write allocation with write
back.

1a) (7 points) What would the overall miss ratio be for the following address stream on the direct
mapped cache? Assume the cache starts out completely invalidated.

read 0x00 M
read 0x04 M
write 0x08 M
read 0x10 M
read 0x08 H
write 0x00 M Miss ratio = 5/6 = 0.8333

1b) (6 points) Give an example address stream consisting of only reads that would result in a lower
miss ratio if fed to the direct mapped cache than if it were fed to the fully associative cache.

read 0x00
read 0x04
read 0x08
read 0x0C
read 0x14 ; victim 0x00 on associative but 0x04 on direct
read 0x00 ; miss on associative, but hit on direct

18-742 Test 1 October 8, 1997 SOLUTIONS

2

2. Virtual Memory and Cache Organization.

The 742LX is a uniprocessor having up to a maximum of 64 MB of addressable physical
memory. The cache, virtual memory, and TLB have the following attributes:

Cache Virtual Memory TLB
unified virtual page size is 4 KB unified
physically addressed virtual address space is 1 GB fully associative
cache holds 20 KB 40 entries
5 way set associative 1 byte control/entry
32 Byte block size
sector size = block size
LRU replacement
write back
byte addresses on word boundaries

2a) (10 points) Sketch a block diagram of how the virtual address is mapped into the physical
address (assuming a TLB hit). Be sure to label exactly which/how many of the address bits go
where. and how many bits are in each of the 3 fields in a TLB entry.

14-BIT PAGE ADDRESS
(BITS 12-26 OF PHYSICAL ADDRESS)

14 bit PAGE ADDRESS8 bits CONTROL18 bit PAGE NAME

TLBBITS 12-29

1 GB MEANS
30-BIT

VIRTUAL
ADDRESS ASSOCIATIVE

LOOKUP

4 KB PAGE SIZE MEANS LOW 12 BITS ARE UNTRANSLATED

18-742 Test 1 October 8, 1997 SOLUTIONS

3

2b) (14 points) Given that you have the address output of a TLB and the original virtual address,
sketch a block diagram of how the cache is accessed to determine whether there is a cache hit (you
may ignore data access -- just indicate enough to say whether a hit or miss occurs; also include
only tag fields in your picture of the cache organization). Again label exactly which/how many
address bits go where and how big an address tag is.

SECTOR 0 TAG (14 BITS) SECTOR 1 SECTOR 2 SECTOR 3 SECTOR 4

VIRTUAL ADDRESS
BITS 0-11 UNMAPPED

BITS 0-4 SELECT BYTE

(32 BYTES / SECTOR)
BITS 5-11 SELECT SET
20K / (5* 32) = 128 SETS

5-WAY COMPARE FOR MATCH HIT?

TRANSLATED

ADDRESS FROM
TLB:

14 BITS = BITS 12-29 OF ADDRESS

CACHE

18-742 Test 1 October 8, 1997 SOLUTIONS

4

3. Multi-Level Caches.

You have a computer with two levels of cache memory and the following specifications:
CPU Clock: 200 MHz Bus speed: 50 MHz
Processor: 32-bit RISC scalar CPU, single data address maximum per instruction
L1 cache on-chip, 1 CPU cycle access

block size = 32 bytes, 1 block/sector, split I & D cache
each single-ported with one block available for access, non-blocking

L2 cache off-chip, 3 CPU cycles transport time (L1 miss penalty)
block size = 32 bytes, 1 block/sector, unified single-ported cache, blocking, non-pipelined

Main memory has 12+4+4+4 CPU cycles transport time for 32 bytes (L2 miss penalty)

Below are the results of a dinero simulation for the L1 cache:

CMDLINE: dinero -b32 -i8K -d8K -a1 -ww -An -W8 -B8
CACHE (bytes): blocksize=32, sub-blocksize=0, wordsize=8, Usize=0,
Dsize=8192, Isize=8192, bus-width=8.
POLICIES: assoc=1-way, replacement=l, fetch=d(1,0), write=w, allocate=n.
CTRL: debug=0, output=0, skipcount=0, maxcount=10000000, Q=0.

Metrics Access Type:
(totals,fraction) Total Instrn Data Read Write Misc
----------------- ------ ------ ------ ------ ------ ------
Demand Fetches 10000000 7362210 2637790 1870945 766845 0
 1.0000 0.7362 0.2638 0.1871 0.0767 0.0000
Demand Misses 52206 8466 43740 36764 6976 0
 0.0052 0.0011 0.0166 0.0196 0.0091 0.0000

Words From Memory 180920
(/ Demand Fetches) 0.0181
Words Copied-Back 766845
(/ Demand Writes) 1.0000
Total Traffic (words) 947765
(/ Demand Fetches) 0.0948

3a) (6 points) What is the available (as opposed to used) sustained bandwidth between:

- L1 cache bandwidth available to CPU (assuming 0% L1 misses)?

200 MHz * 2 caches * 32 bytes / 1 clock = 12.8 * 109 B/sec = 11.92 GB/sec

- L2 cache bandwidth available to L1 cache (assuming 0% L2 misses)?

200 MHz * 1 cache * 32 bytes / 3 clocks = 2.133 * 109 B/sec = 1.98 GB/sec

- Main memory bandwidth available to L2 cache?

200 MHz * 32 bytes / (12+4+4+4) clocks = 267 * 106 B/sec = 254 MB/sec

18-742 Test 1 October 8, 1997 SOLUTIONS

5

3b) (9 points) How long does an average instruction take to execute (in ns), assuming 1 clock
cycle per instruction in the absence of memory hierarchy stalls, no write buffering at the L1 cache
level, and 0% L2 miss rate.

