

Preview
 Many terms have multiple usage that can lead to confusion when used out of context
Sources of error
• Faults go through at least ten stages from inception to repair - so
designer better plan for all ten stages
• Relationship between sequence of events in handling a fault and mathematical measures
 Coding can be considered selection of a subset of all the possible bit patterns to maximize the "distance" between code words
• Carefully position valid data representations in <i>n</i> -space so that bit changes do not lead to another valid data point (<i>i.e.</i> code word)
• Error correcting codes designed to tolerate different fault types
Random place/value, known place/random value, burst
• Coding is an effective application of redundancy to processor, bus, and
memory
• Examples: generic, Titan

RELIABILITY: SURVIVAL PROBABILITY

- When repair is costly or function is critical
- AVAILABILITY: THE FRACTION OF TIME A SYSTEM MEETS ITS SPECIFICATION
 - When service can be delayed or denied

• **REDUNDANCY:** EXTRA HARDWARE, SOFTWARE, TIME

Stages in S	Stages in System Development				
STAGE	ERROR SOURCES	ERROR DETECTION			
Specification	Algorithm Design	Simulation			
& design	Formal Specification	Consistency checks			
Prototype	Algorithm design	Stimulus/response			
	Wiring & assembly	Testing			
	Timing				
	Component Failure				
Manufacture	Wiring & assembly	System testing			
	Component failure	Diagnostics			
Installation	Assembly	System Testing			
	Component failure	Diagnostics			
Field Operation	Component failure	Diagnostics			
I.	Operator errors	5			
	Environmental factors				

Cause-Effect Sequence and Duration						
component does not provide service						
deviation of logic function from design value Hard, Transient						
manifestation of a fault by incorrect value						
rors, environment						
replacement						
replacement						
r						

CMU Andrew File	Server Study
 Configuration 	
• 13 SUN II Workstations	with 68010 processor
• 4 Fujitsu Eagle Disk Driv	res
 Observations 	
• 21 Workstation Years	
 Frequency of events 	
Permanent Failures	29
• Intermittent Faults	610
Transient Faults	446
System Crashes	298
 Mean Time To 	
Permanent Failures	6552 hours
• Intermittent Faults	58 hours
Transient Faults	354 hours
System Crash	689 hours

Number of errors	Received data bits		Received check bits			Syndrome						
	d_1	d_2	d_3	d ₄	\boldsymbol{c}_1	ϵ_2	c ₃	c4	51	52	S ₃	54
Zero	1	1	1	0	0	1	0	0	0	0	0	0
One	1	0	1	0	0	1	0	0	1	1	0	1
Two	1	0	1	0	0	1	1	0	0	1	1	1
	b	. Red	eive	d words	and th	eir s	yndro Siewior	omes ek & Swarz)				

Error Recovery Techniques in Generic System

Memory

- Single-error-correction code on data
- Retry on address or control information parity error
- Cache
 - · Retry on address or control information parity error
 - Disable portions of cache on data parity errors
- Translation buffer
 - Refill on error
- Input/Output
 - Retry on data or control parity errors
- CPU
 - Retry on control store parity error
 - Register file copies for performance
 - Invert sense of control store
 - Macroinstruction retry

Review

- Many terms have multiple usage that can lead to confusion when used out of context
 - Establish context of all parties in a design discussion
- Faults go through at least ten stages from inception to repair so designer better plan for all ten stages
 - Faults will go through all ten stages whether designer plans for them or not
- Coding can be considered selection of a subset of all the possible bit patterns to maximize the "distance" between code words
 - Important classes of codes are linear (can be decoded with XOR trees) and separable (decoding can go on in parallel with data processing minimizing performance degradation)
- Error correcting codes designed to tolerate different fault types
 - Can customize codes to the physical partitioning of the design
- Coding is an effective application of redundancy to processor, bus, and memory
 - Redundancy only log to the base 2 of the number of data bits