7362210 instructions = 7362210 clock cycles @ 1 clock effective access time

52206 demand misses @ 3 clocks = 156618 clocks delay penalty.

(7362210 + 156618) / 7362210 = 1.0213 clocks / 200 Mhz = 5.1065 ns

3c) (7 points) A design study is performed to examine replacing the L2 cache with a victim cache.
Compute a measure of speed for each alternative and indicate which is the faster solution. Assume
the performance statistics are
L2 cache local miss ratio = 0.19
Victim cache miss ratio = 0.26; and its transport time from L1 miss = 1 clock

Given fixed L1 cache performance, it is fair to compare these head-to-head (but the comparison
might not stay the same if L1 were changed):

tea for L2 cache beyond the L1 access time is:
3 + 0.19 * (12+4+4+4) = 7.56 clocks in addition to L1 delay

tea for L2 cache beyond the L1 access time is:
1 + 0.26 * (12+4+4+4) = 7.24 clocks in addition to L1 delay

So, in this (contrived) case the victim cache is a slight win in speed, and a whole lot cheaper.

18-742 Test 1 October 8, 1997 SOLUTIONS

6

4. Address Tracing and Cache Simulation.

You have instrumented only data references from the subroutine “sum_array” in the following
program using Atom on an Alpha workstation (“long” values are 64 bits). The resultant data reads
and writes have been run through dinero with a particular cache configuration. In this question
you’ll deduce the cache configuration used.

#include <stdio.h>
#include <stdlib.h>

void sum_array(int N, long *a, long *b, long *c, long *d, long *e)
{ int i;
 for (i = 0; i < N; i++)
 { *(a++) = *(b++) + *(c++) + *(d++) + *(e++); }
}

int main(int argc, char *argv[])
{ int N, offset, i;
 long *a, *b, *c, *d, *e; /* 64-bit elements in each array */

 if (argc != 3)
 { fprintf(stderr, "\nUsage: test <size> <offset>\n"); exit(-1); }
 sscanf(argv[1], "%d", &N); sscanf(argv[2], "%d", &offset);

 a = (long *) malloc(5 * ((N*sizeof(long)) + offset));
 b = a + N + (offset/sizeof(long));
 c = b + N + (offset/sizeof(long));
 d = c + N + (offset/sizeof(long));
 e = d + N + (offset/sizeof(long));

 sum_array(N, a, b, c, d, e);

}

The program was executed with a command line having successively higher values of N from 1 to
2100, and an offset value of 0. The below graph shows the number of combined data misses for
each value of N.
• Bus size and word size are both 8 bytes.
• The cache has one block per sector and a block size of 128 bytes (16 words).
• Assume a completely invalidated cache upon entry to sum_array.

18-742 Test 1 October 8, 1997 SOLUTIONS

7

Total Data Cache Misses

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

0 500 1000 1500 2000 2500

Value of N

Series1

Some data that might be of interest are:

 N # Misses Total Traffic (words)
500 626 2516
501 628 2533
502 629 2534
503 630 2535
504 630 2520
505 632 2537
506 633 2538
507 696 3531
508 1020 8700
509 1277 12797
510 1597 17902
511 1853 21983
512 2079 25584
513 1862 22097
514 1606 17986
515 1288 12883
516 1032 8772
517 717 3717
518 651 2646
519 653 2663
520 652 2632
521 655 2665
522 655 2650
523 657 2667
524 658 2668

Answer the following questions, giving brief support for your answer of (unsupported answers
will not receive full credit).

18-742 Test 1 October 8, 1997 SOLUTIONS

8

4a) (5 points) Ignoring overhead for the subroutine call, what is the theoretical minimum possible
data total traffic (in 8-byte words) that this program has to move (combined into and out of the
cache) for N = 500?

Each array element touched once. 500*5 = 2500. Actual: 2516 so this makes sense

4b) (6 points) Does the cache perform write allocation?

With write-allocation for N = 500 you would expect to move extra words to fill the cache
block when missing on a write to a[]. In fact, 512 extra words, making it 3012 words of
traffic; which is more than we observed. Actual is 2516 so it must be write-no-allocate.

4c) (6 points) Assuming it is not direct mapped, does this data look like it came from an LRU
replacement policy or a random replacement policy? Why?

LRU - data is very “clean” and miss rate is nearly monotonic with increasing array sizes
except for conflict areas; with random replacement one would expect to see accidental mini-
spikes even with non-conflicting data at “random” places on the graph.

Notes:
- an important thing to note about the program is that only touches the data array once
- a random replacement policy still has significant spikes because all the action is concentrated
in a single set when the arrays conflict -- there is going to be a loser no matter what the
replacement policy is

18-742 Test 1 October 8, 1997 SOLUTIONS

9

4d) (6 points) Assume that you have a direct mapped cache. What is the best value for the input
parameter offset if you want to improve performance for N=512 (“best” means the smallest
value guaranteed to have 100% effectiveness for N=512).

offset=128 = 1 block size which offsets arrays by exactly 1 set in cache. Array is visited only
once, so there is no issue of capacity misses -- only conflict misses matter

4e) (10 points) What is the actual associativity of the cache that produced the data given? (and
how did you figure that out?)

Traffic drop-off at offset of 6 words away on both sides of 512 means that at this distance you
have only enough integral blocks of offset to fit into the associativity. So block
size/associativity ~= 6 words; associativity ~= 128/(6*8) = 2.66 => 3 way set associative

4f) (8 points) How many bytes does the cache hold (data only, not counting control+tag bits)?

Array size of 512 introduces conflicts. With 4 data sets and 3 way set associativity this means
that each sector in cache holds 512*8 bytes = 4K. 4K*3 = 12 KBytes.

